首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The paraxial mesoderm of the somites of the vertebrate embryo contains the precursors of the axial skeleton, skeletal muscles and dermis. The Meox1 and Meox2 homeobox genes are expressed in the somites and their derivatives during embryogenesis. Mice homozygous for a null mutation in Meox1 display relatively mild defects in sclerotome derived vertebral and rib bones, whereas absence of Meox2 function leads to defective differentiation and morphogenesis of the limb muscles. By contrast, mice carrying null mutations for both Meox genes display a dramatic and wide-ranging synthetic phenotype associated with extremely disrupted somite morphogenesis, patterning and differentiation. Mutant animals lack an axial skeleton and skeletal muscles are severely deficient. Our results demonstrate that Meox1 and Meox2 genes function together and upstream of several genetic hierarchies that are required for the development of somites. In particular, our studies place Meox gene function upstream of Pax genes in the regulation of chondrogenic and myogenic differentiation of paraxial mesoderm.  相似文献   

2.
To address the patterning function of the Bmp2, Bmp4 and Bmp7 growth factors, we designed antisense morpholino oligomers (MO) that block their activity in Xenopus laevis. Bmp4 knockdown was sufficient to rescue the ventralizing effects caused by loss of Chordin activity. Double Bmp4 and Bmp7 knockdown inhibited tail development. Triple Bmp2/Bmp4/Bmp7 depletion further compromised trunk development but did not eliminate dorsoventral patterning. Unexpectedly, we found that blocking Spemann organizer formation by UV treatment or beta-Catenin depletion caused BMP inhibition to have much more potent effects, abolishing all ventral development and resulting in embryos having radial central nervous system (CNS) structures. Surprisingly, dorsal signaling molecules such as Chordin, Noggin, Xnr6 and Cerberus were not re-expressed in these embryos. We conclude that BMP inhibition is sufficient for neural induction in vivo, and that in the absence of ventral BMPs, Spemann organizer signals are not required for brain formation.  相似文献   

3.
Bone morphogenetic proteins (BMPs) have multiple roles during embryogenesis. Current data indicate that the dosage of BMPs is tightly regulated for normal development in mice. Since Bmp2 or Bmp4 homozygous mutant mice show early embryonic lethality, we generated compound heterozygous mice for Bmp2 and Bmp4 to explore the impact of lowered dosage of these BMP ligands. Genotyping pups bred between Bmp2 and Bmp4 heterozygous mice revealed that the ratio of adult compound heterozygous mice for Bmp2 and Bmp4 is much lower than expected. During embryogenesis, the compound heterozygous embryos showed several abnormalities, including defects in eye formation, body wall closure defects, and ventricular septal defects (VSD) in the heart. However, the ratio of the compound heterozygous embryos was the same as expected. Caesarean sections at E18.5 revealed that half of the compound heterozygotes died soon after birth, and the majority of the dead individuals exhibited VSD. Survivors were able to grow to adults, but their body weight was significantly lower than control littermates. They demonstrated progressive abnormalities in the heart, eventually showing a branched leaflet in atrioventricular valves. These results suggest that the dosage of both BMP2 and 4 is critical for functional heart formation during embryogenesis and after birth. genesis 47:374–384, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Bone morphogenetic protein 4 (Bmp4) is expressed during multiple stages of development of the chicken inner ear. At the otocyst stage, Bmp4 is expressed in each presumptive sensory organ, as well as in the mesenchymal cells surrounding the region of the otocyst that is destined to form the semicircular canals. After the formation of the gross anatomy of the inner ear, Bmp4 expression persists in some sensory organs and restricted domains of the semicircular canals. To address the role of this gene in inner ear development, we blocked BMP4 function(s) by delivering one of its antagonists, Noggin, to the developing inner ear in ovo. Exogenous Noggin was delivered to the developing otocyst by using a replication-competent avian retrovirus encoding the Noggin cDNA (RCAS-N) or implanting beads coated with Noggin protein. Noggin treatment resulted in a variety of phenotypes involving both sensory and nonsensory components of the inner ear. Among the nonsensory structures, the semicircular canals were the most sensitive and the endolymphatic duct and sac most resistant to exogenous Noggin. Noggin affected the proliferation of the primordial canal outpouch, as well as the continual outgrowth of the canal after its formation. In addition, Noggin affected the structural patterning of the cristae, possibly via a decrease of Msx1 and p75NGFR expression. These results suggest that BMP4 and possibly other BMPs are required for multiple phases of inner ear development.  相似文献   

5.
Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite McMahon, J.A. et al. Genes Dev. 12, 1438–1452Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton Brunet, L.J., McMahon, J.A., McMahon, A.P. and Harland, R.M. Science 280, 1455–1457Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning Capdevila, J. and Johnson, R.L. Dev. Biol. 197, 205–217  相似文献   

6.
The development of the anterior foregut of the mammalian embryo involves changes in the behavior of both the epithelial endoderm and the adjacent mesoderm. Morphogenetic processes that occur include the extrusion of midline notochord cells from the epithelial definitive endoderm, the folding of the endoderm into a foregut tube, and the subsequent separation of the foregut tube into trachea and esophagus. Defects in foregut morphogenesis underlie the constellation of human birth defects known as esophageal atresia (EA) and tracheoesophageal fistula (TEF). Here, we review what is known about the cellular events in foregut morphogenesis and the gene mutations associated with EA and TEF in mice and humans. We present new evidence that about 70% of mouse embryos homozygous null for Nog, the gene encoding noggin, a bone morphogenetic protein (Bmp) antagonist, have EA/TEF as well as defects in lung branching. This phenotype appears to correlate with abnormal morphogenesis of the notochord and defects in its separation from the definitive endoderm. The abnormalities in foregut and lung morphogenesis of Nog null mutant can be rescued by reducing the gene dose of Bmp4 by 50%. This suggests that normal foregut morphogenesis requires that the level of Bmp4 activity is carefully controlled by means of antagonists such as noggin. Several mechanisms are suggested for how Bmps normally function, including by regulating the intercellular adhesion and behavior of notochord and foregut endoderm cells. Future research must determine how Noggin/Bmp antagonism fits into the network of other factors known to regulate tracheal and esophagus development, both in mouse or humans.  相似文献   

7.
Bmp4 is a downstream gene of Msx1 in early mouse tooth development. In this study, we introduced the Msx1-Bmp4 transgenic allele to the Msx1 mutants in which tooth development is arrested at the bud stage in an effort of rescuing Msx1 mutant tooth phenotype in vivo. Ectopic expression of a Bmp4 transgene driven by the mouse Msx1promoter in the dental mesenchyme restored the expression of Lef-1 and Dlx2 but neither Fgf3 nor syndecan-1 in the Msx1 mutant molar tooth germ. The mutant phenotype of molar but not incisor could be partially rescued to progress to the cap stage. The Msx1-Bmp4 transgene was also able to rescue the alveolar processes and the neonatal lethality of the Msx1 mutants. In contrast, overexpression of Bmp4 in the wild type molar mesenchyme down-regulated Shh and Bmp2 expression in the enamel knot, the putative signaling center for tooth patterning, but did not produce a tooth phenotype. These results indicate that Bmp4 can bypass Msx1 function to partially rescue molar tooth development in vivo, and to support alveolar process formation. Expression of Shh and Bmp2 in the enamel knot may not represent critical signals for tooth patterning.  相似文献   

8.
The Notch-regulated ankyrin repeat protein (Nrarp) is a component of a negative feedback system that attenuates Notch pathway-mediated signaling. In vertebrates, the timing and spacing of formation of the mesodermal somites are controlled by a molecular oscillator termed the segmentation clock. Somites are also patterned along the rostral-caudal axis of the embryo. Here, we demonstrate that Nrarp-deficient embryos and mice exhibit genetic background-dependent defects of the axial skeleton. While progression of the segmentation clock occurred in Nrarp-deficient embryos, they exhibited altered rostrocaudal patterning of the somites. In Nrarp mutant embryos, the posterior somite compartment was expanded. These studies confirm an anticipated, but previously undocumented role for the Nrarp gene in vertebrate somite patterning and provide an example of the strong influence that genetic background plays on the phenotypes exhibited by mutant mice.  相似文献   

9.
Bone morphogenetic protein (Bmp) signaling is critical for the development and patterning of the mouse pituitary from the initial induction of Rathke's pouch to cell specification in the anterior lobe. We examined the regulation of Bmp signaling during pituitary development by analyzing null embryos for noggin, a Bmp 2 and 4 antagonist. Noggin is expressed in the ventral diencephalon during Rathke's pouch induction, in the underlying cartilage plate during cell specification and in the adult anterior pituitary gland. Noggin null embryos have a variable pituitary phenotype, which ranges from a rostrally displaced Rathke's pouch to induction of secondary pituitary tissue. While cell specification in the anterior pituitary appears normal, patterning in the ventral diencephalon is disrupted; Bmp4 activity is expanded resulting in Fibroblast growth factor 10 repression and in a rostral shift in the boundary between the Bmp4 and Sonic hedgehog expression domains. The expanded domain of Bmp4 activity also results in additional invaginations of oral ectoderm and can shift the position of Rathke's pouch or create secondary pituitary tissue. This work demonstrates the importance of attenuating the activity of Bmp signaling during pituitary induction in order to maintain the proper balance of signaling factors necessary for pituitary organogenesis.  相似文献   

10.
11.
Previous work has documented the importance of BMPs in eye development. Loss-of-function studies in mice, with targeted deletions in either the Bmp7 or Bmp4 genes, have shown that these molecules are critical for early eye development. On the basis of the asymmetry in the dorsal-ventral expression patterns of several members of this family, it has been proposed that these molecules are critical for some aspect of dorsal-ventral patterning in the eye; however, it has been difficult to test this hypothesis because of the early requirement for BMPs in eye development. We have therefore examined the effects of loss of one of the BMP receptors, the BmprIb, on the development of the eye by using targeted deletion. We have found that BmprIb is expressed exclusively in the ventral retina during embryonic development and is required for normal ventral ganglion cell axon targeting to the optic nerve head. In mice with a targeted deletion of the BmprIb gene, many axons arising from the ventrally located ganglion cells fail to enter the optic nerve head, and instead, make abrupt turns in this region. A second phenotype in these mice is a significantly elevated inner retinal apoptosis during a distinct phase of postnatal development, at the end of neurogenesis. Our results therefore show two distinct requirements for BmprIb in mammalian retinal development.  相似文献   

12.
Here we characterize the consequences of elevated bone morphogenetic protein (BMP) signaling on neural tube morphogenesis by analyzing mice lacking the BMP antagonist, Noggin. Noggin is expressed dorsally in the closing neural folds and ventrally in the notochord and somites. All Noggin-/- pups are born with lumbar spina bifida; depending on genetic background, they may also have exencephaly. The exencephaly is due to a primary failure of neurulation, resulting from a lack of mid/hindbrain dorsolateral hinge point (DLHP) formation. Thus, as previously shown for Shh signaling at spinal levels, BMP activity may inhibit cranial DLHP morphogenesis. However, the increased BMP signaling observed in the Noggin-/- dorsal neural tube is not sufficient to cause exencephaly; it appears to also depend on the action of a genetic modifier, which may act to increase dorsal Shh signaling. The spinal neural tube defect results from a different mechanism: increased BMP signaling in the mesoderm between the limb buds leads to abnormal somite differentiation and axial skeletal malformation. The resulting lack of mechanical support for the neural tube causes spina bifida. We show that this defect is due to elevated BMP4 signaling. Thus, Noggin is required for mammalian neurulation in two contexts, dependent on position along the rostrocaudal axis.  相似文献   

13.
14.
Formation of the long bones requires a cartilage template. Cartilage formation (chondrogenesis) proceeds through determination of cells and their aggregation into prechondrogenic condensations, differentiation into chondrocytes, and later maturation. Several studies indicate that members of the bone morphogenetic protein (BMP) family promote cartilage formation, but the exact step(s) in which BMPs are involved during this process remains undefined. To resolve this issue, we have used a retroviral vector to misexpress the BMP antagonist Noggin in the embryonic chick limb. Unlike previous reports, we have characterized the resulting phenotype in depth, analyzing histological and early chondrogenic markers, as well as the patterns of cell death and proliferation. Misexpression of Noggin prior to the onset of chondrogenesis leads to the total absence of skeletal elements, as previously reported (J. Capdevila and R. L. Johnson, 1998, Dev. Biol. 197, 205-217). Noggin inhibits cartilage formation at two distinct steps. First, we demonstrate that mesenchymal cells do not aggregate into prechondrogenic condensations, and additional results suggest that these cells persist in an undifferentiated state. Second, we show that differentiation of chondroprogenitors into chondrocytes can also be blocked, concurrent with expanded expression of a presumptive joint region marker. In addition, we observed alterations in muscle and tendon morphogenesis, and the potential role of BMPs in these processes will be discussed. Our studies therefore provide in vivo evidence that BMPs are necessary for different steps of chondrogenesis: chondroprogenitor determination and/or condensation and subsequent differentiation into chondrocytes.  相似文献   

15.
The Notch pathway plays multiple roles during vertebrate somitogenesis, functioning in the segmentation clock and during rostral/caudal (R/C) somite patterning. Lunatic fringe (Lfng) encodes a glycosyltransferase that modulates Notch signaling, and its expression patterns suggest roles in both of these processes. To dissect the roles played by Lfng during somitogenesis, a novel allele was established that lacks cyclic Lfng expression within the segmentation clock, but that maintains expression during R/C somite patterning (Lfng(DeltaFCE1)). In the absence of oscillatory Lfng expression, Notch activation is ubiquitous in the PSM of Lfng(DeltaFCE1) embryos. Lfng(DeltaFCE1) mice exhibit severe segmentation phenotypes in the thoracic and lumbar skeleton. However, the sacral and tail vertebrae are only minimally affected in Lfng(DeltaFCE1) mice, suggesting that oscillatory Lfng expression and cyclic Notch activation are important in the segmentation of the thoracic and lumbar axial skeleton (primary body formation), but are largely dispensable for the development of sacral and tail vertebrae (secondary body formation). Furthermore, we find that the loss of cyclic Lfng has distinct effects on the expression of other clock genes during these two stages of development. Finally, we find that Lfng(DeltaFCE1) embryos undergo relatively normal R/C somite patterning, confirming that Lfng roles in the segmentation clock are distinct from its functions in somite patterning. These results suggest that the segmentation clock may employ varied regulatory mechanisms during distinct stages of anterior/posterior axis development, and uncover previously unappreciated connections between the segmentation clock, and the processes of primary and secondary body formation.  相似文献   

16.
Rib-vertebrae (rv) is an autosomal recessive mutation in mouse that affects the morphogenesis of the vertebral column. Axial skeleton defects vary along the anterior-posterior body axis, and include split vertebrae and neural arches, and fusions of adjacent segments. Here, we show that defective somite patterning underlies the vertebral malformations and altered Notch signaling may contribute to the phenotype. Somites in affected regions are irregular in size and shape, epithelial morphology is disrupted, and anterior-posterior somite patterning is abnormal, reminiscent of somite defects obtained in loss-of-function alleles of Notch signaling pathway components. Expression of Dll1, Dll3, Lfng and Notch1 is altered in rv mutant embryos, and rv and Dll1(lacZ), a null allele of the Notch ligand Delta1, genetically interact. Mice double heterozygous for rv and Dll1(lacZ), show vertebral defects, and one copy of Dll1(lacZ) on the homozygous rv background enhances the mutant phenotype and is lethal in the majority of cases. However, fine genetic mapping places rv into an interval on chromosome seven that does not contain a gene encoding a known component of the Notch signaling pathway.  相似文献   

17.
Bone morphogenetic proteins (BMPs) are secreted signaling molecules that control important developmental events in many different organisms. Previous studies have shown that BMPs are expressed at the earliest stages of skeletal development, and are required for formation of specific skeletal features, strongly suggesting that they are endogenous signals used to control formation of skeletal tissue. Despite the importance of BMP signaling in normal development, very little is known about the mechanisms that control the synthesis and distribution of BMP signals in vertebrates. Here, we identify a large array of cis-acting control sequences that lay out expression of the mouse Bmp5 gene in specific skeletal structures and soft tissues. Some of these elements show striking specificity for particular anatomical features within the skeleton, rather than for cartilage and bone in general. These data suggest that the vertebrate skeleton is built from the sum of many independent domains of BMP expression, each of which may be controlled by separate regulatory elements driving expression at specific anatomical locations. Surprisingly, some of the regulatory sequences in the Bmp5 gene map over 270 kb from the Bmp5 promoter, making them among the most distant elements yet identified in studies of eukaryotic gene expression.  相似文献   

18.
BMP signaling in skeletal development   总被引:16,自引:0,他引:16  
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.  相似文献   

19.
BMP-signaling regulates the generation of hair-cells   总被引:6,自引:0,他引:6  
Bone morphogenetic proteins (BMPs) are diffusible molecules involved in a variety of cellular interactions during development. Bmp4 expression accompanies the development of the ear sensory organs during patterning and specification of sensory cell fates, yet there is no understanding of the role of BMP4 in this process. The present work was aimed at exploring the effects of BMP-signaling on the development of hair-cells. For this purpose, we studied gene expression, cell proliferation and cell death in isolated chick otic vesicles that were grown in vitro in the presence of recombinant BMP4 or the BMP-inhibitor Noggin. Cath1 was used as a marker for hair-cell specification. BMP4 reduced the number of Cath1-cells and, conversely, Noggin increased the size of the sensory patches and the number of Cath1-positive cells. The effect of BMP4 was irreversible and occurred before hair-cell specification. Lfng and Fgf10 were expressed in the prosensory domain before Cath1, and their expression was expanded by Noggin. At these stages, modifications of BMP activity did not respecify non-sensory epithelium of the otic vesicle. The expression of Bmp4 at sensory patches was suppressed by BMP4 and induced by Noggin suggesting an autoregulatory loop. Analysis of BrdU incorporation during 6 and 18 h indicated that the effects of BMP4 were due to its ability to reduce the number of actively proliferating progenitors and inhibit cell fate specification. BMP4 induced cell death within the prosensory domain of the otic vesicle, along with the expression of Msx1, but not Msx2. On the contrary, BMP-inhibition with Noggin favored hair-cell specification without changes in the overall cell proliferation. We propose that about the stage of terminal division, the balance between BMP and BMP-inhibitory signals regulates survival and specification of hair-cell precursors, the final number of sensory hair-cells being limited by excess levels of BMPs. The final size of sensory patches would hence depend on the balance between BMP4 and opposing signals.  相似文献   

20.
Bone morphogenetic protein (BMP) family members, including BMP2, BMP4, and BMP7, are expressed throughout limb development. BMPs have been implicated in early limb patterning as well as in the process of skeletogenesis. However, due to complications associated with early embryonic lethality, particularly for Bmp2 and Bmp4, and with functional redundancy among BMP molecules, it has been difficult to decipher the specific roles of these BMP molecules during different stages of limb development. To circumvent these issues, we have constructed a series of mouse strains lacking one or more of these BMPs, using conditional alleles in the case of Bmp2 and Bmp4 to remove them specifically from the limb bud mesenchyme. Contrary to earlier suggestions, our results indicate that BMPs neither act as secondary signals downstream of Sonic Hedghog (SHH) in patterning the anteroposterior axis nor as signals from the interdigital mesenchyme in specifying digit identity. We do find that a threshold level of BMP signaling is required for the onset of chondrogenesis, and hence some chondrogenic condensations fail to form in limbs deficient in both BMP2 and BMP4. However, in the condensations that do form, subsequent chondrogenic differentiation proceeds normally even in the absence of BMP2 and BMP7 or BMP2 and BMP4. In contrast, we find that the loss of both BMP2 and BMP4 results in a severe impairment of osteogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号