首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gly m Bd 28K,Gly m Bd 30K and Gly m Bd 60K are the major soybean(Glycine max(L.)Merr.)allergens limiting the consumption of a good protein source for sensitive individuals.However,little is known about their temporal-spatial expression during seed development and upon germination.The present data shows that soy allergens accumulated in both the embryonic axes and cotyledon,but expression patterns differed depending on the specific allergen.Allergens accumulated sooner and to a greater level in cotyledons than in embryonic axes.Gly m Bd 28 began at 14 d after flowering,7 to 14 d earlier than Gly m Bd 30K and Gly m Bd 60K.Comparatively,their degradation was faster and more profound in embryonic axes than in cotyledons.Gly m Bd 60K began to decline at 36 h after imbibition and remained detectable up to 108 h in cotyledons.In contrast,the Glym Bd 60K protein was reduced at 24 h,and eventually disappeared at 96 h.In cotyledons Gly m Bd 28K first declined at 24 h,then increased from 36 h to 48 h,followed by its large reduction at 72 h after seed germination.These findings provide useful information on soy allergen biosynthesis and will help move forward towards developing a hypoallergenic soybean for safer food.  相似文献   

2.
Peanuts (Arachis hypogaea) contain some of the most potent food allergens. In recent years an increasing prevalence of peanut allergies both in children and adults has been observed in the USA and in Europe. In vitro identification and characterization of allergens including those from peanut have been frequently performed by Western blotting. However this method may alter the immunoglobulin E (IgE) antibody reactivity since the proteins are denatured by detergent treatment and/or reduction of disulfide bonds by reducing reagents and does not answer the question how peanut allergens interact with the human digestive apparatus and immune system. Size exclusion chromatography of peanut extract shows that approximately 90% of the total protein content is eluted as one peak in the exclusion volume with a molecular mass of over 200 kDa. The proteins of this fraction were analyzed by blue-native polyacrylamide gel electrophoresis (PAGE), immunoblotting, two-dimensional PAGE and Western blotting. A complex of Ara h 1 (Acc. no. P43237), Ara h 3/4 (AAM46958), Ara h 3 (AAC63045), Ara h 4 (AF086821), Gly 1 (AAG01363) and iso-Ara h 3 (AAT39430) was identified using patients' IgE and allergen-specific monoclonal antibodies; N-terminal sequencing and matrix-assisted laser desorption/ionisation-time of flight analysis verified these findings. A comparison of the peanut allergen sequences of Ara h 3/4, Ara h 3, Ara h 4 and peanut trypsin inhibitor (AF487543) and the proteins Gly 1 and iso-Ara h 3, not yet described as allergens, leads to the conclusion that these proteins are isoallergens of each other. It was shown that these isoallergens are post-translationally cleaved and held together by disulfide bonds in accordance to the 11S plant seed storage proteins signature.  相似文献   

3.
Peanut allergy is one of the most severe food allergies. One effort to alleviate this problem is to identify peanut germplasm with lower levels of allergens which could be used in conventional breeding to produce a less allergenic peanut cultivar. In this study, we identified one peanut line, GT-C9, lacking several seed proteins, which were identified as Ara h 3 isoforms by peptide sequencing and named iso-Ara h 3. Total seed proteins were analyzed by one-dimensional (SDS-PAGE) and two-dimensional gel electrophoreses (2-D PAGE). The total protein extracts were also tested for levels of protein-bound end products or adducts such as advanced glycation end products (AGE) and N-(carboxymethyl) lysine (CML), and IgE binding. Peanut genotypes of GT-C9 and GT-C20 exhibited significantly lower levels of AGE adducts and of IgE binding. This potential peanut allergen iso-Ara h 3 was confirmed by peptide sequences and Western blot analysis using specific anti-Ara h 1, Ara h 2, and Ara h 3 antibodies. A full-length sequence of iso-ara h 3 (GenBank number DQ855115) was obtained. The deduced amino acid sequence iso-Ara h 3 (ABI17154) has the first three of four IgE-binding epitopes of Ara h 3. Anti-Ara h 3 antibodies reacted with two groups of protein peptides, one with strong reactions and another with weak reactions. These peptide spots with weak reaction on 2-D PAGE to anti-Ara h 3 antibodies are subunits or isoallergens of this potential peanut allergen iso-Ara h 3. A recent study suggested that Ara h 3 basic subunits may be more significant allergenicity than the acidic subunits.  相似文献   

4.
Over the last decade, an increasing prevalence of peanut allergies was observed worldwide. Peanuts are meanwhile categorized among the most dangerous food allergens. This is particularly relevant since peanut‐derived ingredients are widely used in industrial food production. To minimize the problem of hidden food allergens causing severe anaphylactic reactions, pre‐packaged food containing peanut components needs to be classified according to European ruling since 2005. Food companies search for strategies to reduce the allergenicity of peanut‐derived food additives either by genetically altering the allergen content or by identifying peanut varieties with low levels of major allergens. In our study, we focused on peanut extracts from Indonesia that apparently contain lower levels of the major Arachis hypogaea allergen 1 (Ara h 1). Basic extracts of Virginia‐type and Indonesian peanuts were compared by 1‐ and 2‐DE. We identified more than hundred individual components in these extracts by MS and provide a high‐resolution allergen map that also includes so far unknown fragments of major peanut allergens. The reduced level of Ara h 1 associated with a significantly lower abundance of the most potent peanut allergen Ara h 2 in various Indonesian peanuts was also confirmed by Western blotting with monoclonal antibodies and sera of allergic patients.  相似文献   

5.
Panallergens show structural similarities, and they are responsible for many cross-reactions between pollen and plant food sources. The aim of the present study was to investigate IgE reactivity to peanut allergen components in children with birch pollen allergy. Patients experienced symptoms of allergic asthma, allergic rhinitis, and urticaria, and they underwent a complete diagnostic evaluation, including skin prick test (SPT), specific IgE (sIgE) to birch pollen allergen (t3), peanut allergen (f13). In addition, measurement of sIgE to the major birch allergen components, Betula verrucosa (Bet v1, Bet v2), and to peanut allergen components, Arachis hypogaea (genuine componens: Ara h1, Ara h2, Ara h3, and cross-reactive Ara h8) was performed, by using a microarray technique (component resolved diagnosis, CRD). SPT to birch extract was positive in all children, and SPT to peanut extract was positive in 51 % of them. sIgE to both allergens was increased in 39 % of children, 55 % of them had increased sIgE (t3), and one child had increased sIgE (f13). CRD results confirmed that some children were sensitized to Bet v1 only, and some children to genuine Ara h only. Bet v1/Ara h8 cross-reactivity was found in 16 % of children. Results of the present study reveal that SPT, sIgE, and CRD may detect sensitization and co-sensitization with birch and peanut allergens/allergen components, and CRD may help to differentiate sensitization to genuine peanut components from sensitization to peanut cross-reactive component in birch-sensitive children. Diagnostic approach has to be individualized for each patient.  相似文献   

6.
利用伴花生球蛋白多克隆抗体,免疫筛选花生品种汕油523成熟子叶中期cDNA文库得到6个阳性克隆.经过DNA序列测定和同源性分析确定为2组(Ahyα和Ahyβ) ,2组序列之间的同源性为97%.Ahyβ与花生过敏原Ara h1 p17以及Ahyα与花生过敏原Ara h1p41b的核苷酸相同性达到99%以上.以Ahy-βcDNA为探针的Northern blot分析结果表明,伴花生球蛋白基因在发育的花生种子中大量表达,而在幼苗的叶片中不表达.对成熟中期花生子叶表达序列标签(EST)分析,获得了包括5种花生球蛋白、2种伴花生球蛋白、6种conglutin蛋白的EST共70条,占总转录本的17%.  相似文献   

7.
Allergic reactions to peanuts are a serious health problem because of their high prevalence, associated with potential severity, and chronicity. One of the three major allergens in peanut, Ara h 2, is a member of the conglutin family of seed storage proteins. Ara h 2 shows high sequence homology to proteins of the 2S albumin family. Presently, only very few structural data from allergenic proteins of this family exist. For a detailed understanding of the molecular mechanisms of food-induced allergies and for the development of therapeutic strategies knowledge of the high-resolution three-dimensional structure of allergenic proteins is essential. We report a method for the efficient large-scale preparation of properly folded Ara h 2 for structural studies and report CD-spectroscopic data. In contrast to other allergenic 2S albumins, Ara h 2 exists as a single continuous polypeptide chain in peanut seeds, and thus heterologous expression in Escherichia coli was possible. Ara h 2 was expressed as Trx-His-tag fusion protein in E. coli Origami (DE3), a modified E. coli strain with oxidizing cytoplasm which allows the formation of disulfide bridges. It could be shown that recombinant Ara h 2, thus overexpressed and purified, and the allergen isolated from peanuts are identical as judged from immunoblotting, analytical HPLC, and circular dichroism spectra.  相似文献   

8.
Allergic reactions to peanuts and tree nuts are major causes of anaphylaxis in the United States. We compare different properties of natural and recombinant versions of Ara h 1, a major peanut allergen, through structural, immunologic, and bioinformatics analyses. Small angle x-ray scattering studies show that natural Ara h 1 forms higher molecular weight aggregates in solution. In contrast, the full-length recombinant protein is partially unfolded and exists as a monomer. The crystal structure of the Ara h 1 core (residues 170-586) shows that the central part of the allergen has a bicupin fold, which is in agreement with our bioinformatics analysis. In its crystalline state, the core region of Ara h 1 forms trimeric assemblies, while in solution the protein exists as higher molecular weight assemblies. This finding reveals that the residues forming the core region of the protein are sufficient for formation of Ara h 1 trimers and higher order oligomers. Natural and recombinant variants of proteins tested in in vitro gastric and duodenal digestion assays show that the natural protein is the most stable form, followed by the recombinant Ara h 1 core fragment and the full-length recombinant protein. Additionally, IgE binding studies reveal that the natural and recombinant allergens have different patterns of interaction with IgE antibodies. The molecular basis of cross-reactivity between vicilin allergens is also elucidated.  相似文献   

9.
Accelerated aging is known to reduce seed viability and vigor in many crop species. The phenomenon is due in part to aging-induced lipid peroxidation, which has the potential to damage membranes of the seed tissues. This study was undertaken to evaluate the effect of accelerated aging on germinability and several physiological characteristics related to peroxidation in the seed of two peanut cultivars. Accelerated aging was achieved by incubating seed at 45°C and 79% relative humidity in a closed chamber for 3, 6, or 9 days. The results indicate that accelerated aging inhibited seed germination and seedling growth. Enhanced lipid peroxidation and increased peroxide accumulation were observed in the axis and cotyledons of aged seed. Accelerated aging also inhibited the activity of superoxide dismutase, peroxidase, ascorbate peroxidase, and lipoxygenase. Seed axes appeared to be more susceptible to aging than cotyledons. The changes in germination and physiological activities, expressed as a function of aging duration, were similar in the two cultivars, despite differences in their seed weight.  相似文献   

10.
11.
In the past decade, there has been an increase in allergic reactions to peanut proteins, sometimes resulting in fatal anaphylaxis. The development of improved methods for diagnosis and treatment of peanut allergies requires a better understanding of the structure of the allergens. Ara h 1, a major peanut allergen belonging to the vicilin family of seed storage proteins, is recognized by serum IgE from >90% of peanut-allergic patients. In this communication, Ara h 1 was shown to form a highly stable homotrimer. Hydrophobic interactions were determined to be the main molecular force holding monomers together. A molecular model of the Ara h 1 trimer was constructed to view the stabilizing hydrophobic residues in the three dimensional structure. Hydrophobic amino acids that contribute to trimer formation are at the distal ends of the three dimensional structure where monomer-monomer contacts occur. Coincidentally, the majority of the IgE-binding epitopes are also located in this region, suggesting that they may be protected from digestion by the monomer-monomer contacts. On incubation of Ara h 1 with digestive enzymes, various protease-resistant fragments containing IgE-binding sites were identified. The highly stable nature of the Ara h 1 trimer, the presence of digestion resistant fragments, and the strategic location of the IgE-binding epitopes indicate that the quaternary structure of a protein may play a significant role in overall allergenicity.  相似文献   

12.
Resistance to proteolytic enzymes and heat is thought to be a prerequisite property of food allergens. Allergens from peanut (Arachis hypogaea) are the most frequent cause of fatal food allergic reactions. The allergenic 2S albumin Ara h 2 and the homologous minor allergen Ara h 6 were studied at the molecular level with regard to allergenic potency of native and protease-treated allergen. A high-resolution solution structure of the protease-resistant core of Ara h 6 was determined by NMR spectroscopy, and homology modelling was applied to generate an Ara h 2 structure. Ara h 2 appeared to be the more potent allergen, even though the two peanut allergens share substantial cross-reactivity. Both allergens contain cores that are highly resistant to proteolytic digestion and to temperatures of up to 100 degrees C. Even though IgE antibody-binding capacity was reduced by protease treatment, the mediator release from a functional equivalent of a mast cell or basophil, the humanized RBL (rat basophilic leukaemia) cell, demonstrated that this reduction in IgE antibody-binding capacity does not necessarily translate into reduced allergenic potency. Native Ara h 2 and Ara h 6 have virtually identical allergenic potency as compared with the allergens that were treated with digestive enzymes. The folds of the allergenic cores are virtually identical with each other and with the fold of the corresponding regions in the undigested proteins. The extreme immunological stability of the core structures of Ara h 2 and Ara h 6 provides an explanation for the persistence of the allergenic potency even after food processing.  相似文献   

13.
Molecular characterization of major allergens Ara h 1, 2, 3 in peanut seed   总被引:1,自引:0,他引:1  
Jiang S  Wang S  Sun Y  Zhou Z  Wang G 《Plant cell reports》2011,30(6):1135-1143
Peanut is among the most commonly used dietary seeds, but peanut allergens, especially Ara h 1 (Arachis hypogaea allergy 1), 2 and 3, can cause severe IgE-mediated reactions. In this study, the molecular characterization and expression pattern of three allergens in peanut LUHUA 8, the representative of the cultivated lines in China, are reported. In situ hybridization and real time PCR analysis revealed high expression levels and different tissue expression patterns of the three allergens, which might be connected with many aspects, such as the strong conservation of intron phase of the allergen genes, the low energy of the mRNA’s regions, and the complicated post-translational modifications. Furthermore, the different sequences between the cloned allergens and the reported sequences previously involved the charged amino acids especially in IgE epitopes, which might alter specific physicochemical and physiological properties, and thus influence the immunity of the allergens. The identification of the specific features of the allergen genes would be of considerable importance to the basic understanding of the specific characteristics of peanut seed allergens.  相似文献   

14.
Barre A  Borges JP  Rougé P 《Biochimie》2005,87(6):499-506
Three-dimensional models of the major vicilin allergens from peanut (Ara h 1), lentil (Len c 1) and pea (Pis s 1), were built by homology-based modelling from the X-ray coordinates of the structurally closely related soybean beta-conglycinin. All the allergen monomers exhibit the typical cupin motif made of two modules related by a pseudo-dyad axis. Each module consists of a beta-barrel core domain associated to a loop domain which mainly contains alpha-helices. The three cupin motifs are assumed to be arranged in a homotrimeric structure similar to that observed in beta-conglycinin, phaseolin or canavalin. Most of the sequential B-cell epitopes characterized on the C-terminus of the Ara h 1 allergen are well conserved in both Len c 1 and Pis s 1 allergens. They occupy very comparable areas on the molecular surface of the allergens and exhibit a similar three-dimensional conformation. This antigenic community readily accounts for the IgE-binding cross-reactivity commonly observed between the vicilin allergens from edible legume seeds. The clinical implication of this cross-reactivity is addressed for a definite diagnosis of legume seed allergy.  相似文献   

15.

Background

IgE-binding of process-modified foods or proteins is the most common method for examination of how food processing affects allergenicity of food allergens. How processing affects sensitization capacity is generally studied by administration of purified food proteins or food extracts and not allergens present in their natural food matrix.

Objectives

The aim was to investigate if thermal processing increases sensitization potential of whole peanuts via the oral route. In parallel, the effect of heating on sensitization potential of the major peanut allergen Ara h 1 was assessed via the intraperitoneal route.

Methods

Sensitization potential of processed peanut products and Ara h 1 was examined in Brown Norway (BN) rats by oral administration of blanched or oil-roasted peanuts or peanut butter or by intraperitoneal immunization of purified native (N-), heated (H-) or heat glycated (G-)Ara h 1. Levels of specific IgG and IgE were determined by ELISA and IgE functionality was examined by rat basophilic leukemia (RBL) cell assay.

Results

In rats dosed orally, roasted peanuts induced significant higher levels of specific IgE to NAra h 1 and 2 than blanched peanuts or peanut butter but with the lowest level of RBL degranulation. However, extract from roasted peanuts was found to be a superior elicitor of RBL degranulation. Process-modified Ara h 1 had similar sensitizing capacity as NAra h 1 but specific IgE reacted more readily with process-modified Ara h 1 than with native.

Conclusions

Peanut products induce functional specific IgE when dosed orally to BN rats. Roasted peanuts do not have a higher sensitizing capacity than blanched peanuts. In spite of this, extract from roasted peanuts is a superior elicitor of RBL cell degranulation irrespectively of the peanut product used for sensitization. The results also suggest that new epitopes are formed or disclosed by heating Ara h 1 without glucose.  相似文献   

16.
BackgroundFenugreek is a legume plant used as an ingredient of curry spice. Incidents of IgE-mediated food allergy to fenugreek have been reported. Coincidence with allergy to peanut, a major food allergen, seems to be common suggesting a rather high rate of cross-reactivity.ObjectiveCharacterization of fenugreek allergens using patient sera and mass spectrometry-based proteomic analysis.MethodsAllergenic fenugreek proteins were detected by immunoblotting, using sera from 13 patients with specific IgE to peanut and fenugreek. IgE-binding proteins were analyzed by peptide mass fingerprinting and peptide sequencing.ResultsA fenugreek protein quintet in the range from 50 kDa to 66 kDa showed high IgE-affinity, the protein at 50 kDa reaching the strongest signals in all patients. Proteomic analyses allowed the classification of several fenugreek proteins to a number of allergen families. Fenugreek 7S-vicilin and 11S-legumin were partly sequenced and revealed considerable homologies to peanut Ara h 1 and Ara h 3, respectively. The presence of a fenugreek 2S albumin and pathogenesis-related (PR-10) plant pollen protein was assumed by database searching results.ConclusionIn this study, individual fenugreek proteins were characterised for the first time. Observed homologies to major peanut allergens provide a molecular explanation for clinical cross-reactivity.  相似文献   

17.

Background  

Natural allergen sources can supply large quantities of authentic allergen mixtures for use as immunotherapeutics. However, such extracts are complex, difficult to define, vary from batch to batch, which may lead to unpredictable efficacy and/or unacceptable levels of side effects. The use of recombinant expression systems for allergen production can alleviate some of these issues. Several allergens have been tested in high-level expression systems and in most cases show immunereactivity comparable to their natural counterparts. The gram positive lactic acid bacterium Lactococcus lactis is an attractive microorganism for use in the production of protein therapeutics. L. lactis is considered food grade, free of endotoxins, and is able to secrete the heterologous product together with few other native proteins. Hypersensitivity to peanut represents a serious allergic problem. Some of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis.  相似文献   

18.
萌发中花生胚轴的耐干性与热稳定蛋白   总被引:6,自引:0,他引:6  
成熟花生种子吸胀18 h 发芽率达100 % 。在这18 h 的范围内,胚轴即使经干燥处理,萌发生长率仍保持100 % ,而热稳定蛋白含量变化很小。吸胀24 h 后,经干燥的花生胚完全丧失萌发生长能力。SDSPAGE和双向电泳表明,花生胚轴的热稳定蛋白主要是贮藏蛋白,该蛋白中的花生球蛋白大亚基,伴花生球蛋白I和2S 蛋白的降解与胚轴的耐干性丧失有关。  相似文献   

19.
In plants, fatty oils are generally stored in spherical intracellular organelles referred to as oleosomes that are covered by proteins such as oleosin. Seeds with high oil content have more oleosin than those with low oil content. However, the exact role of oleosin in oil accumulation is thus far unclear. Here, we report the isolation of a catalytically active 14 S multiprotein complex capable of acylating monoacylglycerol from the microsomal membranes of developing peanut cotyledons. Microsomal membranes from immature peanut seeds were solubilized using 8 m urea and 10 mm CHAPS. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 27 proteins in the 14 S complex. The major proteins present in the 14 S complex are conarachin, the major allergen Ara h 1, and other seed storage proteins. We identified oleosin 3 as a part of the 14 S complex, which is capable of acylating monoacylglycerol. The recombinant OLE3 microsomes from Saccharomyces cerevisiae have been shown to have both a monoacylglycerol acyltransferase and a phospholipase A(2) activity. Overexpression of the oleosin 3 (OLE3) gene in S. cerevisiae resulted in an increased accumulation of diacylglycerols and triacylglycerols and decreased phospholipids. These findings provide a direct role for a structural protein (OLE3) in the biosynthesis and mobilization of plant oils.  相似文献   

20.

Background

Diagnosing peanut allergy properly is important and can be achieved by combining clinical history with various diagnostic methods such as IgE-antibody (IgE-ab) measurements, skin-prick test, basophil allergen threshold sensitivity (CD-sens) and food challenge. We aimed to evaluate CD-sens to peanut, Ara h 8 and Gly m 4 in relation to an oral peanut challenge in children IgE-sensitized to birch, peanut and Ara h 8 avoiding peanuts.

Methods

Twenty children IgE-sensitized to birch pollen and Ara h 8, but not to Ara h 1, Ara h 2 or Ara h 3 were challenged orally with roasted peanuts. Blood samples were drawn for IgE-ab and CD-sens analysis. To measure CD-sens, basophils were stimulated in vitro with decreasing doses of allergens until threshold sensitivity was reached.

Results

All children passed challenge without objective symptoms, but mild oral allergy syndrome (OAS) symptoms were reported in 6/20 children. Nineteen of twenty children were negative in CD-sens to peanut but 17/20 were positive to rAra h 8. Eleven of twenty children were positive in CD-sens to rGly m 4.

Conclusion

Positive CD-sens to rAra h 8 show that the Ara h 8 IgE-ab sensitized basophils can be activated by a rAra h 8 allergen and initiate an allergic inflammation despite a negative challenge. Hence, children sensitized to Ara h 8 but not to peanut storage proteins may be at risk for systemic allergic reaction when eating larger amounts of peanuts but most likely don’t have to fear smaller amounts.

Electronic supplementary material

The online version of this article (doi:10.1186/s12948-014-0007-3) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号