首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice bakanae is an important disease that causes serious rice production loss worldwide. We describe a new method for rapid diagnosis of rice bakanae caused by Fusarium fujikuroi and F. proliferatum, based on loop‐mediated isothermal amplification (LAMP) assays. After screening, primers were selected to target FusariumDNA sequences, that is, the intergenic spacer (IGS) region of the nuclear ribosomal operon and reductase‐coding region (RED1) in F. fujikuroi and F. proliferatum, respectively. Both LAMP assays efficiently amplified target genes in 70 min at 62°C. A colour change from purple to sky blue (visible to the unaided eye) was observed in the presence of the DNA of the targeted pathogens only, by adding hydroxynaphthol blue to the reaction system prior to amplification. The minimum of genomic DNA needed in the assays was 67 and 346 pg/μl for F. fujikuroi and F. proliferatum, respectively. Using the two assays described here, we successfully and rapidly diagnosed suspected diseased rice plant and seed samples collected from Jiangsu Province.  相似文献   

2.
3.
Suspected phytoplasma and virus‐like symptoms of little leaf, yellow mosaic and witches’ broom were recorded on soya bean and two weed species (Digitaria sanguinalis and Parthenium hysterophorus), at experimental fields of Indian Agricultural Research Institute, New Delhi, India, in August–September 2013. The phytoplasma aetiology was confirmed in symptomatic soya bean and both the weed species by direct and nested PCR assays with phytoplasma‐specific universal primer pairs (P1/P6 and R16F2n/R16R2n). One major leafhopper species viz. Empoasca motti Pruthi feeding on symptomatic soya bean plants was also found phytoplasma positive in nested PCR assays. Sequencing BLASTn search analysis and phylogenetic analysis revealed that 16Sr DNA sequences of phytoplasma isolates of soya bean, weeds and leafhoppers had 99% sequence identity among themselves and were related to strains of ‘Candidatus Phytoplasma asteris’. PCR assays with Mungbean yellow mosaic India virus (MYMIV) coat‐protein‐specific primers yielded an amplicon of approximately 770 bp both from symptomatic soya bean and from whiteflies (Bemisia tabaci) feeding on soya bean, confirmed the presence of MYMIV in soya bean and whitefly. Hence, this study suggested the mixed infection of MYMIV and ‘Ca. P. asteris’ with soya bean yellow leaf and witches’ broom syndrome. The two weed species (D. sanguinalis and P. hysterophorus) were recorded as putative alternative hosts for ‘Ca. P. asteris’ soya bean Indian strain. However, the leafhopper E. motti was recorded as putative vector for the identified soya bean phytoplasma isolate, and the whitefly (B. tabaci) was identified as vector of MYMIV which belonged to Asia‐II‐1 genotype.  相似文献   

4.
Burkholderia gladioli pv. alliicola is a causal agent of rot on a wide range of hosts including onion and tulip. It is one of quarantine phytopathogenic bacteria in China. To reduce the economic losses associated with this pathogen, simple and rapid detection methods are needed. In this study, an efficient loop‐mediated isothermal amplification (LAMP) assay with a real‐time fluorometer was developed. The analysis of 16S‐23S rRNA intergenic transcribed spacer (ITS) sequences showed considerable variability between different Burkholderia species and B. gradioli pathovars. A set of LAMP primers was designed based on the ITS region. The sensitivity and specificity of the developed assay were evaluated at the optimal temperature of 65°C. The primers were specific for B. gladioli pv. alliicola and did not react to strains of others species and other pathovars in the species B. gladioli. The sensitivity of the real‐time LAMP assay was 1 fg DNA which was 100 times higher than that of conventional PCR. The method was verified by testing natural samples and inoculated onion seeds, and it showed effectiveness. The real‐time LAMP assay established in this study is an effective method for detection of B. gladioli pv. alliicola.  相似文献   

5.
A rapid, sensitive and visual loop‐mediated isothermal amplification (LAMP) method for detecting Acidovorax citrulli in cucurbit seed was developed in this study. The LAMP primers were designed to recognize the non‐ribosomal peptide synthetase (NRPS) gene (locus tag: Aave_4658) from A. citrulli. The LAMP assay was conducted at 64°C in 1 hr with calcein as an indicator. The sensitivity and specificity of the LAMP assay were further compared with those of a conventional polymerase chain reaction (PCR). The LAMP assay is highly specific to A. citrulli, and no cross‐reaction was observed with other bacterial pathogen. The sensitivity of the LAMP assay was 100‐fold higher than that of conventional PCR with a detection limit of 1 pg of genomic DNA. Using the LAMP assay, 7 of 12 cantaloupe seedlots collected from Xinjiang province were determined to be positive for A. citrulli. In contrast, only 2 of 12 seedlots showed positive for the pathogen with conventional PCR. Moreover, A. citrulli was detected in 100% of artificially infested seedlots with 0.01% infestation or greater. Our results demonstrated that the LAMP assay was simple, visual and sensitive for detecting A. citrulli, especially in seed health testing. Hence, this method has great potential application in routine detecting seed‐borne pathogens and reducing the risk of epidemics.  相似文献   

6.
The effects of co‐inoculation of Rhizoctonia solani and Colletotrichum lindemuthianum or Uromyces appendiculatus at different inoculum levels were studied on the disease dynamics and on the growth of bean plants under greenhouse conditions. Bean seeds were sown in R. solani‐infested soil. Additional experiments in which seedlings were transplanted to infested soil were also carried out. Conidial suspensions of C. lindemuthianum or uredospores of U. appendiculatus were inoculated onto leaves at plant developmental stages V2 and V3, respectively. Interactions between root rot and the aerial diseases were observed depending on the inoculum levels and on the timing of R. solani inoculation. Anthracnose severity tended to be higher on R. solani‐infected plants. Conversely, R. solani infection significantly reduced diameter of pustules and rust severity. When seedlings were transplanted to soil infested with low levels of R. solani, root rot severity and density of R. solani in the soil were magnified at high levels of C. lindemuthianum or U. appendiculatus. In these experiments, a synergistic interaction between root rot and anthracnose was observed to affect the plant dry weight. Antagonistic effects on the plant dry weight were found for the combination root rot/rust only when seeds were sown in infested soil.  相似文献   

7.
8.
Phytophthora nicotianae is a phytopathogenic oomycete with a wide host range and worldwide distribution. Rapid detection and diagnosis at the early stages of disease development are important for the effective control of P. nicotianae. In this study, we designed a simple and rapid loop‐mediated isothermal amplification (LAMP)‐based detection method for P. nicotianae. We tested three DNA extraction methods and selected the Kaneka Easy DNA Extraction Kit version 2, which is rapid and robust for LAMP‐based detection. The designed primers were tested using mycelial DNA from 35 species (81 isolates) of Phytophthora, 12 species (12 isolates) of Pythium, one isolate of Phytopythium and one isolate each from seven other soil‐borne pathogens. All of the 42 P. nicotianae isolates were detected by these primers, and no other isolates gave positive results. Three isolates were tested for the sensitivity of the reaction, and the lowest amounts of template DNA that could be detected were 10 fg for two isolates and 1 fg for the third. The target was detected within 25 min in all tested samples, including DNA extracted from both inoculated and naturally infected plants. In contrast, PCR assays with P. nicotianae‐specific primers failed or showed weakened detection in several samples. Thus, we found that the rapid DNA extraction and LAMP assay methods developed in this study can be used to detect P. nicotianae with high sensitivity, specificity and stability.  相似文献   

9.

Aims

Enterocytozoon hepatopenaei is an emerging microsporidian parasite that has been linked to recent losses caused by white faeces syndrome (WFS) in cultivated giant or black tiger shrimp Penaeus (Penaeus) monodon and whiteleg shrimp Penaeus (Litopenaeus) vannamei in Asia. To more accurately assess its impact on shrimp production and to determine reservoir carriers for control measures, our objective was to establish a loop‐mediated isothermal amplification (LAMP) assay combined with colorimetric nanogold (AuNP) for rapid, sensitive and inexpensive detection of this parasite.

Methods and Results

A set of six specific primers was designed to successfully detect the SSU rRNA gene of E. hepatopenaei by a LAMP reaction of 45 min at 65°C combined with visual detection of the amplification product via hybridization at 65°C for 5 min with a ssDNA‐labelled nanogold probe, followed by salt‐induced AuNP aggregation (total assay time, approximately 50 min). This method gave similar results to LAMP followed by electrophoresis or spectrophotometric detection, and it was more sensitive (0·02 fg total DNA) than a conventional nested PCR (0·2 fg total DNA). The new method gave negative results with shrimp DNA templates extracted from diseased shrimp containing other pathogens, indicating that the LAMP‐AuNP assay was specific for E. hepatopenaei.

Conclusions

Without sacrificing sensitivity or specificity, the new LAMP‐AuNP assay significantly reduced the time, ease and cost for molecular detection of E. hepatopenaei in shrimp.

Significance and Impact of the study

The new method employs simple, inexpensive equipment and involves simple steps making it applicable for small field laboratories. Wider application of the method to screen broodstock before use in a hatchery, to screen postlarvae before stocking shrimp ponds, to test for natural carriers and to monitor shrimp in rearing ponds would help to assess and reduce the negative impact of this parasite in shrimp farming.  相似文献   

10.
Bean pod mottle virus (BPMV) has been identified as an important pathogen for plant quarantine in China because large quantities of soya bean seeds (approximately 7 × 107 tons) are imported annually. To develop a practical detection programme for BPMV, a cocktail enzyme‐linked immunosorbent assay (ELISA) nested RT‐PCR using a combination of serological and molecular methods was designed for soya bean seeds. The single‐vessel detection assay was performed in a 96‐well ELISA plate, which served as a carrier for the subsequent nested RT‐PCR assay. Assay specificity was demonstrated by the production of the expected 330‐ and 296‐bp bands using the external and internal primers, respectively. This method was 104‐fold more sensitive than immunocapture‐RT‐PCR (IC‐RT‐PCR). In particular, it is important to note that this assay resulted in successful micro‐extraction from soya bean seeds and combined the advantages of each individual technique. The cocktail ELISA nested RT‐PCR is a specific, sensitive, rapid and economical procedure to rapidly identify and characterize BPMV and could be suitable for both primary‐level platforms and laboratories.  相似文献   

11.
We report the development of a loop‐mediated isothermal amplification (LAMP) assay targeting the CYP51C element for visual detection of F. oxysporum which caused Fusarium wilt in soybean. The CYP51C‐LAMP assay efficiently amplified the target gene in 60 min at 62°C. And specificity was evaluated against F. oxysporum, Fusarium spp. and other fungal species. The detection limit of the CYP51C‐specific LAMP assay for F. oxysporum was four conidia per gram soil. The assay also detected F. oxysporum from inoculated soybean tissues and residues. These results suggest that this CYP51C‐LAMP assay can be used to detect residues on plants in the field.  相似文献   

12.
In the past 10 years, there has been a substantial increase in reports, from growers and extension personnel, on bulb and root rots in lily (Lilium longiflorum) in Israel. Rot in these plants, when grown as cut flowers, caused serious economic damage expressed in reduction in yield and quality. In lily, the fungal pathogens involved in the rot were characterized as binucleate Rhizoctonia AG‐A, Rhizoctonia solani, Pythium oligandrum, Fusarium proliferatum (white and purple isolates) and F. oxysporum, using morphological and molecular criteria. These fungi were the prevalent pathogens in diseased plants collected from commercial greenhouses. Pathogenicity trials were conducted on lily bulbs and onion seedlings under controlled conditions in a greenhouse to complete Koch's postulates. Disease symptoms on lily were most severe in treatments inoculated with binucleate Rhizoctonia AG‐A, P. oligandrum and F. proliferatum. Plant height was lower in the above treatments compared with the control plants. The least aggressive fungus was R. solani. In artificial inoculations of onion, seedling survival was significantly affected by all fungi. The most pathogenic fungus was F. proliferatum w and the least were isolates of F. oxysporum (II and III). All fungi were successfully re‐isolated from the inoculated plants.  相似文献   

13.
PCR‐based methods are the most common technique for sex determination of birds. Although these methods are fast, easy and accurate, they still require special facilities that preclude their application outdoors. Consequently, there is a time lag between sampling and obtaining results that impedes researchers to take decisions in situ and in real time considering individuals’ sex. We present an outdoor technique for sex determination of birds based on the amplification of the duplicated sex‐chromosome‐specific gene Chromo‐Helicase‐DNA binding protein using a loop‐mediated isothermal amplification (LAMP). We tested our method on Griffon Vulture (Gyps fulvus), Egyptian Vulture (Neophron percnopterus) and Black Kite (Milvus migrans) (family Accipitridae). We introduce the first fieldwork procedure for sex determination of animals in the wild, successfully applied to raptor species of three different subfamilies using the same specific LAMP primers. This molecular technique can be deployed directly in sampling areas because it only needs a voltage inverter to adapt a thermo‐block to a car lighter and results can be obtained by the unaided eye based on colour change within the reaction tubes. Primers and reagents are prepared in advance to facilitate their storage at room temperature. We provide detailed guidelines how to implement this procedure, which is simpler (no electrophoresis required), cheaper and faster (results in c. 90 min) than PCR‐based laboratory methods. Our successful cross‐species application across three different raptor subfamilies posits our set of markers as a promising tool for molecular sexing of other raptor families and our field protocol extensible to all bird species.  相似文献   

14.
Vibrio vulnificus is a serious bacterial pathogen for humans and aquatic animals. We developed a rapid, sensitive and specific identification method for V. vulnificus using loop-mediated isothermal amplification (LAMP) technique. A set of primers, composed of two outer primers and two inner primers, was designed based on the cytolysin gene sequence of V. vulnificus. The LAMP reaction was processed in a heat block at 65 °C for 60 min. The amplification products were detected by visual inspection using SYBR Green I, as well as by electrophoresis on agarose gels. Our results showed that the LAMP reaction was highly specific to V. vulnificus. This method was 10-fold more sensitive than conventional PCR. In conclusion, the LAMP assay was extremely rapid, simple, cost-effective, sensitive and specific for the rapid identification of V. vulnificus.  相似文献   

15.
A multiplex loop‐mediated isothermal amplification (mLAMP) assay was developed for the identification of three species of whitefly, Trialeurodes vaporariorum, Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1) and Mediterranean (MED), major pests in the greenhouse. Each of the specific LAMP primer sets was designed based on the mitochondrial cytochrome oxidase I (mtCOI) gene sequence. The mLAMP reactions using primer mixtures labelled with fluorescent dye were performed at 63°C for 60 min and centrifuged with polyethyleneimine. Thus, T. vaporariorum, MEAM1 and MED were clearly identified by the colour precipitates under UV light. The mLAMP procedure described in this study is cost‐effective and can be performed in the field not only in the laboratory, because this method is a single analysis and does not need a special gene amplification device.  相似文献   

16.
Loop-mediated isothermal amplification (LAMP) is a promising nucleic acid assay for rapid and cost-effective detection of pathogen-specific sequences within a sample. Development of an appropriate taxonomic group-specific LAMP assay highly relies on the design of proper primers to cover all major members of the taxon. Regarding this fact, we designed and evaluated a new LAMP primer set specific to prt (rfbS) gene for rapid identification of Salmonella serogroup D serotypes. Unlike the previously reported LAMP assay for serogroup D which detects solely the non-typhoidal serotypes; the new LAMP primers set detects both typhoidal and non-typhoidal serotypes of this serogroup with a detection limit of 10 CFU/rection. Furthermore, the technique was successfully applied to artificially contaminated meat samples with an inoculation level of 1–5 CFU/250 ml of Salmonella Enteritidis, following a 5-h pre-enrichment step in tryptic soy broth. Overall, the new LAMP assay and its optimized setup would be useful for fast diagnosis of food poisoning incidents caused by these bacteria.  相似文献   

17.
Scab caused by the fungus Fusicladium eriobotryae is the most serious disease affecting loquat in Spain. Isolation of F. eriobotryae from infected tissue on culture media can be difficult due to its slow growth. A polymerase chain reaction (PCR)‐based protocol was developed for F. eriobotryae‐specific identification from pure culture or infected loquat tissues. The primer set was designed in the elongation factor 1‐α gene (EF1‐α), and specificity and sensitivity for single and nested PCR were validated. The nested PCR assay resulted in 100% positive detection of F. eriobotryae in naturally and artificially infected tissues. This protocol can be useful for routine diagnosis, disease monitoring programmes and epidemiological research.  相似文献   

18.
Trichoderma has been used to manage a large number of pathogens, but there is a gap in the mechanisms used by these biocontrol agents regarding the physiological response of cassava plants (Manihot esculenta) when it is subjected to cassava root rot. The aims of this study were to investigate the antagonist activity of ten Trichoderma isolates against Fusarium solani on potato dextrose Agar (PDA), to quantify the chitinase production, to select and test in vivo the best isolate from each experiment and to assess the physiological response of cassava to the production of oxidative enzyme complex production (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase). All Trichoderma isolates have shown competitive capability against F. solani, and Trichoderma hamatum URM 6656 showed the highest inhibition of pathogen growth (88.91%). All isolates have shown chitinase activity, but Trichoderma aureoviride URM 5158 produced the highest amount of chitinase. T. hamatum URM 6656 and Taureoviride URM 5158 were selected to be applied in vivo. The two Trichoderma strains reduced 64 and 60% of the disease severity in the shoot and 82 and 84% in the root. Cassava plants infected with Trichoderma have shown the highest peroxidase and ascorbate peroxidase production. Our results have indicated that T. aureoviride URM 5158 is an effective biocontrol agent against cassava root rot caused by F. solani, because it presented competitive antagonist capability in vitro, the highest chitinase production, and reduced the cassava root rot severity. The application of T. aureoviride has led to the maximum enzyme activity of reactive oxygen species group in cassava plants.  相似文献   

19.
Root rot caused by Rhizoctonia bataticola is a serious threat in cotton. Field experiments were conducted to study the influences of intercropping system in cotton with inorganic fertilizer and two bioinoculants (Azospirillum and Pseudomonas) on root rot incidence and yield of cotton. The results revealed that among the intercropping systems, cotton intercropping with Sesbania aculeata (1 : 1 ratio) recorded the highest rhizosphere colonization of Pseudomonas fluorescens in the year 2007 and 2008 and the lowest root rot incidence of 1.40, 2.49 and 3.90; 1.02, 2.22 and 5.98% at the vegetative, flowering and maturity stages in the year 2007 and 2008, respectively. From nutrient management practices, integration of Azospirillum and Pseudomonas with 50% recommended dose of NPK recorded the highest rhizosphere colonization of P. fluorescens in both years and the lowest root rot incidence of 1.40, 2.32 and 3.36; 1.07, 2.01 and 5.25% at vegetative, flowering and maturity stages in 2007 and 2008, respectively. Cotton + S. aculeata recorded the maximum number of sympodial branches (23.5 and 20.62/plant in 2007 and 2008, respectively) and the highest seed cotton yield of 2010 and 1894 kg/ha. The highest cotton equivalent yield (CEY) of 2052 and 1895 kg/ha was recorded in cotton + onion system, which was closely followed by cotton + S. aculeata system that had the CEY of 2010 and 1894 kg/ha in 2007 and 2008, respectively. The increased CEY is due to increased cost of onion compared with S. aculeata. Combined application of 100% recommended dose of NPK and bioinoculants recorded the seed cotton yield of 2227 and 1983 kg/ha and CEY of 2460 and 2190 kg/ha in 2007 and 2008, respectively. The lowest root rot incidence and increased yield in cotton + S. aculeata combined with 50% NPK and bioinoculants could be due to synergistic effect among the bioinoculants and S. aculeata.  相似文献   

20.
Fusarium species belonging to the Fusarium fujikuroi species complex (FFSC) are associated with maize in northern Mexico and cause Fusarium ear and root rot. In order to assess the diversity of FFSC fungal species involved in this destructive disease in Sinaloa, Mexico, a collection of 108 fungal isolates was obtained from maize plants in 2007–2011. DNA sequence analysis of the calmodulin and elongation factor 1α genes identified four species: Fusarium verticillioides, F. nygamai, F. andiyazi and F. thapsinum (comprising 79, 23, 4 and 2 isolates, respectively). Differential distribution of Fusarium species in maize organs was observed, that is F. verticillioides was the most frequently isolated species from maize seeds, while F. nygamai predominated on maize roots. Mixed infections with F. verticillioides/F. thapsinum and F. verticillioides/F. nygamai were detected in maize seeds and roots, respectively. Pathogenicity assay demonstrated the ability of the four species to infect maize seedlings and induce different levels of disease severity, reflecting variation in aggressiveness, plant height and root biomass. Isolates of F. verticillioides and F. nygamai were the most aggressive. These species were able to colonize all root tissues, from the epidermis to the vascular vessels, while infection by F. andiyazi and F. thapsinum was restricted to the epidermis and adjacent cortical cells. This is the first report of F. nygamai, F. andiyazi and F. thapsinum infecting maize in Mexico and co‐infecting with F. verticillioides. Mixed infections should be taken into consideration due to the production and/or accumulation of diverse mycotoxins in maize grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号