首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the major soybean allergens, Gly m Bd 28K, is suggested to be biosynthesized as a preproprotein form, which would be composed of a signal peptide, Gly m Bd 28K and the C-terminal peptide (the 23-kDa peptide). However, the 23-kDa peptide has never been characterized. In the present study, we prepared a monoclonal antibody (mAb) against a recombinant 23-kDa peptide expressed in Escherichia coli to detect the 23-kDa peptide in soybean. Several proteins were detected by immunoblotting with the mAb. All of the proteins were shown to have the identical N-terminal amino acid sequence, suggesting that the proteins correspond to the C-terminal part of the Gly m Bd 28K precursor. Furthermore, Gly m Bd 28K and the 23-kDa peptide were observed to come out at the 21st day after flowering and to locate in the crystalloid part of protein storage vacuoles in growing cotyledons. Some of the 23-kDa peptides were shown to be glycoproteins with an N-linked glycan moiety and exhibited the binding to IgE antibodies in the sera of patients sensitive to soybean. The binding of the peptides to IgE antibodies was suggested to be predominantly dependent on their glycan moiety. This study proves the occurrence of the 23-kDa peptide in soybean and that it is a new allergen.  相似文献   

2.
Xiang P  Haas EJ  Zeece MG  Markwell J  Sarath G 《Planta》2004,220(1):56-63
Gly m Bd 28 K is a major soybean (Glycine max Merr.) glycoprotein allergen. It was originally identified as a 28 kDa polypeptide in soybean seed flour. However, the full-length protein is encoded by an open reading frame (ORF) of 473 amino acids, and contains a 23 kDa C-terminal polypeptide of as yet unknown allergenic and structural characteristics. IgE-binding (allergenic potential) of the Gly m Bd 28 K protein including the 23 kDa C-terminal portion as well as shorter fragments derived from the full-length ORF were evaluated using sera from soy-sensitive adults. All of these sera contained IgE that efficiently recognized the C-terminal region. Epitope mapping demonstrated that a dominant linear C-terminal IgE binding epitope resides between residues S256 and A270. Alanine scanning of this dominant epitope indicated that five amino acids, Y260, D261, D262, K264 and D266, contribute most towards IgE-binding. A model based on the structure of the subunit of soybean -conglycinin revealed that Gly m Bd 28 K contains two cupin domains. The dominant epitope is on the edge of the first -sheet of the C-terminal cupin domain and is present on a potentially solvent-accessible loop connecting the two cupin domains. Thus, the C-terminal 23 kDa polypeptide of Gly m Bd 28 K present in soy products is allergenic and apparently contains at least one immunodominant epitope near the edge of a cupin domain. This knowledge could be helpful in the future breeding of hypoallergenic soybeans.Abbreviations Ara h 1 Arachis hypogaea allergen 1 - Ara h 3 Arachis hypogaea allergen 3 - BCA Bicinchoninic acid - Gly m Bd 28 K Glycine max band 28 kDa allergen - Gly m Bd 30 K Glycine max band 30 kDa allergen - Gly m Bd 68 K Glycine max band 68 kDa allergen - IgE Immunoglobulin E  相似文献   

3.
4.
In this study, profiles of allergen and antinutritional proteins both in wild (Glycine soja) and cultivated (Glycine max) soybean seeds were compared. We used two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for the separation of proteins at two different pH ranges and applied a combined matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography mass spectrometry (LC-MS/MS) analysis for the identification of proteins. Although overall distribution patterns of the allergen (Gly m Bd 60K, Gly m Bd 30K, Gly m Bd 28K) and antinutritional proteins (trypsin inhibitors and lectin) appeared similar, there was remarkable variation in the number and intensity of the protein spots between wild and cultivated genotypes. The wild genotype showed fifteen polypeptides of Gly m Bd 60K and three polypeptides of trypsin inhibitors. The cultivated genotypes showed twelve polypeptides of Gly m Bd 60K and two polypeptides of trypsin inhibitors. In contrast, the cultivated genotype showed two polypeptides of Gly m Bd 30K and three polypeptides of lectin and the wild genotype showed two and one polypeptides of Gly m Bd 30K and lectin, respectively. Two polypeptides of Gly m Bd 28K were observed in both genotypes. This is the first study reporting the comparative analysis of allergen and antinutritional proteins in both wild and cultivated soybean genotypes using combined proteomic tools.  相似文献   

5.
Genetic modification removes an immunodominant allergen from soybean   总被引:17,自引:0,他引:17  
The increasing use of soybean (Glycine max) products in processed foods poses a potential threat to soybean-sensitive food-allergic individuals. In vitro assays on soybean seed proteins with sera from soybean-sensitive individuals have immunoglobulin E reactivity to abundant storage proteins and a few less-abundant seed proteins. One of these low abundance proteins, Gly m Bd 30 K, also referred to as P34, is in fact a major (i.e. immunodominant) soybean allergen. Although a member of the papain protease superfamily, Gly m Bd 30 K has a glycine in the conserved catalytic cysteine position found in all other cysteine proteases. Transgene-induced gene silencing was used to prevent the accumulation of Gly m Bd 30 K protein in soybean seeds. The Gly m Bd 30 K-silenced plants and their seeds lacked any compositional, developmental, structural, or ultrastructural phenotypic differences when compared with control plants. Proteomic analysis of extracts from transgenic seed detected the suppression of Gly m Bd 30 K-related peptides but no other significant changes in polypeptide pattern. The lack of a collateral alteration of any other seed protein in the Gly m Bd 30 K-silenced seeds supports the presumption that the protein does not have a role in seed protein processing and maturation. These data provide evidence for substantial equivalence of composition of transgenic and non-transgenic seed eliminating one of the dominant allergens of soybean seeds.  相似文献   

6.
大豆过敏蛋白与品种改良   总被引:1,自引:0,他引:1  
方旭前  朱友林  邱丽娟 《遗传》2006,28(8):1043-1050
食物过敏是一个全世界关注的公共卫生问题。大豆蛋白在食品加工业的广泛应用,对大豆敏感人群带来了潜在的威胁。如何降低大豆过敏原含量提升大豆食品安全已成为日益关注的问题。大豆种子过敏蛋白包括种子贮存蛋白、结构蛋白和防御相关蛋白,其中7S 伴球蛋白的多肽片段Gly m Bd 28K, Gly m Bd 30K和Gly m Bd 60K是三种主要的过敏原。目前通过对过敏蛋白的理化性质、过敏原性和基因结构的认识,运用食品加工工艺、传统育种及基因工程技术等方法,在减少大豆和大豆产品的过敏原性方面已取得一定的进展。本文拟从大豆过敏原的分类、主要过敏原Gly m Bd 28K和Gly m Bd 30K的理化性质及基因结构、大豆过敏蛋白在遗传改良中的应用对大豆过敏蛋白进行综述。  相似文献   

7.
A cDNA clone encoding a soybean allergen, Gly m Bd 28K, has been isolated. The clone has a 1567-bp cDNA insert with a 1419-bp open reading frame and a 148-bp 3'-untranslated region, followed by a polyadenylation tail. The open reading frame was shown to encode a polypeptide composed of 473 amino acids. The chemically determined amino acid sequences of the peptides obtained from the allergen, including its N-terminal peptide, were shown to be contained in the N-terminal region of the amino acid sequence deduced from the cDNA, showing that the first half of the cDNA encodes the allergen with a preceding segment of 21 amino acids. The peptide fragment including the allergen was expressed as a fusion protein with glutathione S-transferase in Escherichia coli and immunoblotted with the sera of soybean-sensitive patients and the monoclonal antibody against the allergen. Furthermore, homology analyses demonstrate that the polypeptide for the cDNA exhibits high homology with the MP27/MP32 proteins in pumpkin seeds and the carrot globulin-like protein. This finding suggests that the polypeptide may consist of a 21-amino acid segment as a part of the signal peptide and the proprotein, which may be converted to two mature proteins, Gly m Bd 28K and a 23-kDa protein, during the development of soybean cotyledons.  相似文献   

8.
The levels of food allergens in worm-wounded or non-wounded green soybeans (edamame) and mature soybeans were investigated by immunoblotting and enzyme-linked immunosorbent assay (ELISA), using allergen-specific antibodies. Non-wounded and worm-wounded soybeans showed similar total protein profiles after Coomassie brilliant blue staining, but some protein bands were observed to have been changed by worm wounding. Immunoblotting with specific antibodies for major soybean allergens (Gly m 5, Gly m 6, Gly m Bd 30 K, and Kunitz soybean trypsin inhibitor) revealed that protein band profiles and intensities were not significantly changed by worm wounding. In contrast, levels of the pollen-related soybean allergens Gly m 4 and Gly m 3 were strongly increased by worm wounding in both green and mature soybeans, as detected by immunoblotting and ELISA. These results suggested that the pollen-related food allergen risk (i.e., oral allergy syndrome; OAS) from soybeans might be enhanced by worm wounding of soybeans.  相似文献   

9.
Gly m Bd 30K蛋白是大豆中主要的免疫显性过敏原之一,会引起人和牲畜腹泻和肠道炎症等过敏反应。因此,发掘低Gly m Bd 30K蛋白含量优异种质对于培育优质大豆品种具有重要意义。为了获得致敏蛋白Gly m Bd 30K低含量的优异种质,根据Gly m Bd 30K蛋白的190-379aa多肽序列制备多克隆抗体;对来源于山西省的29份种质,利用Western blot技术对其Gly m Bd 30K蛋白含量进行检测;并扩增和分析Gly m Bd 30K基因序列;利用荧光定量PCR技术对筛选出的低Gly m Bd 30K含量种质进行表达分析。结果表明:从参试种质中鉴定出2份Gly m Bd 30K蛋白含量低的种质,Gly m Bd 30K蛋白低含量种质的鉴定效率为6.9%,分别是来自太原市的大豆种质134(ZDD02046)和大青豆(ZDD02174),其Gly m Bd 30K基因序列与Willams82相比,在启动子上都有TA重复序列变异,134(ZDD02046)有8次TA重复,大青豆(ZDD02174)有42次TA重复,表达分析结果显示,134(ZDD02046)的转录水平显著低于大青豆(ZDD02174),推测启动子上TA多态性可能影响了其转录水平。本研究建立Gly m Bd 30K蛋白含量测定的方法,鉴定出2份低蛋白含量的优异种质,为今后选育优质蛋白组合的大豆新品种提供了技术和材料支撑。  相似文献   

10.
Soybean seeds [Glycine max (L.) Merr.] synthesize de novo andaccumulate several non-storage, soluble polypeptides duringnatural and precocious seed maturation. These polypeptides havepreviously been coined ‘maturation polypeptides’.The objective of this study was to determine the fate of maturationpolypeptides in naturally and precociously matured soybean seedsduring rehydration, germination, and seedling growth. Developingsoybean seeds harvested 35 d after flowering (mid-development)were precociously matured through controlled dehydration, whereasnaturally matured soybean seeds were harvested directly fromthe plant. Seeds were rehydrated with water for various timesbetween 5 and 120 h. Total soluble proteins and proteins radio-labelledin vivo were extracted from the cotyledons and embryonic axesof precociously and naturally matured and rehydrated seed tissuesand analyzed by one-dimensional PAGE and fluorography. The resultsindicated that three of the maturation polypeptides (21, 31and 128 kDa) that had accumulated in the maturing seeds (maturationpolypeptides) continued to be synthesized during early stagesof seed rehydration and germination (5–30 h after imbibition).However, the progression from seed germination into seedlinggrowth (between 30 and 72 h after imbibition) was marked bythe cessation of synthesis of the maturation polypeptides followedby the hydrolysis of storage polypeptides that had been synthesizedand accumulated during seed development. This implied a drasticredirection in seed metabolism for the precociously maturedseeds as these seeds, if not matured early, would have continuedto synthesize storage protein reserves. Glycine max (L.) Merr, soybean, cotyledons, maturation, germination/seedling growth  相似文献   

11.
Endogenous gibberellin-like activity was determined in dry pea seeds (Pisum sativum cv. Bördi), in cotyledons and axes of germinating pea seeds and also in excised cotyledons and axes. During the first two days of pea seed germination, neither the embryonic axes nor the cotyledons show a mutual influence on gibberellin activity, but this appears after 72–96 h of germination. The gibberellin-like activity m cotyledons and axes of germinating seeds increased during the same period, but it decreased in isolated axes and excised cotyledons.  相似文献   

12.
By a sandwich enzyme-linked immunosorbent assay, a soybean major allergen, Gly m Bd 30K, in soybean products was measured. The allergen occurred at high concentrations in soy milk, tofu, kori-dofu, and yuba, but its content in kinako was small. No allergen was found in fermented foods such as miso, shoyu, and natto. The allergen was clearly shown to occur in meat balls, beef croquettes, and fried chicken that contained soybean protein isolate.  相似文献   

13.
Gly m Bd 28K is one of the major allergens in soybeans, but there is limited information on its IgG-binding epitopes. Thirty-four overlapping peptides that covered the entire sequence of Gly m Bd 28K were synthesized, and 3 monoclonal antibodies against Gly m Bd 28K were utilized to identify the IgG-binding regions of Gly m Bd 28K. Three dominant peptides corresponding to 28GDKKSPKSLFLMSNS42(G28-S42), 56LKSHGGRIFYRHMHI70(L56-I70), and 154ETFQSFYIGGGANSH168(E154-H168) were recognized. L56-I70 is the most important epitope, and a competitive ELISA indicated that it could inhibit the binding of monoclonal antibody to Gly m Bd 28K protein. Alanine scanning of L56-I70 documented that F64, Y65, and R66 were the critical amino acids of this epitope. Two bioinformatics tools, ABCpred and BepiPred, were used to predict the epitopes of Gly m Bd 28K, and the predictions were compared with the epitopes that we had located by monoclonal antibodies.  相似文献   

14.
Germination of lupine (Lupinus luteus L.) seeds was accompanied by an increase in concentration of free radicals with g 1 and g 2 values of 2.0056 ± 0.0003 and 2.0033 ± 0.0005, respectively. The highest intensity of free radical signal was observed in embryo axes immediately after radicle protruded through the seed coat. Hydrogen peroxide accumulated in embryonic axes and cotyledons during imbibition before the onset of germination in the seed population. The activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) rose progressively in embryo axes. In cotyledons SOD activity did not change significantly, while that of CAT increased during germination. The enhancement of Cu, Zn-SODs and Mn-SOD isoforms in embryonic axes was observed. A new isoform of catalase was synthesized, suggesting that it plays a relevant role during germination. SOD and CAT activities were detected in dry seeds. Free radical generation and response of antioxidative enzymes differed between embryo axes and cotyledons during the germination timecourse.  相似文献   

15.
Seeds of Raphanus sativus L. subjected to accelerated ageing were investigated for reactive oxygen species (ROS) release and for content of vitamin E (tocopherol, TOC, and tocotrienol, TOC-3), fatty acids and phytosterols in seed coats, cotyledons and embryonic axes during germination. In unaged seeds, ROS release occurred mainly in seed coats of non-imbibed seeds and in seedlings (48?h of imbibition). TOC and TOC-3 were mainly represented by the ??-isoform, abundant in embryonic axes. Fatty acids were mainly found in cotyledons. In seed coat and embryonic axis, phytosterols consisted mainly of sitosterols. The effects of ageing were mainly visible in embryonic axes at 48?h of imbibition. Deterioration was associated with a decrease in fresh weight increase percentage, germination percentage, ??-TOC and total fatty acid content. An increase in ROS release from seed coats and in ??-TOC, ??-TOC, ??-TOC-3 content in embryonic axis was also observed. The use of ??-TOC and total fatty acids in embryonic axis as parameters of seed quality evaluation during storage was suggested.  相似文献   

16.
Acquisition of desiccation tolerance in soybeans   总被引:10,自引:0,他引:10  
The entry into a desiccation-tolerant state is a major developmental component of seed maturation. Development of desiccation tolerance of embryonic axes of soybean [Glycine max (L.) Merrill cv. Chippewa 64] was studied by measuring changes in electrolyte leakage. germination and relative growth rate after axes were rapidly air-dried to various water contents. Axes acquired the full capacity for germination at 34 days after flowering (DAF). and reached physiological maturity (maximum dry weight) at 48 DAF. When dried to water content h = 0. 08 (g water g−1 dry weight). few axes germinated before 42 DAF. but more than 90% germinated after 48 DAF. However, electrolyte leakage of rehydrated axes showed a linear decline from 30 to 55 DAF. For developing axes there was a critical water content or desiccation threshold. which could be estimated by using the electrolyte leakage method. The threshold of desiccation tolerance decreased gradually from h = 1. 10 to 0. 18 as axes matured from 28 to 55 DAF. The development of desiccation tolerance continued after physiological maturity at 48 DAF. We conclude that the acquisition of desiccation tolerance of soybean axes is a gradual event, rather than an abrupt transition.  相似文献   

17.
Because jasmonic acid regulates a number of processes, including the expression of vegetative storage proteins in soybean (Glycine max L.) leaves, the relative activity of a specific portion of the jasmonic acid biosynthetic pathway in soybean tissues was examined. Allene oxide synthase and allene oxide cyclase were examined because they constitute a branch point leading specifically from 13(S)-hydroperoxy-9(Z), 11(E), 15(Z)-octadecatrienoic acid to 12-oxo-phytodienoic acid, the precursor of jasmonic acid. From growing plants, seed coats (hila plus testae) of green fruits (38 d post-anthesis) were most active, eliciting about 1.5 times greater activity on a per milligram of protein basis than the next most active tissue, which was the pericarp. Leaves from fruiting plants were only one-seventh as active as seed coats, and activities in both immature cotyledons and embryonic axes were very low. No activity was detected in any part of stored, mature seeds. After 72 h of germination of stored seeds, a small amount of activity, about 4% of that in immature seed coats, was found in the plumule-hypocotyl-root, and no activity was detected in the cotyledons. The high levels of jasmonic acid biosynthetic enzymes in soybean pericarp and seed coat suggest a role for jasmonic acid in the transfer of assimilate to seeds.  相似文献   

18.
Bialek K  Cohen JD 《Plant physiology》1992,100(4):2002-2007
We have shown that amide-linked IAA (indole-3-acetic acid) conjugates accumulated to high levels during maturation of bean seeds (K. Bialek and J.D. Cohen [1989] Plant Physiol 91: 775-779). In the present study, we were interested in the fate of these and other IAA conjugates during seed germination. The content of amide-linked conjugates of IAA in cotyledons declined dramatically during the first hours of imbibition. The rate of decline slowed markedly during the period of the resumption of axis growth. The level of amide-linked IAA conjugates in cotyledons remained relatively high after almost 1 week of germination. The decline of IAA conjugates in cotyledons was followed by a steady increase in the content of both free and amide-linked IAA in the embryonic axes. Amide-linked IAA conjugates were also present in the axes cultured on agar after the cotyledons were removed, which suggests that de novo production of these IAA conjugates occurs in the axis of germinating bean seedlings. A comparison of relative amounts of free and conjugated IAA in the axes of intact seedlings and axes cultured on agar showed lower levels of free IAA and higher levels of conjugated IAA in much slower growing isolated axes. These results suggest a more general role for IAA conjugates in the control of seedling growth than simply to serve as a seed storage form of auxin.  相似文献   

19.
The soybean allergenic protein, Gly m Bd 30K [Ogawa et al., J. Nutr. Sci. Vitaminol., 37, 555–565 (1991)] which is most strongly and frequently recognized by the IgE antibodies in sera of soybean-sensitive patients with atopic dermatitis, has been characterized. The allergen was isolated from the crude 7S-globulin fraction as an oligomeric form with a molecular weight of more than 3000,000 by gel-filtration chromatography. On two-dimensional gel electrophoresis, the native oligomeric allergen had an isoelectric point of about pH 4.5 and was dissociated into a monomeric form with a molecular weight of about 32,000 by the treatment with sodium dodecyl sulfate and 2-mercaptoethanol. The monomeric allergen had an N-terminal amino acid sequence and amino acid composition identical with those of the soybean seed 34-kDa oil-body-associated protein or the soybean vacuolar protein P34 with close homology to papain-like thiol proteinases [Kalinski et al., J. Biol. Chem., 267, 12068 (1992)]. The identity was further confirmed by the immunological cross-reactivity to the antibodies produced against each of the purified allargen and the 34-kDa oil-body-associated protein. By this observation, Gly m Bd 30K was shown to have about 30% sequence homology with Der pI, a house dust mite allergen that is a thiol proteinase from Dermatophagoides pteronyssius.  相似文献   

20.
French bean ( Phaseolus vulgaris ) is a legume that transports most of the atmospheric nitrogen fixed in its nodules to the aerial parts of the plant as ureides. Changes in ureide content and in enzymatic activities involved in their metabolism were identified in the cotyledons and embryonic axes during germination and early seedling development. Accumulation of ureides (ca. 1300 nmol per pair of cotyledons) was observed in the cotyledons of dry seeds. Throughout germination, the total amount of ureides slightly decreased to about 1200 nmol, but increased both in cotyledons and in embryonic axes after radicle emergence. In the axes, the ureides were almost equally distributed in roots, hypocotyls and epicotyls. The pattern of ureide distribution was not affected by the presence of nitrate or sucrose in the media up to 6 days after imbibition. Ureides are synthesized from purines because allopurinol (a xanthine dehydrogenase inhibitor) blocks the increase of ureides. Allantoin and allantoate-degrading activities were detected in French bean dried seeds, whereas no ureidoglycolate-degrading activity was detected. During germination, the levels of the three activities remain unchanged in cotyledons. After radicle emergence, the levels of activities in cotyledons changed. Allantoin-degrading activity increased, allantoate-degrading activity decreased and ureidoglycolate-degrading activity remained undetectable in cotyledons. In developing embryonic axes, the three activities were detected throughout germination and early seedling development. The embryonic axes are able to synthesize ureides, because those compounds accumulated in axes without cotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号