首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe culture conditions for a high-efficiency in vitro regeneration system of Papaver nudicaule through somatic embryogenesis and secondary somatic embryogenesis. The embryogenic callus induction rate was highest when petiole explants were cultured on Murashige and Skoog (MS) medium containing 1.0 mg l−1 α-naphthaleneacetic acid (NAA) and 0.1 mg l−1 6-benzyladenine (BA) (36.7%). When transferred to plant growth regulator (PGR)-free medium, 430 somatic embryos formed asynchronously from 90 mg of embryogenic callus in each 100-ml flask. Early-stage somatic embryos were transferred to MS medium containing 1.0 mg l−1 BA and 1.0 mg l−1 NAA to germinate at high frequency (97.6%). One-third-strength MS medium with 1.0% sucrose and 1.0 mg l−1 GA3 had the highest frequency of plantlet conversion from somatic embryos (91.2%). Over 90% of regenerated plantlets were successfully acclimated in the greenhouse. Secondary somatic embryos were frequently induced directly when the excised hypocotyls of the primary somatic embryos were cultured on MS medium without PGRs. Sucrose concentration significantly affected the induction of secondary embryos. The highest induction rate (89.5) and number of secondary somatic embryos per explant (9.3) were obtained by 1% sucrose. Most secondary embryos (87.2–94.3%) developed into the cotyledonary stage on induction medium. All cotyledonary secondary embryos were converted into plantlets both in liquid and on semisolid 1/3-strength MS medium with 1.0% sucrose.  相似文献   

2.
Plant regeneration was achieved through direct and indirect somatic embryogenesis in Eucalyptus camaldulensis. Callus was induced from mature zygotic embryos and from cotyledon explants collected from 10, 15, 25, and 30-day-old seedlings cultured on Murashige and Skoog (MS) basal medium supplemented with different concentrations of naphthaleneacetic acid (NAA). Maximum callus induction from mature zygotic embryos was obtained on MS basal medium containing 1 mg l−1 NAA. The frequency of callus development varied based on the age of the cotyledon explants 10-day-old explants giving highest percentage on MS basal medium supplemented with 1 mg l−1 NAA. Callus obtained from mature zygotic embryos gave highest frequency of somatic embryogenesis on MS basal medium containing 0.5 mg l−1 benzyladenine (BA) and 0.1 mg l−1 NAA. Separate age wise culture of the calli, obtained from cotyledons of different ages cultured separately, revealed high somatic embryogenic potential on callus from 10-day-old cotyledons. Direct somatic embryogenesis too was obtained from hypocotyl explants without an intervening callus phase on MS basal medium containing 0.5 mg l−1 BA. The effects of abscisic acid (ABA), sucrose, and different strengths of MS medium on somatic embryo maturation and germination were also investigated. Number of mature somatic embryos increased with lower concentrations (0–1 mg l−1) of ABA while no significant differences were observed at higher concentrations (2–5 mg l−1) of ABA. Compared to basal medium containing lower concentrations of sucrose (1%), the MS medium supplemented with higher levels of sucrose (4%) showed significantly lower frequency of mature somatic embryos. Basal medium without any dilution gave the highest number of immature embryos. However, the number of mature embryos was high at higher medium dilutions.  相似文献   

3.
Culture conditions were established for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Nymphoides coreana. Zygotic embryos formed pale-yellow globular structures and calluses at a frequency of 85.6% when cultured on half-strength Murashige and Skoog (MS) medium supplemented with 0.3 mg l−1 of 2,4-D. However, the frequency of pale-yellow globular structures and white callus formation decreased slightly with an increasing concentration of 2,4-D up to 10 mg l−1 with the frequency rate falling to 16.7%. Cell suspension cultures were established from zygotic embryo-derived calluses using half-strength MS medium supplemented with 0.3 mg l−1 of 2,4-D. Upon plating onto half-strength MS basal medium, over 92.3% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted into potting soil and achieved full growth to an adult plant in a growth chamber. The high frequency plant regeneration system for Nymphoides coreana established in this study will be useful for genetic manipulation and cryopreservation of this species.  相似文献   

4.
An improved method of direct somatic embryogenesis (SE) was developed in Swertia chirata for the first time using leaves and roots of in vitro-grown young seedlings. In the present study, 2,4-dichlorophenoxyacetic acid (2,4-D) was assessed individually and in combination with other auxins, as well as with cytokinin for its effectiveness to induce somatic embryos. Leaf explants with abaxial side in the medium produced maximum number of somatic embryos. This system omits the callus stage and thus reduces the process of SE in S. chirata by 35–45 days. Embryos at different stages of development were observed. Maturation of heart stage embryos were observed on Murashige and Skoog (MS) medium containing 1 mg L−1 2,4-D. Upon transfer to the germination medium, they were converted to cotyledonary stage and then plantlets of 33% and 68% of them were converted to cotyledonary stage and then plantlets on MS medium supplemented with 0.05 and 0.1 mg L-1 GA3 respectively. The 2,4-D alone at 1.0 or 1.5 mg L−1 was found to be better for embryogenic tissue initiation than 2,4-D in combination with indole-3-acetic acid or α-naphthalene acetic acid. For further embryo development, 2,4-D was combined with cytokinins such as 6-benzylaminopurine (BAP) and kinetin or plant growth regulator free medium or medium with 50% reduced concentration of the same hormone while subculturing. Mean germination and percentage of survival were maximum in the medium containing 1.0 mg L−1 2,4-D in combination with 0.1 mg L−1 BAP. Regenerated plantlets were morphologically and genetically identical. This method offers a vast scope for the clonal propagation of endangered plants.  相似文献   

5.
An efficient in vitro regeneration protocol for moth bean [Vigna aconitifolia (Jacq.) Marechal] via somatic embryogenesis has been developed. Embryogenic callus cultures were established from the cotyledonary node as explant on semi-solid Murashige and Skoog (MS) medium supplemented with 0.75 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 6-benzylaminopurine (BA) and with various additives (50 mg l−1 ascorbic acid and 25 mg l−1 each of adenine sulphate, citric acid and l-arginine). Numerous somatic embryos differentiated on MS basal nutrient medium supplemented with 0.25 mg l−1 2,4-D and 0.5 mg l−1 of kinetin (Kin). Sustained cell division resulted in the formation of cell aggregates, which progressed to the globular- and heart-shaped somatic embryos and then, if they differentiated properly, to the torpedo shape and cotyledonary stages. The transfer of embryos onto fresh MS basal medium containing 0.2 mg l−1 BA and 2.0 mg l−1 gibberellic acid enabled the embryos to achieve complete maturation and germination. More than 80% of somatic embryos were converted into true-to-type fertile plants. In vitro-regenerated plantlets with well-developed roots were successfully hardened in a greenhouse and established in soil.  相似文献   

6.

The seed viability, ex vitro germination, and percentage of in vitro zygotic embryo germination were found to be very low in Ensete superbum (Roxb.) Cheesman. Only 33.33% of seeds were viable, and the ex vitro germination percentage was only 5%, while the percentage of in vitro zygotic embryo germination was 33%. Somatic embryogenesis experiments produced competent callus on Murashige and Skoog (MS) medium supplemented with 2.5 mg L−1 2,4-D and 3 mg L−1 BAP from inflorescence explants. The embryogenic callus produced the maximum number of somatic embryos on MS basal medium kept in a dark chamber for 15 wk. Half-strength MS medium supplemented with 500 mg L−1 glutamine was optimal for somatic embryo germination and development of plantlets. Regenerated plants had 80 to 90% survival rate. Therefore, somatic embryogenesis can be considered as an efficient method to overcome a drastic reduction in population and to achieve germplasm conservation.

  相似文献   

7.
Plant regeneration through somatic embryogenesis from young leaf explants (5–10 mm long) adjacent to the apex of 5–6 year old offshoots of Tunisian date palm (Phœnix dactylifera L.), cultivar Boufeggous was successfully achieved. Factors affecting embryogenic callus initiation, including plant growth regulators and explant size, were investigated. The highest induction frequencies of embryogenic calli occurred after 6–7 months on MS medium supplemented with 10 mg l−1 2,4-D and 0.3 mg l−1 activated charcoal. The subculture of these calli onto maintenance medium resulted in the formation of proembryos. Fine chopping and partial desiccation (6 and 12 h) of embryogenic calli with proembryos prior to transfer to MS medium supplemented with 1 mg l−1 ABA stimulated the rapid maturation of somatic embryos. Maturated somatic embryo yield per 0.5 g FW of embryogenic callus was 51 embryos with an average maturation time of 55 days. This was increased to 422 with finely chopped callus, and 124 and 306 embryos following 6 and 12 h desiccation treatments, respectively. The average time to maturation for these 3 treatments was 35, 43 and 38 days, respectively. Subsequent substitution of ABA in MS medium with 1 mg l−1 NAA resulted in the germination and conversion of 81% of the somatic embryos into plantlets with normal roots and shoots. The growth of regenerated somatic plants was also monitored in the field.  相似文献   

8.
Somatic embryogenesis (SE) was induced in female flower buds from mature Schisandra chinensis cultivar ‘Hongzhenzhu’. Somatic embryo structures were induced at a low frequency from unopened female flower buds and excised unopened on Murashige and Skoog (MS) agar medium containing 4.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Friable embryogenic calli were induced from somatic embryo structures after three to four subcultures on initiation medium. The frequencies of mature somatic embryo germination and plantlet conversion were low, but increased in the presence of gibberellic acid (GA3). Some germinated somatic embryos could form friable embryogenic calli on medium without plant growth regulators (PGRs). The germination and conversion frequencies of somatic embryos from embryogenic calli induced using PGR-free medium were higher than for somatic embryos from embryogenic calli induced on medium containing 2,4-D. Most somatic embryos from 2,4-D-induced embryogenic calli had trumpet-shaped embryos, and most somatic embryos from PGR-free medium–induced embryogenic calli had two or three cotyledons. Histological observation indicated that two- and three-cotyledon embryos had defined shoot primordia, but most of the trumpet-shaped embryos yielded plantlets that lacked or had poorly developed meristem tissue. Cytological and random amplification of polymorphic DNA (RAPD) analyses indicated no evidence of genetic variation in the plantlets of somatic embryo origin.  相似文献   

9.
Protoplasts isolated from embryogenic suspension cultures of Citrus mitis were cultured in a medium without any plant growth substances. Somatic embryos developed directly from protoplasts without an obvious intervening callus phase. As many as 1,800 somatic embryos developed from 4 ml of protoplast suspension (density 2×106/ml) cultured for 35 days. Upon transferring the embryoids to medium with 1 mgl–1 GA3, they developed into plant-lets. Rooted plantlets were obtained in 3 months after protoplast isolation.Abbreviations BAP Benzylaminopurine - GA3 Gibberellic acid - MT Murashige and Tucker medium (1969) - FDA Fluorescein diacetate  相似文献   

10.
The present work describes the plant regeneration via somatic embryogenesis in two wild cotton species belonging to G genome: Gossypium nelsonii Fryx and Gossypium australe F Muell. The role of plant hormones and carbohydrates was also evaluated for somatic embryogenesis and somatic embryo development. Normal plants were obtained from G. nelsonii Fryx; abnormal plants and somatic embryos were obtained from G. australe F Muell. The best medium for callus induction for these G genome wild cotton species was MSB5 supplemented with 0.1 mg L−1 KT and 0.1 mg L−1 2,4-D. For embryogenic callus proliferation, the best medium used was MSB5 supplemented with 0.2 mg L−1 KT and 0.5 mg L−1 IBA. The medium MSB5 supplemented with 0.15 mg L−1 KT and 0.5 mg L−1 NAA was used successfully for root initiation and plant growth. In addition, adding CuSO4 and AgNO3 in the callus-inducing and proliferation medium resulted in a number of somatic embryos. Glucose and maltose, the carbon sources in somatic culture, were used for callus induction, but maltose worked even better than glucose for proliferation of embryogenic callus and development of somatic embryos.  相似文献   

11.
An efficient system for inducing somatic embryogenesis in Panax notoginseng was established using shaker flasks and bioreactor cultures; furthermore, regenerated plantlets were successfully transferred to ex vitro soil conditions. Embryogenic callus was induced from segments of adventitious roots incubated on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) after 5 weeks of culturing. The highest frequency (100%) of somatic embryogenesis, with a mean of 32.7 somatic embryos per callus, was obtained on embryogenic callus incubated on a medium containing 0.5 mg/L 2,4-D. To scale-up somatic embryo formation, 10 g (~1.65 × 104) of early globular-stage somatic embryos were incubated in a 3 L airlift bioreactor containing 1.5 L 1/2 MS medium without plant growth regulators (PGRs) for a period of 4 weeks; these globular-stage somatic embryos then developed into cotyledonary embryos. When maintained on PGR-free medium, the cotyledonary embryos developed roots but did not develop shoots. However, when they were treated with gibberellic acid (GA3), they continued to germinate and transformed into plantlets after 2 weeks of culture. Plantlets with well-developed shoots and roots were transferred to an autoclaved vermiculite and perlite mixture, acclimatized for a period of 3 months and successfully transferred to forest mountain soil. Following overwintering, these plants produced new growth.  相似文献   

12.
Summary Somatic embryos which originated from mature embryo axes of the chickpea (Cicer arietinum L.) showed varied morphologies. Embryos were classified based on shape of the embryo and number of cotyledons. “Normal” (zygotic-like) embryos were bipolar structures with two cotyledons and a well-developed shoot and root apical meristem, whereas “aberrant” embryos were horn-shaped, had single and multiple cotyledons, and were fasciated. Histological examination revealed the absence of a shoot apical meristem in horn-shaped embryos. Fasciated embryos showed diaxial fusion of two embryos. Secondary embryogenesis was also observed, in which the embryos emerged from the hypocotyl and cotyledonary region of the primary somatic embryo. This report documents the absence of an apical meristem as a vital factor in the lack of conversion of aberrant somatic embryos.  相似文献   

13.
Jatropha curcas L. (Physic nut) is a commercially important non-edible oil seed crop known for its use as an alternate source of biodiesel. In order to investigate the morphogenic potential of immature embryo, explants from four developmental stages were cultured on medium supplemented with combinations of auxins and cytokinins. It was found that the size of embryo is critical for the establishment of callus. Immature embryos (1.1–1.5 cm) obtained from the fruits 6 weeks after pollination showed a good response of morphogenic callus induction (85.7%) and subsequent plant regeneration (70%) with the maximum number of plantlets (4.7/explant) on Murashige and Skoog’s (MS) medium supplemented with IBA (0.5 mg l−1) and BA (1.0 mg l−1). The above medium when supplemented with growth adjuvants such as 100 mg l−1 casein hydrolysate + 200 mg l−1 l-glutamine + 8.0 mg l−1 CuSO4 resulted in an even higher frequency of callus induction (100%). Plant regeneration (90%) with the maximum number of plantlets (10/explant) was achieved on MS medium supplemented with 500 mg l−1 polyvinyl pyrrolidone + 30 mg l−1 citric acid + 1 mg l−1 BA + 0.5 mg l−1 Kn + 0.25 mg l−1 IBA. It was observed that plantlet regeneration could occur either through organogenesis of morphogenic callus or via multiplication of pre-existing meristem in immature embryos. The age of immature embryos and addition of a combination of growth adjuvants to the culture medium appear to be critical for obtaining high regeneration rates. Well-developed shoots rooted on half-strength MS medium supplemented with 0.5 mg l−1 IBA and 342 mg l−1 trehalose. The rooted plants after acclimatization were successfully transferred to the field in different agro-climatic zones in India. This protocol has been successfully evaluated on five elite lines of J. curcas.  相似文献   

14.
Key factors influencing the efficiency of transformation of embryogenic cultures, induced from immature zygotic embryos, of avocado cv. ‘Duke 7’ were evaluated. Initially, the sensitivity of somatic embryos to the antibiotics kanamycin, used for selection, carbenicillin, cefotaxime and timentin, all used for elimination of Agrobacterium cells, were evaluated. Isolated globular somatic embryos were more sensitive to kanamycin than embryogenic masses, and 25 mg l−1 kanamycin completely restricted callus proliferation. Cefotaxime at 500 mg l−1 partially inhibited proliferation of embryogenic cultures, while both carbenicillin and timentin did not affect callus growth. For genetic transformation, somatic embryos were infected with A. tumefaciens containing the pBINUbiGUSint plasmid. After 2 days, the embryos were transferred to selection medium supplemented with 50 mg l−1 kanamycin and 250 mg l−1 timentin for 2 months. Then, kanamycin level was increased to 100 mg l−1 for two additional months. The A. tumefaciens strain AGL1 yielded higher transformation rates, 6%, than EHA105 or LBA4404, 1.2%. The percentage of kanamycin resistant calli obtained was significantly influenced by the embryogenic line used as source of explants. Genetic transformation was confirmed by PCR and Southern blot analysis. A significant improvement in the germination rate was obtained when transgenic embryos were cultured in liquid MS medium with 4.44 μM BA and 2.89 μM GA3 for 3 days in a roller drum and later transferred to the same medium gelled with 7 g l−1 agar. Plants from five independent transgenic lines were acclimated and grown in the greenhouse, being phenotipically similar to control plants.  相似文献   

15.
An efficient protocol for secondary somatic embryogenesis in camphor tree is reported. Secondary somatic embryos (SSEs), initially obtained from the primary embryos of a nascent embryogenic culture in 2002, were proliferated and maintained for more than 4 yr via cyclic secondary somatic embryogenesis. Throughout this period, the embryo populations retained a high level of competence for plant regeneration. SSEs were produced on the surfaces of the cotyledons and radicular ends of maternal somatic embryos (MSEs). Histological observations of the various stages of secondary embryo development revealed four typical stages, namely, globular, heart-shaped, torpedo, and cotyledonary. The process of secondary embryogenesis continued in a cyclic way, with each newly formed embryo producing a subsequent generation of secondary embryos. In order to progress developmentally beyond proliferation cycles, cotyledonary embryos from one of embryogenic lines (L14) were cultured on Murashige and Skoog (MS) medium with 0.1–3.0 mg l−1 abscisic acid (ABA) or 0.05–1.0 mg l−1 thidiazuron (TDZ) in darkness for 2 mo to achieve maturation. Matured embryos were then transferred to MS-based germination medium containing either 0.1 mg l−1 TDZ, 0.2 mg l−1 indole-3-butyric acid (IBA), and 0.5 mg l−1 6-benzylaminopurine (BA) or 0.1 mg l−1 TDZ and 0.2 mg l−1 IBA and were cultured in light for germination. Over 50% of embryos matured in the presence of 0.5 mg l−1 ABA were able to germinate with shoots and poor root system. Frequencies of embryos germinating normal shoots among different genotypes did not change significantly. A total of 93% of the shoots from the germinated embryos converted to plantlets on half strength MS medium with 0.5 mg l−1 IBA by 3 wk. Plantlets acclimatized successfully to ex vitro conditions and developed as field-grown plants with normal appearance.  相似文献   

16.
In vitro micropropagation by direct organogenesis and somatic embryogenesis via callus was developed for Crambe tataria (Brassicaceae). C. tataria is an endemic species of the Pontic-Pannonic region, but it is also present in Italy, where it is localized in Friuli on a characteristic grassland formation, called “magredi”. C. tataria is regarded as an endangered species. Leaf and root explants were subjected to plant regulator treatments, which invoked different morphogenic responses. Leaf explants produced more callus than root explants and a higher amount of callus was obtained with 1 mg l−1 2,4-D in combination with 2 mg l−1 Kin. Somatic embryogenesis was obtained in calli maintained in a delayed subculture regime on media containing BAP in combination with NAA. Root explants cultured with BAP combined with NAA developed adventitious rosette shoots. Shoots rooted on half-strength MS media, and the number of roots per plantlet and their length were heavily dependent on sucrose content. The in vitro regenerated plantlets were acclimatized ex vitro and a mean of 50% of the plantlets survived and showed a true-to-type growth habit. This study describes the development of two in vitro micropropagation protocols, via direct organogenesis and via embryogenesis from callus, that are the basis for the application of in vitro tools for the establishment of basal collections with representative genetic diversity and for the long-term storage of plant genetic material.  相似文献   

17.
香雪兰的体细胞胚胎发生可通过两种途径进行,即直接发生与间接发生。在直接发生方式中,体细胞胚直接来源于尚未完全分化的外植体表皮细胞;体细胞胚与母体组织以一种类似胚柄的结构相联系。间接发生方式中,体细胞胚的形成要经过一个愈伤组织阶段。以是否能形成体细胞胚分类,可将愈伤组织分为胚性和非胚性愈伤组织。以间接方式形成的体细胞胚是由胚性愈伤组织中的一种决定细胞发育来的。这种体细胞胚不具有类似胚柄的结构,而与母体组织共同形成一个复合体。体细胞胚具有自己独立的维管束系统,在脱离母体组织后能够独立发育成株。  相似文献   

18.
L Wang  X G Duan  S Hao 《实验生物学报》1999,32(2):175-183
Somatic embryogenesis can be induced in tissue cultures of Freesia refracta either directly from the epidermal cells of explant, or indirectly via intervening callus. In direct pathway, somatic embryos were in contact with maternal tissue in a suspensor-like structure. In indirect pathway, the explants first proliferacted to give rise to calluses before embryoids were induced. The two sorts of calluses were defined to embryogenic callus and non-embryogenic callus according to producing of somatic embryos. An indirect somatic embryo is developed from a pre-embryogenically determined cell. This kind of somatic embryo has no suspensor structure instead of a complex with maternal tissue. Somatic embryos have their own vascular tissues, and can develop new plantlets independently.  相似文献   

19.
The present study describes a protocol for plant regeneration via somatic embryogenesis in temporary immersion system (TIS) for Camptotheca acuminata. Somatic embryos were induced by culturing hypocotyl segments from 14-day-old in vitro grown C. acuminata seedlings in TIS. Hypocotyl segments were placed in culture vessels modified with a mechanical device to support the fixation of explants. Cultures were maintained under a 16 h photoperiod with a light intensity of 60 μmol m−2 s−1 PPF at 25 ± 1°C. After 16 weeks of incubation embryogenic calli were formed above the edge of the mechanical device in the basal Murashige and Skoog (MS) medium containing 35 g l−1 sucrose and without hormonal supplementation. For plantlet regeneration, somatic embryos at cotyledonary stage were cultured in three different concentrations of 6-benzylamino-purine (0.5, 1.0 and 1.5 mg l−1 BAP) and in plant growth regulator (PGR) free medium. In general, 0.5 mg l−1 BAP was found to be the most effective concentration for growth and development of Camptotheca embryos in TIS. Conversion of somatic embryos into plantlets was also successfully achieved on sterile substrates moistened with 0.5 mg l−1 BAP. Plantlets derived from cotyledonary embryos were rooted in vitro with 0.5 mg l−1 indole-3-butyric acid (IBA) before transfer to ex vitro conditions.  相似文献   

20.
We have developed a system for the in vitro regeneration of pasqueflowers (Pulsatilla koreana Nakai). The system was based on somatic embryogenesis and shoot organogenesis. Over a growth period of 6 weeks, multiple shoots were initiated from leaf, petiole, and pedicel explants on Murashige and Skoog (MS) medium containing 0.5 mg l−1 indole-3-acetic acid (IAA) and zeatin (Zn), kinetin (Kin), or 6-benzyladenine (BA). We achieved 100% of adventitious shoot induced when petiole and pedicel explants were cultured on MS, 0.5–2.0 mg l−1 Zn, and 0.5 mg l−1 IAA. Somatic embryos developed from the explants and generated shoots on MS medium containing 0.25 mg l−1 Zn and 0.5 mg l−1 IAA. Globular and heart-shaped stages of somatic embryos were observed. Histological studies have revealed the stages of development of somatic embryos. For propagation and growth, the regenerated shoots from organogenic or embryogenic calluses were transferred to MS medium containing either (1) 1.5 mg l−1 Zn and 0.05 mg l−1 IAA or (2) 1.0 mg l−1 BA and 0.05 mg l−1 IAA. After the length of the shoots reached 3 cm, the shoots initiated by organogenesis as well as those initiated by somatic embryogenesis were transferred to the root induction medium. After 2 months of culture in half-strength MS with 1.5 mg l−1 α-naphthalene acetic acid (NAA), the rooting ratio was 93%. Finally, the rooted plantlets were acclimatized in a mixture of mountain soil and perlite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号