首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
Putting knowledge of plant disease resistance genes to work.   总被引:11,自引:0,他引:11  
Plant disease resistance genes trigger defence mechanisms upon recognition of pathogen compatibility factors, which are encoded by avirulence genes. Isolation of the barley powdery mildew resistance gene Mla opens the door to understanding the extensive allelic diversity of this locus. Completion of the Arabidopsis genome sequence enables the analysis of the complete set of R-gene homologues in a flowering plant. A new R gene, RPW8, conferring resistance in Arabidopsis to powdery mildew, reveals a new class of protein associated with pathogen recognition. New prospects for using R-gene polymorphism in agriculture are becoming apparent.  相似文献   

2.
3.
Sunkar R  Zhu JK 《The Plant cell》2004,16(8):2001-2019
MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.  相似文献   

4.
Few plant peptides involved in intercellular communication have been experimentally isolated. Sequence analysis of the Arabidopsis thaliana genome has revealed numerous transmembrane receptors predicted to bind proteinacious ligands, emphasizing the importance of identifying peptides with signaling function. Annotation of the Arabidopsis genome sequence has made it possible to identify peptide-encoding genes. However, such annotational identification is impeded because small genes are poorly predicted by gene-prediction algorithms, thus prompting the alternative approaches described here. We initially performed a systematic analysis of short polypeptides encoded by annotated genes on two Arabidopsis chromosomes using SignalP to identify potentially secreted peptides. Subsequent homology searches with selected, putatively secreted peptides, led to the identification of a potential, large Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence similarity to Rapid Alkalinization Factor (RALF), a peptide isolated from tobacco. We therefore refer to this peptide family as RALFL for RALF-Like. RT-PCR analysis confirmed that several of the Arabidopsis genes are expressed and that their expression patterns vary. The identification of a large gene family in the genome of the model organism Arabidopsis thaliana demonstrates that a combination of systematic analysis and homology searching can contribute to peptide discovery.  相似文献   

5.
6.
Y L Chang  Q Tao  C Scheuring  K Ding  K Meksem  H B Zhang 《Genetics》2001,159(3):1231-1242
The genome of the model plant species Arabidopsis thaliana has recently been sequenced. To accelerate its current genome research, we developed a whole-genome, BAC/BIBAC-based, integrated physical, genetic, and sequence map of the A. thaliana ecotype Columbia. This new map was constructed from the clones of a new plant-transformation-competent BIBAC library and is integrated with the existing sequence map. The clones were restriction fingerprinted by DNA sequencing gel-based electrophoresis, assembled into contigs, and anchored to an existing genetic map. The map consists of 194 BAC/BIBAC contigs, spanning 126 Mb of the 130-Mb Arabidopsis genome. A total of 120 contigs, spanning 114 Mb, were anchored to the chromosomes of Arabidopsis. Accuracy of the integrated map was verified using the existing physical and sequence maps and numerous DNA markers. Integration of the new map with the sequence map has enabled gap closure of the sequence map and will facilitate functional analysis of the genome sequence. The method used here has been demonstrated to be sufficient for whole-genome physical mapping from large-insert random bacterial clones and thus is applicable to rapid development of whole-genome physical maps for other species.  相似文献   

7.
Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis   总被引:34,自引:0,他引:34       下载免费PDF全文
The Arabidopsis genome contains approximately 200 genes that encode proteins with similarity to the nucleotide binding site and other domains characteristic of plant resistance proteins. Through a reiterative process of sequence analysis and reannotation, we identified 149 NBS-LRR-encoding genes in the Arabidopsis (ecotype Columbia) genomic sequence. Fifty-six of these genes were corrected from earlier annotations. At least 12 are predicted to be pseudogenes. As described previously, two distinct groups of sequences were identified: those that encoded an N-terminal domain with Toll/Interleukin-1 Receptor homology (TIR-NBS-LRR, or TNL), and those that encoded an N-terminal coiled-coil motif (CC-NBS-LRR, or CNL). The encoded proteins are distinct from the 58 predicted adapter proteins in the previously described TIR-X, TIR-NBS, and CC-NBS groups. Classification based on protein domains, intron positions, sequence conservation, and genome distribution defined four subgroups of CNL proteins, eight subgroups of TNL proteins, and a pair of divergent NL proteins that lack a defined N-terminal motif. CNL proteins generally were encoded in single exons, although two subclasses were identified that contained introns in unique positions. TNL proteins were encoded in modular exons, with conserved intron positions separating distinct protein domains. Conserved motifs were identified in the LRRs of both CNL and TNL proteins. In contrast to CNL proteins, TNL proteins contained large and variable C-terminal domains. The extant distribution and diversity of the NBS-LRR sequences has been generated by extensive duplication and ectopic rearrangements that involved segmental duplications as well as microscale events. The observed diversity of these NBS-LRR proteins indicates the variety of recognition molecules available in an individual genotype to detect diverse biotic challenges.  相似文献   

8.
Progress in sequencing the genome of the model plant Arabidopsis is reviewed. The resulting analysis of the sequence indicates an information-rich genome that is being tackled by a variety of high-throughput approaches aimed at understanding the functions of plant genes. The information derived from these systematic studies is providing important new knowledge of biological processes found uniquely in plants for comparison with that obtained in other multicellular organisms.  相似文献   

9.
During the last ten years, Arabidopsis thaliana has become the most favoured plant system for the study of many aspects of development and adaptation to adverse conditions and diseases. The sequencing of the Arabidopsis thaliana genome is nearly completed with more than 90% of the sequence being released in public databases. This is the first plant genome to be analysed and it has revealed a tremendous amount of information about the nature of the genes it contains and its largely duplicated organisation. French groups have been involved in Arabidopsis genomics at several steps: EST (expressed sequence tags) sequencing, construction and ordering (physical mapping of chromosomes) of a YAC (yeast artificial chromosomes) library, genomic sequencing. In parallel an extensive programme of functional genomics is being undertaken through the systematic analysis of insertional mutants. This information provides a support for analysing other more economically important plant genomes such as the rice genome and constitutes the beginning of a systematic investigation on plant gene functions and will promote new strategies for plant improvement.  相似文献   

10.
11.
Molecular genetic studies rely on well-characterized organisms that can be easily manipulated. Arabidopsis thaliana--the model system of choice for plant biologists--allows efficient analysis of plant function, combining classical genetics with molecular biology. Although the complete sequence of the Arabidopsis genome allows the rapid discovery of the molecular basis of a characterized mutant, functional characterization of the Arabidopsis genome depends on well-designed forward genetic screens, which remain a powerful strategy to identify genes that are involved in many aspects of the plant life cycle.  相似文献   

12.
We have initiated an investigation of the de novo purine nucleotide biosynthetic pathway in the plant Arabidopsis thaliana. Functional suppression of Escherichia coli auxotrophs allowed the direct isolation of expressed Arabidopsis leaf cDNAs. Using this approach we have successfully suppressed mutants in 4 of the 12 genes in this pathway. One of these cDNA clones, encoding 5'-phosphoribosyl-5-aminoimidazole (AIR) synthetase (PUR5) has been characterized in detail. Analysis of genomic DNA suggests that the Arabidopsis genome contains a single AIR synthetase gene. Analysis of the cDNA sequence and mRNA size suggests that this enzyme activity is encoded by a monofunctional polypeptide, similar to that of bacteria and unlike other eukaryotes. The Arabidopsis AIR synthetase contains a basic hydrophobic transit peptide consistent with transport into chloroplasts. Comparison of both the predicted amino acid and nucleotide sequence from Arabidopsis to those of eight other distant organisms suggests that the plant sequence is more similar to the bacterial sequences than to other eukaryotic sequences. This study provides the groundwork for future investigations into the regulation of de novo purine biosynthesis in plants. Additionally, we have demonstrated that functional suppression of bacterial mutants may provide a useful method for cloning a variety of plant genes.  相似文献   

13.
Jacalin-related lectins (JRLs) are carbohydrate-binding proteins widely present in plants and have one or more jacalin domains in common. However, JRLs’ structural types and functions are still poorly understood. In the present study, a total of 67 wheat (Triticum aestivum) JRL genes were identified through an exhausted search of EST database coupling with genome walking using published 454 sequence reads of Chinese Spring. A comparison of the translated wheat JRL proteins with those from other plants showed plant JRLs generally had low sequence similarity within and between species but exhibited conserved modular domain structures. More JRL genes encoded multiple jacalin domains in Arabidopsis thaliana, whereas more genes encoded chimeric JRLs in cereal plants. Dirigent domain-containing JRL genes were Poaceae-specific and accounted for nearly half of the identified wheat JRL genes. The dirigent domains were evolutionarily significantly correlated with the covalently linked jacalin domains. A phylogenetic analysis showed JRL proteins have experienced a substantial diversification after speciation. Moreover, new structural features conserved across the taxa were identified. Digital expression analysis and RT-PCR assays showed the expression of wheat JRL genes was largely tissue specific, typically low, and mostly inducible by biotic and abiotic stresses and stress hormones. These results suggest plant JRLs are critical for plant adaptation to stressful environments.  相似文献   

14.
拟南芥NPR1基因的克隆与表达载体的构建   总被引:8,自引:1,他引:8  
NPR1基因为植物抗病基因表达和系统获得性抗性中的一个关键基因。该文以DNA PCR扩增的方法,从拟南芥基因组DNA中克隆出NPR1基因,通过序列分析,所克隆的 NPR1 基因与报道的基因序列完全一致。将其构建成植物表达载体,为今后植物抗病基因工程的开展奠定了基础。  相似文献   

15.
Arabidopsis (Arabidopsis thaliana) and tomato (Lycopersicon esculentum) show similar physiological responses to iron deficiency, suggesting that homologous genes are involved. Essential gene functions are generally considered to be carried out by orthologs that have remained conserved in sequence and map position in evolutionarily related species. This assumption has not yet been proven for plant genomes that underwent large genome rearrangements. We addressed this question in an attempt to deduce functional gene pairs for iron reduction, iron transport, and iron regulation between Arabidopsis and tomato. Iron uptake processes are essential for plant growth. We investigated iron uptake gene pairs from tomato and Arabidopsis, namely sequence, conserved gene content of the regions containing iron uptake homologs based on conserved orthologous set marker analysis, gene expression patterns, and, in two cases, genetic data. Compared to tomato, the Arabidopsis genome revealed more and larger gene families coding for the iron uptake functions. The number of possible homologous pairs was reduced if functional expression data were taken into account in addition to sequence and map position. We predict novel homologous as well as partially redundant functions of ferric reductase-like and iron-regulated transporter-like genes in Arabidopsis and tomato. Arabidopsis nicotianamine synthase genes encode a partially redundant family. In this study, Arabidopsis gene redundancy generally reflected the presumed genome duplication structure. In some cases, statistical analysis of conserved gene regions between tomato and Arabidopsis suggested a common evolutionary origin. Although involvement of conserved genes in iron uptake was found, these essential genes seem to be of paralogous rather than orthologous origin in tomato and Arabidopsis.  相似文献   

16.
Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.

The publication of the Arabidopsis genome sequence 20 years ago has had an enormous impact on the global plant science community.  相似文献   

17.
This report illustrates development of plant sequencing programmes. So far Arabidopsis genome has been completely sequenced and a draft of the rice genome is available. The Arabidopsis programmes stimulated sequencing of EST (expressed sequence tags) from numerous cultivated species thus creating an enormous resource. The major challenge is now to correctly annotate all the genes in Arabidopsis and find out a biological and biochemical function for each one. The availability of EST and genome sequence now allows one to analyse the expression of genes at the level of the whole genome.  相似文献   

18.
Hays JB 《DNA Repair》2002,1(8):579-600
The genome of the model plant Arabidopsis thaliana encodes many orthologs of human genome-maintenance proteins, and in several important cases plant DNA repair and mutation-antagonism functions resemble their mammalian counterparts more closely than do those of established microbial models. These orthologs, in conjunction with the powerful tools now available for work with Arabidopsis and the practical advantages of its small size and rapid life cycle, now make it an attractive model system for study of eukaryotic DNA repair and mutagenesis. Already, null mutations that inactivate proteins involved in repair of DNA double-strand breaks or in DNA translesion synthesis and are lethal in mice have proved to be tolerated by plants. This review compares in some detail the genome-maintenance activities encoded by plants, mammals and microbes, and describes important Arabidopsis tools and life cycle characteristics. It concludes with selected examples that illustrate Arabidopsis advantages and/or reveal new insights into genome-maintenance functions of general interest.  相似文献   

19.
20.
Comparative genomic analysis of the malaria causative agent, Plasmodium falciparum, with other eukaryotes for which the complete genome is available, revealed that the genome from P. falciparum was more similar to the genome of a plant, Arabidopsis thaliana, than to other non-apicomplexan taxa. Plant-like sequences are thought to result from horizontal gene transfers after a secondary endosymbiosis involving an algal ancestor. The use of the A. thaliana genome and proteome as a reference gives an opportunity to refine our understanding of the extreme compositional bias in the P. falciparum genome that leads to a proteome-wide amino acid bias. A set of pairs of non-redundant protein homologues was selected owing to rigorous genome-wide sequence comparison methods. The introduction of A. thaliana as a reference was a mean to weight the magnitude of the protein evolutionary divergence in P. falciparum. The correlation of the amino acid proportions with evolutionary time supports the hypothesis that amino acids encoded by GC-rich codons are directionally substituted into amino acids encoded by AT-rich codons in the P. falciparum proteome. The long-term deviation of codons in malarial sequences appears as a possible consequence of a genome-wide tri-nucleotidic signature imprinting. Additionally, this study suggests possible working guidelines to improve the accuracy of P. falciparum sequence comparisons, for homology searches and phylogenetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号