首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in close proximity to Rathke's pouch, in this process are even less clear. In this report we describe an in vitro experimental system that reproduces the earliest steps of anterior pituitary development. We provide evidence that the ventral diencephalon from 2- to 4-day-old chick embryos is able to function as an inducer of pituitary development and can convert early chick embryonic head ectoderm, which is not involved normally in pituitary development, into typical anterior pituitary tissue. This induction is contact-dependent. In our experimental system, there is a requirement for the supporting action of mesenchyme, which is independent of the mesenchyme source. Transplantation of the notochord into the lateral head region of a six-somite chick embryo induces an epithelial invagination, suggesting that the notochord induces the outpouching of the roof of the stomodeal ectoderm that results in formation of Rathke's pouch and causes the close contact between this ectoderm and the ventral diencephalon. Finally, we demonstrate that the ventral diencephalon from e9.5-e11.5 mouse embryos is also an efficient inducer of anterior pituitary differentiation in chick embryonic lateral head ectoderm, suggesting that the mechanism of anterior pituitary induction is conserved between mammals and birds, using the same, or similar, signaling pathways.  相似文献   

2.
Formation of the adenohypophysis in mammalian embryos occurs via an invagination of the oral ectoderm to form Rathke's pouch, which becomes exposed to opposing dorsoventral gradients of signaling proteins governing specification of the different hormone-producing pituitary cell types. One signal promoting pituitary cell proliferation and differentiation to ventral cell types is Sonic hedgehog (Shh) from the oral ectoderm. To study pituitary formation and patterning in zebrafish, we cloned four cDNAs encoding different pituitary hormones, prolactin (prl), proopiomelancortin (pomc), thyroid stimulating hormone (tsh), and growth hormone (gh), and analyzed their expression patterns relative to that of the pituitary marker lim3. prl and pomc start to be expressed at the lateral edges of the lim3 expression domain, before pituitary cells move into the head. This indicates that patterning of the pituitary anlage and terminal differentiation of pituitary cells starts while cells are still organized in a placodal fashion at the anterior edge of the developing brain. Following the expression pattern of prl and pomc during development, we show that no pituitary-specific invagination equivalent to Rathke's pouch formation takes place. Rather, pituitary cells move inwards together with stomodeal cells during oral cavity formation, with medial cells of the placode ending up posterior and lateral cells ending up anterior, resulting in an anterior-posterior, rather than a dorsoventral, patterning of the adenohypophysis. Carrying out loss- and gain-of-function experiments, we show that Shh from the ventral diencephalon plays a crucial role during induction, patterning, and growth of the zebrafish adenohypophysis. The phenotypes are very similar to those obtained upon pituitary-specific inactivation or overexpression of Shh in mouse embryo, suggesting that the role of Shh during pituitary development has been largely conserved between fish and mice, despite the different modes of pituitary formation in the two vertebrate classes.  相似文献   

3.
4.
5.
The interaction between bone morphogenetic proteins (BMPs) and their antagonist, Noggin, is critical for normal development. Noggin null mice die at birth with a severely malformed skeleton that is postulated to reflect the activity of unopposed BMP signaling. However, the widespread expression and redundancy of different BMPs have made it difficult to identify a specific role for individual BMPs during mammalian skeletal morphogenesis. Here, we report the effects of modifying Bmp4 dosage on the skeletal development of Noggin mutant mice. The reduction of Bmp4 dosage results in an extensive rescue of the axial skeleton of Noggin mutant embryos. In contrast, the appendicular skeletal phenotype of Noggin mutants was unchanged. Analysis of molecular markers of somite formation and somite patterning suggests that the loss of Noggin results in the formation of small mispatterned somites. Mis-specification and growth retardation rather than cell death most likely account for the subsequent reduction or loss of axial skeletal structures. The severe Noggin phenotype correlates with Bmp4-dependent ectopic expression of Bmp4 in the paraxial mesoderm consistent with Noggin antagonizing an auto-inductive feed-forward mechanism. Thus, specific interactions between Bmp4 and Noggin in the early embryo are critical for establishment and patterning of the somite and subsequent axial skeletal morphogenesis.  相似文献   

6.
To address the patterning function of the Bmp2, Bmp4 and Bmp7 growth factors, we designed antisense morpholino oligomers (MO) that block their activity in Xenopus laevis. Bmp4 knockdown was sufficient to rescue the ventralizing effects caused by loss of Chordin activity. Double Bmp4 and Bmp7 knockdown inhibited tail development. Triple Bmp2/Bmp4/Bmp7 depletion further compromised trunk development but did not eliminate dorsoventral patterning. Unexpectedly, we found that blocking Spemann organizer formation by UV treatment or beta-Catenin depletion caused BMP inhibition to have much more potent effects, abolishing all ventral development and resulting in embryos having radial central nervous system (CNS) structures. Surprisingly, dorsal signaling molecules such as Chordin, Noggin, Xnr6 and Cerberus were not re-expressed in these embryos. We conclude that BMP inhibition is sufficient for neural induction in vivo, and that in the absence of ventral BMPs, Spemann organizer signals are not required for brain formation.  相似文献   

7.
8.
Retinoids, and in particular retinoic acid (RA), are known to induce posterior fates in neural tissue. However, alterations in retinoid signalling dramatically affect anterior development. Previous reports have demonstrated a late role for retinoids in patterning craniofacial and forebrain structures, but an earlier role in anterior patterning is not well understood. We show that enzymes involved in synthesizing retinoids are expressed in the avian hypoblast and in tissues directly involved in head patterning, such as anterior definitive endoderm and prechordal mesendoderm. We found that in the vitamin A-deficient (VAD) quail model, which lacks biologically active RA from the first stages of development, anterior endodermal markers such as Bmp2, Bmp7, Hex and the Wnt antagonist crescent are affected during early gastrulation. Furthermore, prechordal mesendodermal and prospective ventral telencephalic markers are expanded posteriorly, Shh expression in the axial mesoderm is reduced, and Bmp2 and Bmp7 are abnormally expressed in the ventral midline of the neural tube. At early somite stages, VAD embryos have increased cell death in ventral neuroectoderm and foregut endoderm, but normal cranial neural crest production, whereas at later stages extensive apoptosis occurs in head mesenchyme and ventral neuroectoderm. As a result, VAD embryos end up with a single and reduced telencephalic vesicle and an abnormally patterned diencephalon. Therefore, we propose that retinoids have a dual role in patterning the anterior forebrain during development. During early gastrulation, RA acts in anterior endodermal cells to modulate the anteroposterior (AP) positional identity of prechordal mesendodermal inductive signals to the overlying neuroectoderm. Later on, at neural pore closure, RA is required for patterning of the mesenchyme of the frontonasal process and the forebrain by modulating signalling molecules involved in craniofacial morphogenesis.  相似文献   

9.
Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation.  相似文献   

10.
In the developing limb, Bmp4 is expressed in the apical ectodermal ridge (AER) and underlying mesoderm. Insight into the function of Bmp4 in limb development has been hampered by the early embryonic lethality of Bmp4 null embryos. We directly investigated Bmp4 using a conditional null allele of Bmp4 and the Prx1(cre) transgene to inactivate Bmp4 in limb bud mesoderm. The limb bud mesoderm of Prx1(cre);Bmp4 mutants was defective in production of Bmp4 but still competent to respond to Bmp signaling. Prx1(cre);Bmp4 mutant embryos had defective digit patterning including hindlimb preaxial polydactyly with posterior digit transformations. The Prx1(cre);Bmp4 mutants also had postaxial polydactyly with digit five duplications. Bmp4 mutant limbs had delayed induction and maturation of the AER that resulted in expanded Shh signaling. Moreover, the AER persisted longer in the Bmp4 mutant limb buds exposing the forming digits to prolonged Fgf8 signaling. Our data show that Bmp4 in limb mesoderm regulates AER induction and maturation and implicate signaling from the AER in regulation of digit number and identity.  相似文献   

11.
The thymus and parathyroids originate from the third pharyngeal pouches, which form as endodermal outpocketings in the pharyngeal region beginning on embryonic day 9 (E9.0) of mouse development. Using organ-specific markers, we have previously shown that thymus and parathyroid-specific organ domains are established within the primordium prior to formation of the organs proper: Gcm2 expression defines the prospective parathyroid cells in the dorsal pouch from E9.5, while Foxn1 is expressed in the thymus domain from E11.25. Bmp (bone morphogenetic protein) signaling has been implicated in thymic epithelial cell differentiation and thymus organogenesis. In the present study, we report expression patterns of Bmp4 and Noggin, a Bmp4 antagonist, in the third pharyngeal pouch using two lacZ transgenic mouse strains. Results from this gene expression study revealed localization of Bmp4 expression to the ventral region of the third pharyngeal pouch endoderm at E10.5 and E11.5, in those cells that will express Foxn1 and form the thymus. Conversely, the expression of Noggin was confined to the dorsal region of the pouch and primordium at these stages, and thus appeared to be co-expressed with Gcm2 in the parathyroid domain. This represents the first detailed study of Bmp4 and Noggin expression during the early stages of thymus and parathyroid organogenesis.  相似文献   

12.
Bone morphogenetic proteins (Bmps) are key regulators of dorsoventral (DV) patterning. Within the ectoderm, Bmp activity has been shown to inhibit neural development, promote epidermal differentiation and influence the specification of dorsal neurons and neural crest. In this study, we examine the patterning of neural tissue in mutant zebrafish embryos with compromised Bmp signalling activity. We find that although Bmp activity does not influence anteroposterior (AP) patterning, it does affect DV patterning at all AP levels of the neural plate. Thus, we show that Bmp activity is required for specification of cell fates around the margin of the entire neural plate, including forebrain regions that do not form neural crest. Surprisingly, we find that Bmp activity is also required for patterning neurons at all DV levels of the CNS. In swirl/bmp2b(-) (swr(-)) embryos, laterally positioned sensory neurons are absent whereas more medial interneuron populations are hugely expanded. However, in somitabun(-) (sbn(-)) embryos, which probably retain higher residual Bmp activity, it is the sensory neurons and not the interneurons that are expanded. Conversely, in severely Bmp depleted embryos, both interneurons and sensory neurons are absent and it is the most medial neurons that are expanded. These results are consistent with there being a gradient of Bmp-dependent positional information extending throughout the entire neural and non-neural ectoderm.  相似文献   

13.
In chordates, early separation of cell fate domains occurs prior to the final specification of ectoderm to neural and non-neural as well as mesoderm to dorsal and ventral during development. Maintaining such division with the establishment of an exact border between the domains is required for the formation of highly differentiated structures such as neural tube and notochord. We hypothesized that the key condition for efficient cell fate separation in a chordate embryo is the presence of a positive feedback loop for Bmp signaling within the gene regulatory network (GRN), underlying early axial patterning. Here, we therefore investigated the role of Bmp signaling in axial cell fate determination in amphioxus, the basal chordate possessing a centralized nervous system. Pharmacological inhibition of Bmp signaling induces dorsalization of amphioxus embryos and expansion of neural plate markers, which is consistent with an ancestral role of Bmp signaling in chordate axial patterning and neural plate formation. Furthermore, we provided evidence for the presence of the positive feedback loop within the Bmp signaling network of amphioxus. Using mRNA microinjections we found that, in contrast to vertebrate Vent genes, which promote the expression of Bmp4, amphioxus Vent1 is likely not responsible for activation of cephalochordate ortholog Bmp2/4. Cis-regulatory analysis of amphioxus Bmp2/4, Admp and Chordin promoters in medaka embryos revealed remarkable conservation of the gene regulatory information between vertebrates and basal chordates. Our data suggest that emergence of a positive feedback loop within the Bmp signaling network may represent a key molecular event in the evolutionary history of the chordate cell fate determination.  相似文献   

14.
BMP-signaling regulates the generation of hair-cells   总被引:6,自引:0,他引:6  
Bone morphogenetic proteins (BMPs) are diffusible molecules involved in a variety of cellular interactions during development. Bmp4 expression accompanies the development of the ear sensory organs during patterning and specification of sensory cell fates, yet there is no understanding of the role of BMP4 in this process. The present work was aimed at exploring the effects of BMP-signaling on the development of hair-cells. For this purpose, we studied gene expression, cell proliferation and cell death in isolated chick otic vesicles that were grown in vitro in the presence of recombinant BMP4 or the BMP-inhibitor Noggin. Cath1 was used as a marker for hair-cell specification. BMP4 reduced the number of Cath1-cells and, conversely, Noggin increased the size of the sensory patches and the number of Cath1-positive cells. The effect of BMP4 was irreversible and occurred before hair-cell specification. Lfng and Fgf10 were expressed in the prosensory domain before Cath1, and their expression was expanded by Noggin. At these stages, modifications of BMP activity did not respecify non-sensory epithelium of the otic vesicle. The expression of Bmp4 at sensory patches was suppressed by BMP4 and induced by Noggin suggesting an autoregulatory loop. Analysis of BrdU incorporation during 6 and 18 h indicated that the effects of BMP4 were due to its ability to reduce the number of actively proliferating progenitors and inhibit cell fate specification. BMP4 induced cell death within the prosensory domain of the otic vesicle, along with the expression of Msx1, but not Msx2. On the contrary, BMP-inhibition with Noggin favored hair-cell specification without changes in the overall cell proliferation. We propose that about the stage of terminal division, the balance between BMP and BMP-inhibitory signals regulates survival and specification of hair-cell precursors, the final number of sensory hair-cells being limited by excess levels of BMPs. The final size of sensory patches would hence depend on the balance between BMP4 and opposing signals.  相似文献   

15.
16.
The differentiation of the pituitary of the chicken embryo was studied by means of an immunohistochemical technique using antisera to turkey and chicken pituitary hormones. Immunoreactive LH-cells are detected in 4-day embryos (stage 23 of Hamburger and Hamilton) when the primordium of the anterior pituitary, the Rathke's pouch is only composed of a single-layer epithelium lined with an undifferentiated mesenchyme. A few immunoreactive cells are observed grouped on the posterior aspect of the pouch. As development proceeds, a strip of positive cells is detected encircling the Rathke's pouch. Prolactin-, growth hormone-, and ACTH-immunoreactive cells are detected in 6- and 7-day embryos, only after the pituitary has acquired its characteristic structure with cords in which different cell types become progressively recognizable. The early appearance of immunoreactive LH-cells following a precise distribution shows that secretory properties and differentiation capacities are acquired simultaneously in the epithelium of the Rathke's pouch and may be induced by the same stimulus.  相似文献   

17.
In the pituitary, the transition from proliferating progenitor cell into differentiated hormone producing cell is carefully regulated in a time-dependent and spatially-restricted manner. We report that two targets of Notch signaling, Hes1 and Prop1, are needed to maintain progenitors within Rathke's pouch and for the restriction of differentiated cells to the ventral pituitary. We observed ACTH and αGSU producing cells that had prematurely differentiated within Rathke's pouch along with correlated ectopic expression of Mash1 only when both Prop1 and Hes1 were lost. We also discovered that downregulation of N-cadherin expression in cells as they transition from Rathke's pouch to the anterior lobe appears to be essential for their movement. In the Prop1 mutant, cells are trapped in Rathke's pouch and N-cadherin expression remains high. Also, Slug, a marker of epithelial-to-mesenchymal transition, is absent in the dorsal anterior lobe. When Hes1 is lost in the Prop1 mutant, N-cadherin is downregulated and cells are able to exit Rathke's pouch but have lost their migrational cues and form ectopic foci surrounding Rathke's pouch. Our data reveal important overlapping functions of Hes1 and Prop1 in cell differentiation and movement that are critical for pituitary organogenesis.  相似文献   

18.
We have studied the role of Bmp signaling in patterning neural tissue through the use of mutants in the zebrafish that disrupt three different components of a Bmp signaling pathway: swirl/bmp2b, snailhouse/bmp7 and somitabun/smad5. We demonstrate that Bmp signaling is essential for the establishment of the prospective neural crest and dorsal sensory Rohon-Beard neurons of the spinal cord. Moreover, Bmp signaling is necessary to limit the number of intermediate-positioned lim1+ interneurons of the spinal cord, as observed by the dramatic expansion of these prospective interneurons in many mutant embryos. Our analysis also suggests a positive role for Bmp signaling in the specification of these interneurons, which is independent of Bmp2b/Swirl activity. We found that a presumptive ventral signal, Hh signaling, acts to restrict the amount of dorsal sensory neurons and trunk neural crest. This restriction appears to occur very early in neural tissue development, likely prior to notochord or floor plate formation. A similar early role for Bmp signaling is suggested in the specification of dorsal neural cell types, since the bmp2b/swirl and bmp7/snailhouse genes are only coexpressed during gastrulation and within the tail bud, and are not found in the dorsal neural tube or overlying epidermal ectoderm. Thus, a gastrula Bmp2b/Swirl and Bmp7/Snailhouse-dependent activity gradient may not only act in the specification of the embryonic dorsoventral axis, but may also function in establishing dorsal and intermediate neuronal cell types of the spinal cord.  相似文献   

19.
The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell–cell communication likely plays an important role in regulating this process.  相似文献   

20.
The differentiation of the pituitary of the chicken embryo was studied by means of an immunohistochemical technique using antisera to turkey and chicken pituitary hormones. Immunoreactive LH-cells are detected in 4-day embryos (stage 23 of Hamburger and Hamilton) when the primordium of the anterior pituitary, the Rathke's pouch is only composed of a single-layer epithelium lined with an undifferentiated mesenchyme. A few immunoreactive cells are observed grouped on the posterior aspect of the pouch. As development proceeds, a strip of positive cells is detected encircling the Rathke's pouch. Prolactin-, growth hormone-, and ACTH-immunoreactive cells are detected in 6- and 7-day embryos, only after the pituitary has acquired its characteristic structure with cords in which different cell types become progressively recognizable. The early appearance of immunoreactive LH-cells following a precise distribution shows that secretory properties and differentiation capacities are acquired simultaneously in the epithelium of the Rathke's pouch and may be induced by the same stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号