首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Autophagy is an intracellular process for vacuolar degradation of cytoplasmic components. Thus far, plant autophagy has been studied primarily using morphological analyses. A recent genome-wide search revealed significant conservation among autophagy genes (ATGs) in yeast and plants. It has not been proved, however, that Arabidopsis thaliana ATG genes are required for plant autophagy. To evaluate this requirement, we examined the ubiquitination-like Atg8 lipidation system, whose component genes are all found in the Arabidopsis genome. In Arabidopsis, all nine ATG8 genes and two ATG4 genes were expressed ubiquitously and were induced further by nitrogen starvation. To establish a system monitoring autophagy in whole plants, we generated transgenic Arabidopsis expressing each green fluorescent protein-ATG8 fusion (GFP-ATG8). In wild-type plants, GFP-ATG8s were observed as ring shapes in the cytoplasm and were delivered to vacuolar lumens under nitrogen-starved conditions. By contrast, in a T-DNA insertion double mutant of the ATG4s (atg4a4b-1), autophagosomes were not observed, and the GFP-ATG8s were not delivered to the vacuole under nitrogen-starved conditions. In addition, we detected autophagic bodies in the vacuoles of wild-type roots but not in those of atg4a4b-1 in the presence of concanamycin A, a V-ATPase inhibitor. Biochemical analyses also provided evidence that autophagy in higher plants requires ATG proteins. The phenotypic analysis of atg4a4b-1 indicated that plant autophagy contributes to the development of a root system under conditions of nutrient limitation.  相似文献   

2.
Autophagy in development and stress responses of plants   总被引:2,自引:0,他引:2  
The uptake and degradation of cytoplasmic material by vacuolar autophagy in plants has been studied extensively by electron microscopy and shown to be involved in developmental processes such as vacuole formation, deposition of seed storage proteins and senescence, and in the response of plants to nutrient starvation and to pathogens. The isolation of genes required for autophagy in yeast has allowed the identification of many of the corresponding Arabidopsis genes based on sequence similarity. Knockout mutations in some of these Arabidopsis genes have revealed physiological roles for autophagy in nutrient recycling during nitrogen deficiency and in senescence. Recently, markers for monitoring autophagy in whole plants have been developed, opening the way for future studies to decipher the mechanisms and pathways of autophagy, and the function of these pathways in plant development and stress responses.  相似文献   

3.
《Autophagy》2013,9(1):2-11
The uptake and degradation of cytoplasmic material by vacuolar autophagy in plants has been studied extensively by electron microscopy and shown to be involved in developmental processes such as vacuole formation, deposition of seed storage proteins and senescence, and in the response of plants to nutrient starvation and to pathogens. The isolation of genes required for autophagy in yeast has allowed the identification of many of the corresponding Arabidopsis genes based on sequence similarity. Knockout mutations in some of these Arabidopsis genes have revealed physiological roles for autophagy in nutrient recycling during nitrogen deficiency and in senescence. Recently, markers for monitoring autophagy in whole plants have been developed, opening the way for future studies to decipher the mechanisms and pathways of autophagy, and the function of these pathways in plant development and stress responses.  相似文献   

4.
Vacuolar autophagy is a major pathway by which eukaryotic cells degrade macromolecules, either to remove damaged or unnecessary proteins, or to produce respiratory substrates and raw materials to survive periods of nutrient deficiency. During autophagy, a double membrane forms around cytoplasmic components to generate an autophagosome, which is transported to the vacuole. The outer membrane fuses with the vacuole or lysosome, and the inner membrane and its contents are degraded by vacuolar or lysosomal hydrolases. We have identified a small gene family in Arabidopsis thaliana, members of which show sequence similarity to the yeast autophagy gene ATG18. Members of the AtATG18 gene family are differentially expressed in response to different growth conditions, and one member of this family, AtATG18a, is induced both during sucrose and nitrogen starvation and during senescence. RNA interference was used to generate transgenic lines with reduced AtATG18a expression. These lines show hypersensitivity to sucrose and nitrogen starvation and premature senescence, both during natural senescence of leaves and in a detached leaf assay. Staining with the autophagosome-specific fluorescent dye monodansylcadaverine revealed that, unlike wild-type plants, AtATG18a RNA interference plants are unable to produce autophagosomes in response to starvation or senescence conditions. We conclude that the AtATG18a protein is likely to be required for autophagosome formation in Arabidopsis.  相似文献   

5.
Germination and early seedling establishment are developmental stages in which plants face limited nutrient supply as their photosynthesis mechanism is not yet active. For this reason, the plant must mobilize the nutrient reserves provided by the mother plant in order to facilitate growth. Autophagy is a catabolic process enabling the bulk degradation of cellular constituents in the vacuole. The autophagy mechanism is conserved among eukaryotes, and homologs of many autophagy-related (ATG) genes have been found in Arabidopsis thaliana. T-DNA insertion mutants (atg mutants) of these genes display higher sensitivity to various stresses, particularly nutrient starvation. However, the direct impact of autophagy on cellular metabolism has not been well studied. In this work, we used etiolated Arabidopsis seedlings as a model system for carbon starvation. atg mutant seedlings display delayed growth in response to carbon starvation compared with wild-type seedlings. High-throughput metabolomic, lipidomic, and proteomic analyses were performed, as well as extensive flux analyses, in order to decipher the underlying causes of the phenotype. Significant differences between atg mutants and wild-type plants have been demonstrated, suggesting global effects of autophagy on central metabolism during carbon starvation as well as severe energy deprivation, resulting in a morphological phenotype.  相似文献   

6.
Phytosulfokine (PSK), a 5-amino acid sulfated peptide that has been identified in conditioned medium of plant cell cultures, promotes cellular growth in vitro via binding to the membrane-localized PSK receptor. Here, we report that loss-of-function and gain-of-function mutations of the Arabidopsis (Arabidopsis thaliana) PSK receptor gene (AtPSKR1) alter cellular longevity and potential for growth without interfering with basic morphogenesis of plants. Although mutant pskr1-1 plants exhibit morphologically normal growth until 3 weeks after germination, individual pskr1-1 cells gradually lose their potential to form calluses as tissues mature. Shortly after a pskr1-1 callus forms, it loses potential for growth, resulting in formation of a smaller callus than the wild type. Leaves of pskr1-1 plants exhibit premature senescence after bolting. Leaves of AtPSKR1ox plants exhibit greater longevity and significantly greater potential for callus formation than leaves of wild-type plants, irrespective of their age. Calluses derived from AtPSKR1ox plants maintain their potential for growth longer than wild-type calluses. Combined with our finding that PSK precursor genes are more strongly expressed in mature plant parts than in immature plant parts, the available evidence indicates that PSK signaling affects cellular longevity and potential for growth and thereby exerts a pleiotropic effect on cultured tissue in response to environmental hormonal conditions.  相似文献   

7.
8.
Aphids, which are phloem-feeding insects, cause extensive loss of plant productivity and are vectors of plant viruses. Aphid feeding causes changes in resource allocation in the host, resulting in an increase in flow of nutrients to the insect-infested tissue. We hypothesized that leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf, could be utilized by plants to limit aphid growth. Using Arabidopsis (Arabidopsis thaliana) and green peach aphid (GPA; Myzus persicae Sulzer), we found that GPA feeding induced premature chlorosis and cell death, and increased the expression of SENESCENCE ASSOCIATED GENES (SAGs), all hallmarks of leaf senescence. Hypersenescence was accompanied by enhanced resistance against GPA in the Arabidopsis constitutive expresser of PR genes5 and suppressor of SA insensitivity2 mutant plants. In contrast, resistance against GPA was compromised in the phytoalexin deficient4 (pad4) mutant plant. The PAD4 gene, which is expressed at elevated level in response to GPA feeding, modulates the GPA feeding-induced leaf senescence. In comparison to the wild-type plant, GPA feeding-induced chlorophyll loss, cell death, and SAG expression were delayed in the pad4 mutant. Although PAD4 is associated with camalexin synthesis and salicylic acid (SA) signaling, camalexin and SA signaling are not important for restricting GPA growth; growth of GPA on the camalexin-biosynthesis mutant, pad3, and the SA deficient2 and NahG plants and the SA-signaling mutant, nonexpresser of PR genes1, were comparable to that on the wild-type plant. Our results suggest that PAD4 modulates the activation of senescence in the aphid-infested leaves, which contributes to basal resistance to GPA.  相似文献   

9.
Autophagy is an evolutionarily conserved process leading to the degradation of intracellular components in eukaryotes, which is important for nutrient recycling especially in response to starvation conditions. Nutrient recycling is an essential process that underpins productivity in crop plants, such that remobilized nitrogen derived from older organs supports the formation of new organs or grain-filling within a plant. We extended our understanding of autophagy in a model plant, Arabidopsis thaliana, to an important cereal, rice (Oryza sativa). Through analysis of transgenic rice plants stably expressing fluorescent marker proteins for autophagy or chloroplast stroma, we revealed that chloroplast proteins are partially degraded in the vacuole via Rubisco-containing bodies (RCBs), a type of autophagosomes containing stroma. We further reported evidence that the RCB pathway functions during natural leaf senescence to facilitate subsequent nitrogen remobilization into newly expanding leaves. Thus, our recent studies establish the importance of autophagy in biomass production of cereals.  相似文献   

10.
The vacuole/lysosome serves an important recycling function during starvation and senescence in eukaryotes via a process called autophagy. Here bulk cytosolic constituents and organelles become sequestered in specialized autophagic vesicles, which then deliver their cargo to the vacuole for degradation. In yeasts, genetic screens have identified two novel post-translational modification pathways remarkably similar to ubiquitination that are required for autophagy. From searches of the Arabidopsis genome, we have identified gene families encoding proteins related to both the APG8 and -12 polypeptide tags and orthologs for all components required for their attachment. A single APG7 gene encodes the ATP-dependent activating enzyme that initiates both conjugation pathways. Phenotypic analysis of an APG7 disruption indicates that it is not essential for normal growth and development in Arabidopsis. However, the apg7-1 mutant is hypersensitive to nutrient limiting conditions and displays premature leaf senescence. mRNAs for both APG7 and APG8 preferentially accumulate as leaves senesce, suggesting that both conjugation pathways are up-regulated during the senescence syndrome. These findings show that the APG8/12 conjugation pathways have been conserved in plants and may have important roles in autophagic recycling, especially during situations that require substantial nitrogen and carbon mobilization.  相似文献   

11.
12.
Calcium (Ca) and manganese (Mn) are essential nutrients required for normal plant growth and development, and transport processes play a key role in regulating their cellular levels. Arabidopsis (Arabidopsis thaliana) contains four P(2A)-type ATPase genes, AtECA1 to AtECA4, which are expressed in all major organs of Arabidopsis. To elucidate the physiological role of AtECA2 and AtECA3 in Arabidopsis, several independent T-DNA insertion mutant alleles were isolated. When grown on medium lacking Mn, eca3 mutants, but not eca2 mutants, displayed a striking difference from wild-type plants. After approximately 8 to 9 d on this medium, eca3 mutants became chlorotic, and root and shoot growth were strongly inhibited compared to wild-type plants. These severe deficiency symptoms were suppressed by low levels of Mn, indicating a crucial role for ECA3 in Mn nutrition in Arabidopsis. eca3 mutants were also more sensitive than wild-type plants and eca2 mutants on medium lacking Ca; however, the differences were not so striking because in this case all plants were severely affected. ECA3 partially restored the growth defect on high Mn of the yeast (Saccharomyces cerevisiae) pmr1 mutant, which is defective in a Golgi Ca/Mn pump (PMR1), and the yeast K616 mutant (Deltapmc1 Deltapmr1 Deltacnb1), defective in Golgi and vacuolar Ca/Mn pumps. ECA3 also rescued the growth defect of K616 on low Ca. Promoter:beta-glucuronidase studies show that ECA3 is expressed in a range of tissues and cells, including primary root tips, root vascular tissue, hydathodes, and guard cells. When transiently expressed in Nicotiana tabacum, an ECA3-yellow fluorescent protein fusion protein showed overlapping expression with the Golgi protein GONST1. We propose that ECA3 is important for Mn and Ca homeostasis, possibly functioning in the transport of these ions into the Golgi. ECA3 is the first P-type ATPase to be identified in plants that is required under Mn-deficient conditions.  相似文献   

13.
Autophagy is an intracellular process in which a portion of cytoplasm is transported into vacuoles for recycling. Physiological roles of autophagy in plants include recycling nutrients during senescence, sustaining life during starvation, and the formation of central digestive vacuoles. The regulation of autophagy and the formation of autophagosomes, spherical double membrane structures containing cytoplasm moving toward vacuoles, are poorly understood. HVA22 is a gene originally cloned from barley (Hordeum vulgare), which is highly induced by abscisic acid and environmental stress. Homologs of HVA22 include Yop1 in yeast, TB2/DP1 in human, and AtHVA22a to -e in Arabidopsis (Arabidopsis thaliana). Reverse genetics followed by a cell biology approach were employed to study the function of HVA22 homologs. The AtHVA22d RNA interference (RNAi) Arabidopsis plants produced small siliques with reduced seed yield. This phenotype cosegregated with the RNAi transgene. Causes of the reduced seed yield include short filaments, defective carpels, and dysfunctional pollen grains. Enhanced autophagy was observed in the filament cells. The number of autophagosomes in root tips of RNAi plants was also increased dramatically. The yop1 deletion mutant of Saccharomyces cerevisiae was used to verify our hypothesis that HVA22 homologs are suppressors of autophagy. Autophagy activity of this mutant during nitrogen starvation increased in 5 min and reached a plateau after 2 h, with about 80% of cells showing autophagy, while the wild-type cells exhibited low levels of autophagy following 8 h of nitrogen starvation. We conclude that HVA22 homologs function as suppressors of autophagy in both plants and yeast. Potential mechanisms of this suppression and the roles of abscisic acid-induced HVA22 expression in vegetative and reproductive tissues are discussed.  相似文献   

14.
15.
Macroautophagy is a mechanism employed by eukaryotic cells to recycle non-essential cellular components during starvation, differentiation, and development. Two conjugation reactions related to ubiquitination are essential for autophagy: Apg12p conjugation to Apg5p, and Apg8p conjugation to the lipid phosphatidylethanolamine. These reactions require the action of the E1-like enzyme, Apg7p, and the E2-like enzymes, Apg3p and Apg10p. In Dictyostelium, development is induced by starvation, conditions under which autophagy is required for survival in yeast and plants. We have identified Dictyostelium homologues of 10 budding yeast autophagy genes. We have generated mutations in apg5 and apg7 that produce defects typically associated with an abrogation of autophagy. Mutants are not grossly affected in growth, but survival during nitrogen starvation is severely reduced. Starved mutant cells show little turnover of cellular constituents by electron microscopy, whereas wild-type cells show significant cytoplasmic degradation and reduced organelle number. Bulk protein degradation during starvation-induced development is reduced in the autophagy mutants. Development is aberrant; the autophagy mutants do not aggregate in plaques on bacterial lawns, but they do proceed further in development on nitrocellulose filters, forming defective fruiting bodies. The autophagy mutations are cell autonomous, because wild-type cells in a chimaera do not rescue development of the autophagy mutants. We have complemented the mutant phenotypes by expression of the cognate gene fused to green fluorescent protein. A green fluorescent protein fusion of the autophagosome marker Apg8 mislocalizes in the two autophagy mutants. We show that the Apg5-Apg12 conjugation system is conserved in Dictyostelium.  相似文献   

16.
17.
植物细胞自噬研究进展   总被引:1,自引:0,他引:1  
细胞自噬是一类依赖于溶酶体和液泡的蛋白质降解途径。在动物细胞中, 靶物质通过自噬体包裹被运送到溶酶体中,由特定的水解酶降解; 而植物和酵母细胞中该过程在液泡内进行。近年来, 在模式植物拟南芥(Arabidopsis thaliana)中鉴定到多个关键ATG基因, 它们对植物细胞自噬体的形成及自噬调控起到关键作用。该文全面综述了植物细胞自噬的调控及其在植物逆境胁迫中的生理功能。  相似文献   

18.
The identification of a family of NAR2-type genes in higher plants showed that there was a homolog in Arabidopsis (Arabidopsis thaliana), AtNAR2.1. These genes encode part of a two-component nitrate high-affinity transport system (HATS). As the Arabidopsis NRT2 gene family of nitrate transporters has been characterized, we tested the idea that AtNAR2.1 and AtNRT2.1 are partners in a two-component HATS. Results using the yeast split-ubiquitin system and Xenopus oocyte expression showed that the two proteins interacted to give a functional HATS. The growth and nitrogen (N) physiology of two Arabidopsis gene knockout mutants, atnrt2.1-1 and atnar2.1-1, one for each partner protein, were compared. Both types of plants had lost HATS activity at 0.2 mm nitrate, but the effect was more severe in atnar2.1-1 plants. The relationship between plant N status and nitrate transporter expression revealed a pattern that was characteristic of N deficiency that was again stronger in atnar2.1-1. Plants resulting from a cross between both mutants (atnrt2.1-1 x atnar2.1-1) showed a phenotype like that of the atnar2.1-1 mutant when grown in 0.5 mm nitrate. Lateral root assays also revealed growth differences between the two mutants, confirming that atnar2.1-1 had a stronger phenotype. To show that the impaired HATS did not result from the decreased expression of AtNRT2.1, we tested if constitutive root expression of a tobacco (Nicotiana plumbaginifolia) gene, NpNRT2.1, previously been shown to complement atnrt2.1-1, can restore HATS to the atnar2.1-1 mutant. These plants did not recover wild-type nitrate HATS. Taken together, these results show that AtNAR2.1 is essential for HATS of nitrate in Arabidopsis.  相似文献   

19.
20.
During senescence and at times of stress, plants can mobilize needed nitrogen from chloroplasts in leaves to other organs. Much of the total leaf nitrogen is allocated to the most abundant plant protein, Rubisco. While bulk degradation of the cytosol and organelles in plants occurs by autophagy, the role of autophagy in the degradation of chloroplast proteins is still unclear. We have visualized the fate of Rubisco, stroma-targeted green fluorescent protein (GFP) and DsRed, and GFP-labeled Rubisco in order to investigate the involvement of autophagy in the mobilization of stromal proteins to the vacuole. Using immunoelectron microscopy, we previously demonstrated that Rubisco is released from the chloroplast into Rubisco-containing bodies (RCBs) in naturally senescent leaves. When leaves of transgenic Arabidopsis (Arabidopsis thaliana) plants expressing stroma-targeted fluorescent proteins were incubated with concanamycin A to inhibit vacuolar H(+)-ATPase activity, spherical bodies exhibiting GFP or DsRed fluorescence without chlorophyll fluorescence were observed in the vacuolar lumen. Double-labeled immunoelectron microscopy with anti-Rubisco and anti-GFP antibodies confirmed that the fluorescent bodies correspond to RCBs. RCBs could also be visualized using GFP-labeled Rubisco directly. RCBs were not observed in leaves of a T-DNA insertion mutant in ATG5, one of the essential genes for autophagy. Stroma-targeted DsRed and GFP-ATG8 fusion proteins were observed together in autophagic bodies in the vacuole. We conclude that Rubisco and stroma-targeted fluorescent proteins can be mobilized to the vacuole through an ATG gene-dependent autophagic process without prior chloroplast destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号