首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introduction of fish into high-elevation lakes can provide a geographic and demographic boost to their invasion of stream networks, thereby further endangering the native stream fauna. Increasingly, remaining populations of native salmonids are concentrated in fragmented headwater refugia that are protected by physical or biological barriers from introduced fishes that originate in the pervasive source populations established at lower elevations. Although fish introduced near mainstem rivers frequently encounter obstacles to upstream dispersal, such as steep slopes or falls, we found that brook trout (Salvelinus fontinalis) dispersed downstream through channel slopes of 80% and 18-m-high falls. Thus, headwater lake stocking provides source populations that may be capable of invading most downstream habitats, including headwater refugia of native fishes. The extent of additional area invasible from lakes, beyond that invasible from downstream, depends on the geography of the stream network, particularly the density and distribution of headwater lakes and their location relative to barriers inhibiting upstream dispersal. In the thermal and trophic environments downstream of lakes, fish commonly grow faster and thus mature earlier and have higher fecundity-at-age than their counterparts in other high-elevation streams. The resulting higher rates of population growth facilitate invasion. Larger body sizes also potentially aid the fish in overcoming barriers to invasion. Trout introductions to high-elevation headwater lakes thus pose disproportionately large risks to native fishes—even when the place of introduction may appear to be spatially dissociated from populations of the native species. Mapping the potential invasible area can help to establish priorities in stocking and eradication efforts. Received 28 March 2000; accepted 9 February 2001.  相似文献   

2.
Large woody debris (LWD) was added to eight streams in the central Appalachians of West Virginia to determine if stream habitat could be enhanced and brook trout (Salvelinus fontinalis) populations increased. Brook trout populations were assessed one year prior to habitat manipulation and 3 years post-habitat manipulation. LWD was added by felling approximately 15 trees per 300 m stream reach. Four of the streams had LWD added to one 300 m reach with 300 m unmanipulated reaches upstream and downstream of the manipulated reach to observe within-stream effects of LWD additions on brook trout density. The remaining four streams had LWD added to three 300 m reaches and these streams were compared to those with only a single 300 m manipulated reach to observe the effects of the extent of habitat manipulation on brook trout density. New pools were formed by the addition of LWD, but overall pool area did not increase significantly in reaches where LWD was added. The relatively high gradient and coarse substrate of these streams may have precluded the added LWD from having a significant influence on stream channel morphology and habitat complexity. No pools were formed in the highest gradient stream, while the stream with the most pools formed had the lowest gradient. Brook trout populations fluctuated following habitat manipulations, and there was no overall effect of the LWD additions on within-stream variability in brook trout density. When there were significant differences among-streams with different extents of LWD additions, those streams receiving LWD additions over a large extent had the greatest brook trout densities. The full potential of added LWD to change stream habitat and influence on brook trout populations may take more time to develop than the 3 years post-manipulation period of this study.  相似文献   

3.
The restoration of 4 partial stream barriers was evaluated in watersheds of Terra Nova National Park, Newfoundland, Canada from 2009 to 2011. Brook trout (n = 462) were tagged and tracked moving through our study sites using passive‐integrated transponder telemetry and the restoration actions were assessed using 3 different measures: passage success rates; the range of passable flows; and the availability of passable flows. We considered the observed results within a before‐after‐control‐impact (BACI) design that included reference reaches and pre‐restoration observations. The conclusions of BACI analyses were also contrasted with those that would have been obtained from commonly used before‐after (B‐A) or control‐impact (C‐I) study designs. While the restoration actions changed hydrological conditions in a way that should facilitate fish passage, our biological measures indicated that success was variable across culverts and within culverts depending on the measure evaluated. Furthermore, the natural temporal and spatial variability of fish movements often resulted in different conclusions between the more robust BACI design and the more commonly used B‐A and C‐I designs. Our results demonstrate that restoration of partial barriers may not always yield dramatic improvements. Furthermore, without suitable controls, the chances of drawing false conclusions regarding restorations in temporally and spatially dynamic systems are substantial.  相似文献   

4.
Aim To incorporate dispersal through stream networks into models predicting the future distribution of a native, freshwater fish given climate change scenarios. Location Sweden. Methods We used logistic regression to fit climate and habitat data to observed pike (Esox lucius Linnaeus) distributions in 13,476 lakes. We used GIS to map dispersal pathways through streams. Lakes either (1) contained pike or were downstream from pike lakes, (2) were upstream from pike lakes, but downstream from natural dispersal barriers, or (3) were isolated from streams or were upstream from natural dispersal barriers. We then used climate projections to model future distributions of pike and compared our results with and without including dispersal. Results Given climate and habitat, pike were predicted present in all of 99,249 Swedish lakes by 2100. After accounting for dispersal barriers, we only predicted pike presence in 31,538 lakes. Dispersal barriers most strongly limited pike invasion in mountainous regions, but low connectivity also characterized some relatively flat regions. Main conclusions The dendritic network structure of streams and interconnected lakes makes a two‐dimensional representation of the landscape unsuitable for predicting range shifts of many freshwater organisms. If dispersal through stream networks is not accounted for, predictions of future fish distributions in a warmer climate might grossly overestimate range expansions of warm and cool‐water fishes and underestimate range contractions of cold‐water fishes. Dispersal through stream networks can be modelled in any region for which a digital elevation model and species occurrence data are available.  相似文献   

5.
The extent of impairment to some Appalachian watersheds from acid precipitation is so extreme that watershed scale analytical tools are needed to help guide cost‐effective management decisions. The objective of this study was to develop a measure of the functional value of streams as potential areas for juvenile Brook trout recruitment. This measure, which we term “weighted potential recruitment area” (WPRA), is a function of the expected Brook trout spawning intensity and juvenile survivorship. Estimates of WPRA for each stream segment were then used to identify restoration priorities and optimal restoration programs in the upper Shavers Fork watershed in West Virginia, U.S.A. Using this approach, we determined that the watershed has lost nearly 80% of its historic juvenile recruitment potential as a result of acid precipitation. We also determined that of the 145 stream segments in the watershed, eight critical stream segments account for nearly 20% of the loss. The costs and ecological benefits of a series of five alternative restoration programs were then assessed using an ArcGIS model (Environmental Systems Research Institute, Redlands, CA, U.S.A.). This approach identified two “optimal” alternatives: (1) a low‐cost, moderate‐benefit approach that would use existing rail access to treat acidification in three critical headwater locations and (2) a high‐cost, high‐benefit approach that would use aerial limestone application to treat numerous acidic tributaries near their source. The measure of stream ecological value that we developed was effective in identifying critical restoration priorities and optimal restoration strategies in this watershed. A similar procedure could be used to guide watershed restoration decisions throughout the Appalachian region.  相似文献   

6.
Barriers to the recovery of aquatic insect communities in urban streams   总被引:1,自引:0,他引:1  
1. Worldwide, increasing numbers of stream restoration projects are being initiated to rehabilitate waterways modified by urbanisation. However, many of these projects have limited success in restoring stream communities. Prompted by this, we investigated previously unrecognised barriers to aquatic insect colonisation in urban streams. 2. To investigate whether the availability of suitable substrata for oviposition limited the longitudinal distribution of caddisflies, large boulders were added to the upstream reaches of one stream. Prior to the addition, more egg masses were observed downstream and this longitudinal pattern persisted subsequently. 3. Malaise trapping revealed that adult caddisfly diversity and abundance was greater downstream than upstream. Furthermore, in a previous study the authors found larval caddisflies reflected the longitudinal distribution of adults. 4. The only obvious potential obstructions between reaches were roads beneath which the stream flowed through culverted crossings. Malaise trapping was used to examine the effect of road culverts and bridges on caddisfly dispersal. Numbers of caddisflies caught declined upstream and about 2.5 × more individuals were taken in traps immediately below than above five culverts. 4. Bridges, which had a more open structure than culverts, had no significant effect on the size of catches made above and below them. 5. Road culverts could act as partial barriers to upstream flight, with consequences for larval recruitment in urban streams. We recommend that urban planners and designers of restoration projects consider possible synergistic effects of poor oviposition habitat and barriers to aquatic insect dispersal, which may be critical for the colonisation of urban headwater streams and for the maintenance of stream insect populations.  相似文献   

7.
In recent years, salt marsh restoration projects have focused upon restoring hydrology through culvert enlargement to return functional values lost due to reduced tidal flow. To evaluate culvert effects on upstream nekton assemblages, fyke nets were set upstream of tidally restricted creeks, creeks recently restored with larger culverts, and paired reference creeks in New Hampshire and Maine, U.S.A. Subtidal habitats created or enlarged by scour were found immediately upstream of undersized culverts. All marshes supported similar assemblages and densities of fish, suggesting that marshes upstream of moderately restrictive culverts provide suitable habitat to support fish communities. However, densities of Crangon septemspinosa (sand shrimp) were significantly reduced upstream of culverts. A mark–recapture study was conducted in tidally restricted, restored, and reference marsh creeks to evaluate culvert effects on the movement of Fundulus heteroclitus (mummichog), the numerically dominant fish species in New England salt marshes. Recapture data indicated that small culvert size and consequently increased water velocity significantly decreased fish passage rates. We infer that upstream subtidal habitats and greater water velocities due to undersized culverts decreased nekton movements between upstream and downstream areas, resulting in segregated nekton populations. Restoration of salt marsh hydrology by the installation of adequately sized culverts will support increased fish access to marsh habitats and nekton‐mediated export of marsh‐derived production to coastal waters.  相似文献   

8.
Coldwater fishes in streams, such as brook trout (Salvelinus fontinalis), typically are headwater specialists that occasionally expand distributions downstream to larger water bodies. It is unclear, however, whether larger streams function simply as dispersal corridors connecting headwater subpopulations, or as critical foraging habitat needed to sustain large mobile brook trout. Stable isotopes (δ13C and δ15N) and a hierarchical Bayesian mixing model analysis was used to identify brook trout that foraged in main stem versus headwater streams of the Shavers Fork watershed, West Virginia. Headwater subpopulations were composed of headwater and to a lesser extent main stem foraging individuals. However, there was a strong relationship between brook trout size and main stem prey contributions. The average brook trout foraging on headwater prey were limited to 126 mm standard length. This size was identified by mixing models as a point where productivity support switched from headwater to main stem dependency. These results, similar to other studies conducted in this watershed, support the hypothesis that productive main stem habitat maintain large brook trout and potentially facilitates dispersal among headwater subpopulations. Consequently, loss of supplementary main stem foraging habitats may explain loss of large, mobile fish and subsequent isolation of headwater subpopulations in other central Appalachian watersheds.  相似文献   

9.
鲢幼鱼通过水流速度障碍的模拟   总被引:1,自引:0,他引:1  
胡运燊  石小涛  陈求稳  黄瑶 《生态学报》2015,35(8):2652-2658
鱼类能否通过水流速度障碍直接影响过鱼设施的过鱼效果。利用计算机技术,综合水力因素、鱼类行为、地理特征及环境因子,展开鱼类通过水流速度障碍的模拟,有助于过鱼设施的优化设计。以国外涵洞式鱼道模拟软件Fish Xing为切入点,结合主要模块和关键因子,对我国特有鱼类鲢幼鱼进行模拟,得到鲢通过不同水流速度障碍的成功率;对比鲢在物理模型中的游泳表现,从模型主要模块和影响鱼类游泳表现的关键因子角度,分析影响鱼类通过水流速度障碍模拟的因素。结果表明,Fish Xing软件不能精确模拟鲢通过水流速度障碍的表现。分析表明,该软件在地理要素、管道特征和水力信息等参数方面具备独特的优势,但对我国鱼类有一定局限性,主要体现在鱼类的生物学信息如鱼类游泳特征等方面存在不足;进行鱼过障碍的模拟需要深入研究目标鱼类的生理特征、游泳能力及其与水力环境因子的响应关系。  相似文献   

10.
Barriers (culverts and dams) can impede fish passage and affect the overall habitat connectivity of rivers. However, a challenge lies in how to conceptualize and adequately measure passability at barriers. We hypothesize that estimates of barrier and watershed connectivity are dependent on assumptions about the nature of passability, and how it is measured. Specifically, we compare passability estimates in Terra Nova National Park, Canada for individual barriers for two barrier assessment methods (a rapid assessment and one based on FishXing software), two salmonid species, different fish sizes and swimming speeds, and varying hydrological conditions. Watershed connectivity was calculated using the Dendritic Connectivity Index (DCI). Lastly, we test to see what the impact of the various factors is on the practical goal: prioritizing barriers for restoration. Our results show that barrier passability estimates can vary drastically for some barriers (0–100%). In general, the rapid field-based assessment tended to give more conservative estimates of passability than those based on FishXing. Estimates of watershed connectivity were not as sensitive to the assumptions and methods used (DCI: 40–83). Fish size had the greatest effect on DCI. Importantly, variation in DCI had little impact on the restoration priorities. The same barrier was retained as the top priority >96% of the time. Thus, managers wishing to assess barriers for restoration need to carefully consider how passability is to be measured, but can reduce the impact of these decisions by considering barriers in their watershed context using a connectivity index such as the DCI.  相似文献   

11.
Brook trout Salvelinus fontinalis populations have declined in much of the native range in eastern North America and populations are typically relegated to small headwater streams in Connecticut, USA. We used sibship reconstruction to infer mating systems, dispersal and effective population size of resident (non-anadromous) brook trout in two headwater stream channel networks in Connecticut. Brook trout were captured via backpack electrofishing using spatially continuous sampling in the two headwaters (channel network lengths of 4.4 and 7.7 km). Eight microsatellite loci were genotyped in a total of 740 individuals (80–140 mm) subsampled in a stratified random design from all 50 m-reaches in which trout were captured. Sibship reconstruction indicated that males and females were both mostly polygamous although single pair matings were also inferred. Breeder sex ratio was inferred to be nearly 1:1. Few large-sized fullsib families (>3 individuals) were inferred and the majority of individuals were inferred to have no fullsibs among those fish genotyped (family size = 1). The median stream channel distance between pairs of individuals belonging to the same large-sized fullsib families (>3 individuals) was 100 m (range: 0–1,850 m) and 250 m (range: 0–2,350 m) in the two study sites, indicating limited dispersal at least for the size class of individuals analyzed. Using a sibship assignment method, the effective population size for the two streams was estimated at 91 (95%CI: 67–123) and 210 (95%CI: 172–259), corresponding to the ratio of effective-to-census population size of 0.06 and 0.12, respectively. Both-sex polygamy, low variation in reproductive success, and a balanced sex ratio may help maintain genetic diversity of brook trout populations with small breeder sizes persisting in headwater channel networks.  相似文献   

12.
Roads and associated stream crossings can modify and degrade natural hydrology of a system and alter organism movement. Culvert replacement and stream crossing improvements are extremely common and often done with the intent to improve biotic integrity of a system. We evaluated 3 sites where poor road‐stream crossings were improved by replacing improper culverts with full‐span natural bottom structures. We used a before‐after‐control‐impact paired series (BACIPS) design to determine if there was evidence of associated improvement in biotic integrity of the stream communities. Biotic integrity indices developed for coldwater fish and macroinvertebrates in the Northern Lakes and Forests Ecoregion were used to estimate responses of the biotic communities adjacent to culvert replacements. With poor to fair fish and macroinvertebrate communities prior to culvert replacement, we predicted communities would show improvement into the good range of the indices. With 2–4 years of pre‐data and 3–5 years of postdata, we were not able to detect improvements in overall biotic integrity utilizing fish or macroinvertebrate index scores. Road crossing improvements may synergistically restore stream ecosystems, restore natural sediment dynamics, and improve passage; however, in these cases local biotic integrity scores were not significantly improved. Culvert replacements are often developed based on the potential, or the perception, that they will restore ecological integrity and biological communities or fisheries; however, as restoration practitioners, researchers, and managers, assessing these claims and learning from prior restoration attempts is necessary.  相似文献   

13.
Brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) have been widely introduced outside their respective ranges within North America causing declines and displacement of native trout. Yet, successful coexistence of native and non-native trout has received little attention. Here we evaluated the effect of introduced brook trout on the size and density of native redband trout in two invaded sub-basins in southeastern Oregon. In a multi-year study, we investigated whether habitat and fish communities differed between streams and stream reaches where redband trout were allopatric versus where redband trout were sympatric with brook trout. We hypothesized that redband trout would be less dense and have smaller total length in sympatry with brook trout than in allopatry, but that total trout density would not differ. We investigated whether differences in habitat existed between sympatric and allopatric locations that would indicate differentiation in site level habitat preferences for each trout species. We found that sympatric locations had more wood but similar fish community structure. Mean length and densities of redband trout were higher at allopatric locations. However, in most years at sympatric locations total trout density was twice that of allopatric redband trout sites. Using comparable data from an eastern United States system where brook trout are native, sympatric sites had lower densities of brook trout; however, total trout density did not differ. We conclude that invading trout negatively impact native trout densities; but in southeastern Oregon system the negative impact is minimized.  相似文献   

14.
The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine‐scale spawning movements of brown trout between their lake‐feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake‐tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non‐natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half‐sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.  相似文献   

15.
Huge efforts have been made during the past decades to improve the water quality and to restore the physical habitat of rivers and streams in western Europe. This has led to an improvement in biological water quality and an increase in fish stocks in many countries. However, several rheophilic fish species such as brown trout are still categorized as vulnerable in lowland streams in Flanders (Belgium). In order to support cost‐efficient restoration programs, habitat suitability modeling can be used. In this study, we developed an ensemble of habitat suitability models using metaheuristic algorithms to explore the importance of a large number of environmental variables, including chemical, physical, and hydromorphological characteristics to determine the suitable habitat for reintroduction of brown trout in the Zwalm River basin (Flanders, Belgium), which is included in the Habitats Directive. Mean stream velocity, water temperature, hiding opportunities, and presence of pools or riffles were identified as the most important variables determining the habitat suitability. Brown trout mainly preferred streams with a relatively high mean reach stream velocity (0.2–1 m/s), a low water temperature (7–15°C), and the presence of pools. The ensemble of models indicated that most of the tributaries and headwaters were suitable for the species. Synthesis and applications. Our results indicate that this modeling approach can be used to support river management, not only for brown trout but also for other species in similar geographical regions. Specifically for the Zwalm River basin, future restoration of the physical habitat, removal of the remaining migration barriers and the development of suitable spawning grounds could promote the successful restoration of brown trout.  相似文献   

16.
1. Populations in different locations can exchange individuals depending on the distribution and connectivity of suitable habitat, and the dispersal capabilities and behaviour of the organisms. We used an isotopic tracer, 15N, to label stoneflies (Leuctra ferruginea) to determine the extent of adult flight along stream corridors and between streams where their larvae live. 2. In four mass, mark‐capture experiments we added 15NH4Cl continuously for several weeks to label specific regions of streams within the Hubbard Brook Experimental Forest, NH, U.S.A. We collected adult stoneflies along the labelled streams (up to 1.5 km of stream length), on transects through the forest away from labelled sections (up to 500 m), and along an 800‐m reach of adjacent tributary that flows into a labelled stream. 3. Of 966 individual adult stoneflies collected and analysed for 15N, 20% were labelled. Most labelled stoneflies were captured along stream corridors and had flown upstream a mean distance of 211 m; the net movement of the population (upstream + downstream) estimated from the midpoint of the labelled sections was 126 m upstream. The furthest male and female travelled approximately 730 m and approximately 663 m upstream, respectively. We also captured labelled mature females along an unlabelled tributary and along a forest transect 500 m from the labelled stream, thus demonstrating cross‐watershed dispersal. 4. We conclude that the adjacent forest was not a barrier to dispersal between catchments, and adult dispersal linked stonefly populations among streams across a landscape within one generation. Our data on the extent of adult dispersal provide a basis for a conceptual model identifying the boundaries of these populations, whose larvae are restricted to stream channels, and whose females must return to streams to oviposit.  相似文献   

17.
Forested headwater streams play an important role in watershed nutrient dynamics, and wood is thought to be a key factor influencing habitat structure and nitrate-nitrogen dynamics in many forested streams. Because wood in streams can promote nitrogen uptake through denitrification, we hypothesized that nitrate uptake velocities would decrease following wood removal. We measured stream characteristics and nitrate uptake velocities before and after wood manipulation experiments conducted at Hubbard Brook Experimental Forest, NH, and the Sleepers River watershed, VT. The mean size of stream substrates and the amount of riffle habitat increased following wood removal. In contrast to our expectations, summer nitrate uptake velocities increased in the wood removal treatments relative to the reference treatments, possibly because wood removal increased the availability of stable substrates for periphyton growth, therefore increasing nitrate demand in these streams. Our results highlight that effects of wood on stream ecosystems occur through multiple pathways and suggest that the relative importance of these pathways may vary seasonally.  相似文献   

18.
We assessed the effect of a severe drought in 1999 upon stream morphology and brook trout (Salvelinus fontinalis) populations in seven headwater streams in the Greenbrier and Potomac River watersheds, West Virginia. During the drought, stream discharge was 96% lower than in years of normal precipitation. As a result, habitat availability and quality over all study streams was significantly lower. Riffle area was greatly reduced (?54%) relative to available pool area (?2%). Fine sediment levels (<0.063 mm) significantly increased within spawning substrate (p=0.01). Water temperature and dissolved oxygen were adequate (mean 15.8?°C, >6.0 mg l?1, respectively) for brook trout survival in all streams during the drought. Brook trout populations were significantly reduced (adult 60%, Young-of-the-year 67%), and individual fish had significantly lower body condition during the drought relative to the post-drought period. Reductions in brook trout density and population condition during, and in the-post drought period, were related to spatially-limited food resources and/or increased fine sediment levels, but not to degraded water quality. Fisheries managers should consider the effect of periodic drought on brook trout populations and consider short-term harvest restrictions to abet recovery after such stochastic events.  相似文献   

19.
Brook charr (Salvelinus fontinalis) is a sentinel fish species which requires clean, cold water habitats. As such, many jurisdictions in the United States where brook charr are present use this species as an indicator of ecosystem health. In Michigan, groundwater-dominated streams are currently being impacted by increased groundwater withdrawal and land use/land cover changes which alter stream temperatures and their flow, and thus have the potential to significantly influence brook charr production and behavior. We quantified the influence of groundwater withdrawal and land use alteration on thermal habitat availability for brook charr using a groundwater modeling tool that estimated changes in baseflow to a stream segment based on changes to the groundwater system due to groundwater withdrawal and changes in rates of recharge related to landscape changes within a watershed. Projected stream temperature changes were calculated using a stream temperature modeling tool and compared to the range of temperature preferenda for brook charr in order to evaluate the potential impact of policy decisions regarding water extraction and land use/cover changes. The models predicted relatively small changes in both stream baseflow and consequently, stream temperature, with increased groundwater withdrawal rates. Land use/land cover alterations which we analyzed were shown to either mitigate or enhance the loss of brook charr thermal habitat as a result of groundwater withdrawal, depending on its relationship to recharge dynamics. This study emphasizes the importance of collaboration between water, land, and fisheries managers to ensure brook charr population viability, productivity, and sustainability in the face of environmental change, increasing water use and development in the watershed.  相似文献   

20.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号