首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biologically inactive, truncated analogues of the Saccharomyces cerevisiae alpha-mating factor (WHWLQLKPGQPMY) either antagonized or synergized the activity of the native pheromone. An amino-terminal truncated pheromone [WLQLKPGQP(Nle)Y] had no activity by itself, but the analogue acted as an antagonist by competing with binding and activity of the mating factor. In contrast, a carboxyl-terminal truncated pheromone [WHWLQLKPGQP] was not active by itself nor did the peptide compete with alpha-factor for binding to the alpha-factor receptor, but it acted as a synergist by causing a marked increase in the activity of alpha-factor. The observation that residues near the amino terminus may be involved in signal transduction whereas those near the carboxyl terminus influence binding allows us to separate binding and signal transduction in the yeast pheromone response pathway. If found for other hormone-receptor systems, synergists may have potential as therapeutic compounds.  相似文献   

2.
alpha-Factor, a secreted tridecapeptide pheromone, is required for mating between the a- and alpha-haploid mating types of Saccharomyces cerevisiae. An analogue of alpha-factor, [DHP8,DHP11,Nle12] tridecapeptide (where DHP represents 3,4-dehydro-L-proline and Nle represents norleucine), was catalytically reduced in the presence of 3H gas to produce a radiolabeled pheromone with high specific activity, purity, and biological activity. Association and dissociation kinetics indicated values of 4.9 x 10(4) M-1 s-1 for k1 and 1.1 x 10(-3) s-1 for k-1. Saturation binding studies gave an equilibrium dissociation constant equal to 2.3 x 10(-8) M, which approximated the kinetically derived KD of 2.2 x 10(-8) M. These values compare favorably to the previously determined KD of 6 x 10(-9) M (Jenness, D.D., Burkholder, A.C., and Hartwell, L.H. (1986) Mol. Cell. Biol. 6, 318-320). Scatchard analysis and dissociation in the presence of excess unlabeled ligand indicated interaction with a homogeneous population of noninteracting binding sites (13,000 sites/cell). A number of alpha-factor analogues, previously investigated for their structure-function relationships (Naider, F., and Becker, J.M. (1986) CRC Crit. Rev. Biochem. 21, 225-249), were used to compete with [3H]alpha-factor binding. Four tridecapeptides having conservative amino acid replacements bound strongly to the receptor. In contrast, [Phe3]alpha-factor and 10 des-Trp1-alpha-factor analogues bound to the receptor 1-3 orders of magnitude less effectively than did alpha-factor itself. The binding constants for all active pheromones correlated with biological activity. However, des-Trp1[Phe3]alpha-factor and des-Trp1-[Ala3]alpha-factor, which were not biologically active, still competed with alpha-factor binding, indicating that these analogues fail to induce a secondary signal necessary for biological response to the pheromone. One analogue, des-Trp1-[Cha3,L-Ala9]alpha-factor (where Cha represents cyclohexylalanine), was not biologically active and did not demonstrate binding to the receptor, whereas des-Trp1-[Cha3,D-Ala9]alpha-factor was active and bound to the receptor. This finding suggests that a type II beta-turn is necessary for binding of alpha-factor to its receptor and for subsequent biological activity.  相似文献   

3.
The binding of the tridecapeptide yeast mating pheromone, alpha-factor, to its receptor represents an excellent model for the investigation of peptide hormone-receptor interactions. In this paper we present a number of strategies to probe the binding site of the alpha-factor receptor, and discuss the synthesis of probes containing radioactive and affinity tags. Preferential acylation of the alpha- or epsilon-amine in [Nle12]-alpha-factor was accomplished using 3-[3,5-diiodo-4-hydroxyphenyl] propanoic acid hydroxysuccinimide ester (diiodo Bolton-Hunter reagent). At pH 8.0 in a N-N-dimethylformamide/water mixture the ratio of epsilon- to alpha-acylation was 2.15 to 1, whereas at pH 6.5 in a 1,2-dimethoxyethane/water mixture alpha-acylation was favored by more than 3 to 1. The product distribution was found to depend on pH, organic cosolvent, and the ratio of organic solvent and aqueous buffer. Product distributions were followed using analytical high performance liquid chromatography and the products were characterized enzymatically and by mass spectrometry. Citraconic anhydride preferentially alpha-acylated [Nle12]-alpha-factor and served as a temporary masking group during the synthesis of epsilon-Bolton-Hunter acylated pheromone. Biotin or diiodo Bolton-Hunter reagents were also directly incorporated into [Nle12]-alpha-factor or Lys[Nle12]-alpha-factor during peptide synthesis. The peptides were assembled on a chloromethyl polystyrene resin or on a (phenylacetamido)methyl resin, and cleaved using anhydrous hydrogen fluoride (HF). Probes were inserted on amino groups either prior (biotin) or subsequent (Bolton-Hunter reagent) to HF cleavage. The biological activity of the synthetic peptides was characterized using growth arrest assays.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Analogs of the alpha-factor tridecapeptide mating pheromone (WHWLQLKPGQPMY) from Saccharomyces cerevisiae in which Tyr13 was replaced with Phe, p-F-Phe, m-F-Phe, p-NO2-Phe, p-NH2-Phe or Ser were synthesized and purified to >99% homogeneity. These analogs were bioassayed using a growth arrest assay and a gene induction assay and evaluated for their ability to compete with binding of tritiated alpha-factor to its receptor Ste2p. The results showed that the phenolic OH of Tyr13 is not required for either biological activity or receptor recognition. Analogs containing fluorine, amino, nitro or a hydrogen in place of OH had 80-120% of the biological activity of the parent pheromone in the gene induction assay and had receptor affinities from nearly equal to 6-fold lower than that of alpha-factor. In contrast, substitution of Ser or Ala at position 13 resulted in a >100-fold decrease in receptor affinity suggesting that the aromatic ring is involved in binding to the receptor. The lack of a strict requirement for Tyr13 allowed the design of several multiple replacement analogs in which Phe or p-F-Phe were substituted at position 13 and Tyr was placed in other positions of the peptide. These analogs could then be iodinated and used in the development of a highly sensitive receptor-binding assay. One potential receptor ligand [Tyr(125I)1,Nle12, Phe13] alpha-factor exhibited saturable binding with a KD of 81 nM and was competed by alpha-factor for binding in a whole-cell assay. Thus a new family of radioactive ligands for the alpha-factor receptor has been revealed. These ligands should be extremely useful in defining active site residues during mutagenesis and cross-linking studies.  相似文献   

5.
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were studied as a model for peptide ligand-receptor interaction. The affinities and activities of various synthetic position-10 alpha-factor analogs with Ste2p expressing mutations at residues Ser47 and Thr48 were investigated. All mutant receptors were expressed at a similar level in the cytoplasmic membrane, and their efficacies of signal transduction were similar to that of the wild-type receptor. Mutant receptors differed in binding affinity (Kd) and potency (EC50) for gene induction by alpha-factor. One mutant receptor (S47K,T48K) had dramatically reduced affinity and activity for [Lys10]- and [Orn10]alpha-factor, whereas the affinity for Saccharomyces kluyveri alpha-factor (WHWLSFSKGEPMY) was increased over 20-fold compared with that of wild-type receptor. In contrast, the affinity of [Lys10]- and [Orn10]alpha-factor was increased greatly in a S47E,T48E mutant receptor, whereas the binding of the S. kluyveri alpha-factor was abolished. The affinity of [Lys10]- and [Orn10]alpha-factor for the S47E,T48E receptor dropped 4-6-fold in the presence of 1 m NaCl, whereas the affinity of alpha-factor was not affected by this treatment. These results demonstrate that when bound to its receptor the 10th residue (Gln) of the S. cerevisiae alpha-factor is adjacent to Ser47 and Thr48 residues in the receptor and that the 10th residue of alpha-factors from two Saccharomyces species is responsible for the ligand selectivity to their cognate receptors. Based on these data, we have developed a two-dimensional model of alpha-factor binding to its receptor.  相似文献   

6.
Three analogues of the alpha-mating factor pheromone of Saccharomyces cerevisiae containing the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group were synthesized that had high binding affinity to the receptor and retained biological activity. The fluorescence emission maximum of the NBD group in [K7(NBD),Nle(12)]-alpha-factor was blue shifted by 35 nm compared to buffer when the pheromone bound to its receptor. Fluorescence quenching experiments revealed that the NBD group in [K7(NBD),Nle(12)]-alpha-factor bound to the receptor was shielded from collision with iodide anion when in aqueous buffer. In contrast, the emission maximum of NBD in [K7(ahNBD),Nle(12)]-alpha-factor or [Orn7(NBD),Nle(12)]-alpha-factor was not significantly shifted and iodide anion efficiently quenched the fluorescence of these derivatives when they were bound to receptor. The fluorescence investigation suggests that when the alpha-factor is bound to its receptor, K7 resides in an environment that has both hydrophobic and hydrophilic groups within a few angstroms of each other.  相似文献   

7.
Alpha-factor [WHWLQLKPGQPMY], a secreted tridecapeptide pheromone, is required for mating between the a- and alpha-haploid mating types of Saccharomyces cerevisiae (MATa, MATalpha). New analogues of alpha-factor were synthesized and evaluated by morphogenesis assays and receptor binding studies. The Y(0)Nle(12)F(13) analogue [YWHWLQLKPGQPNleF] (MFN5) caused growth arrest and morphological alteration in MATa cells in a fashion identical to that of the native pheromone. Binding of (125)I-labeled MFN5 was saturable, and reversible as shown by equipotent label displacement by MFN5 and native alpha-mating factor. Scatchard analysis of equilibrium binding data on plasma membranes and intact cells indicated the existence of a single high-affinity binding site (K(d) = 6.4 x 10(-8)). Specific binding of (125)I-labeled MFN5 was significantly reduced by guanosine nucleotides. Affinity cross-linking of (125)I-labeled MFN5 to MATa cell membranes identified a specifically labeled 49-kDa protein. The novel synthetic alpha-factor analogue MFN5 can be easily iodinated and used as a probe for the alpha-factor receptor.  相似文献   

8.
The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.  相似文献   

9.
Small peptides initiate sexual conjugation in the yeast Saccharomyces cerevisiae and this phenomenon is an ideal paradigm for studying the mode of action of mammalian peptide hormones. 1H-nmr spectroscopy was used to examine the conformation of linear and cyclic analogues of the alpha-factor (WHWLQLKPGQPMY) in aqueous solution. In all cases peptides that exhibit nmr parameters expected for a type II beta-turn have higher biological activities than those that do not appear to assume this conformation. Based on a simple model for the interaction of the pheromone with its receptor, we prepared fragments of the alpha-factor. Several of these fragments either antagonize or potentiate the activity of the alpha-factor. The latter represent the first example of peptide fragments that synergize the activity of the parent pheromone.  相似文献   

10.
Henry LK  Khare S  Son C  Babu VV  Naider F  Becker JM 《Biochemistry》2002,41(19):6128-6139
Saccharomyces cerevisiae haploid cells communicate with their opposite mating type through peptide pheromones (alpha-factor and a-factor) that activate G protein-coupled receptors (GPCRs). S. cerevisiaewas used as a model system for the study of peptide-responsive GPCRs. Here, we detail the synthesis and characterization of a number of alpha-factor (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr) pheromone analogues containing the photo-cross-linkable group 4-benzoyl-L-phenylalanine (Bpa). Following characterization, one analogue, [Bpa(1), Tyr(3), Arg(7), Phe(13)]alpha-factor, was radioiodinated and used as a probe for Ste2p, the GPCR for alpha-factor. Binding of the di-iodinated probe was saturable (K(d) = 200 nM) and competable by alpha-factor. Cross-linking into Ste2p was specific for this receptor and reversed by the wild-type pheromone. Chemical and enzymatic cleavage of the receptor/radioprobe complex indicated that cross-linking occurred on a portion of Ste2p spanning residues 251-294 which encompasses transmembrane domain 6, the extracellular loop between transmembrane domains 6 and 7, and transmembrane domain 7. This fragment was verified using T7-epitope-tagged Ste2p and a biotinylated, photoactivatable alpha-factor. After cross-linking with the biotinylated photoprobe and trypsin cleavage, the cross-linked receptor fragment was revealed by both an anti T7-epitope antibody and a biotin probe. This is the first determination of a specific contact region between a Class IV GPCR and its ligand. The results demonstrate that Bpa alpha-factor probes are useful in determining contacts between alpha-factor and Ste2p and initiate mapping of the ligand binding site of this GPCR.  相似文献   

11.
Son CD  Sargsyan H  Naider F  Becker JM 《Biochemistry》2004,43(41):13193-13203
Analogues of alpha-factor, Saccharomyces cerevisiae tridecapeptide mating pheromone (H-Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr-OH), containing p-benzoylphenylalanine (Bpa), a photoactivatable group, and biotin as a tag, were synthesized using solid-phase methodologies on a p-benzyloxybenzyl alcohol polystyrene resin. Bpa was inserted at positions 1, 3, 5, 8, and 13 of alpha-factor to generate a set of cross-linkable analogues spanning the pheromone. The biological activity (growth arrest assay) and binding affinities of all analogues for the alpha-factor receptor (Ste2p) were determined. Two of the analogues that were tested, Bpa(1) and Bpa(5), showed 3-4-fold lower affinity than the alpha-factor, whereas Bpa(3) and Bpa(13) had 7-12-fold lower affinities. Bpa(8) competed poorly with [(3)H]-alpha-factor for Ste2p. All of the analogues tested except Bpa(8) had detectable halos in the growth arrest assay, indicating that these analogues are alpha-factor agonists. Cross-linking studies demonstrated that [Bpa(1)]-alpha-factor, [Bpa(3)]-alpha-factor, [Bpa(5)]-alpha-factor, and [Bpa(13)]-alpha-factor were cross-linked to Ste2p; the biotin tag on the pheromone was detected by a NeutrAvidin-HRP conjugate on Western blots. Digestion of Bpa(1), Bpa(3), and Bpa(13) cross-linked receptors with chemical and enzymatic reagents suggested that the N-terminus of the pheromone interacts with a binding domain consisting of residues from the extracellular ends of TM5-TM7 and portions of EL2 and EL3 close to these TMs and that there is a direct interaction between the position 13 side chain and a region of Ste2p (F55-R58) at the extracellular end of TM1. The results further define the sites of interaction between Ste2p and the alpha-factor, allowing refinement of a model for the pheromone bound to its receptor.  相似文献   

12.
Pancreatic tissue contains an [3H]estradiol-binding protein that requires a coligand in the steroid-binding reaction. The endogenous coligand appears to be the tetradecapeptide somatostatin. Yeast alpha-factor, a tridecapeptide pheromone that induces conjugation between haploid cells of opposite mating type, was found to be as effective as somatostatin in enhancing specific binding of [3H]estradiol to partially purified pancreatic protein. Supernatant fractions from yeast cells also contain an [3H]estradiol-binding protein. alpha-Factor can enhance specific binding of [3H]estradiol to such yeast fractions. Somatostatin, somatostatin analogues, and an analogue of alpha-factor enhanced binding of [3H]estradiol but did not inhibit cell growth or induce morphological changes in S. cerevisiae. Thus, it appears that coligand-requiring [3H]estradiol-binding activity and mating in yeast are not directly related.  相似文献   

13.
Mutations in the Saccharomyces cerevisiae alpha-factor receptor that lead to improved response to Saccharomyces kluyveri alpha-factor were identified and sequenced. Mutants were isolated from cells bearing randomly mutagenized receptor gene (STE2) plasmids by an in vivo screen. Five mutations lead to substitutions in hydrophobic segments in the core of the receptor (M54I, S145L, S145L-S219L, A229V, L255S-S288P). Remarkably, strains expressing these mutant receptors exhibited positive pheromone responses to desTrp1,Ala3-alpha-factor, an analog that normally blocks these responses. The M54I mutation appeared to affect only ligand specificity. The other mutations conferred additional effects on signaling or recovery. Two mutants were more sensitive to alpha-factor than wild type (S145L, A229V). One mutant was more sensitive to alpha-factor-induced cell cycle arrest initially, but then recovered more efficiently (S145L-S219L). One mutant (L255S-S288P) conferred positive pheromone responses to alpha-factor as assayed by FUS1-lacZ reporter induction, but did not display growth arrest. The hydrophobic receptor core thus appears to control activation by some ligands and to play roles in aspects of signal transduction and recovery.  相似文献   

14.
The low-molecular-mass, cyclic analog of neuropeptide Y, [Ahx5-24, gamma-Glu2-epsilon-Lys30] NPY (YESK-Ahx-RHYINKITRQRY; Ahx, 6-aminohexanoic acid; NPY, neuropeptide Y), was synthesized and investigated for receptor binding, inhibition of forskolin-stimulated cAMP accumulation, inhibition of electrically stimulated rat vas deferens contractions and ability to increase blood pressure. Like the linear peptide [Ahx5-24] NPY (YPSK-Ahx-RHYINLITRQRY), the more rigid, cyclic analog showed good correlation between receptor binding to rabbit kidney membranes and biological activity in the vas deferens assay. Binding of this peptide to a new Y2-receptor-expressing cell line was slightly reduced, compared to the linear peptide [Ahx5-24] NPY, however inhibition of cAMP accumulation was even more efficient. Unlike the linear peptide [Ahx5-24] NPY, the cyclic analog did not induce a blood pressure increase in rats. Reduced binding to Y1 receptor-expressing SK-N-MC cells, as well as the loss of capability of signal transduction, suggest that only Y2-mediated activity is preserved after cyclization. The selectivity of the cyclic compound for Y2 subtypes of NPY receptors with respect to inhibition of cAMP accumulation is more than fortyfold increased, as compared to the linear NPY-(13-36) peptide, which has been used to determine Y2 selectivity so far.  相似文献   

15.
Dangoor D  Rubinraut S  Fridkin M  Gozes I 《Peptides》2007,28(9):1622-1630
The effect of multiplication of the N-terminal domain of vasoactive intestinal peptide (VIP) on the binding activity of the peptide was recently evaluated. A VIP analog with multiple N-terminal domains was found to be slightly more potent as compared to [Nle(17)]VIP towards VIP receptor type 1 (VPAC1)-related cAMP production. Here, the effect of multiplication of the C-terminal domain of VIP was evaluated with the aim of possibly amplifying peptide-receptor (VPAC1) binding and activation. Several VIP analogs were designed and synthesized, each carrying multiplication of the C-terminal domain that was obtained by either a simple linear tandem extension or by a unique branching methodology. Results show that despite significant alterations in the C-terminal domain of VIP that is considered essential to induce potent receptor binding, few peptides demonstrated only slight reduction in receptor binding and activation in comparison to [Nle(17)]VIP. Furthermore, a specific branched VIP analog with multiple C-terminal domains was equipotent to [Nle(17)]VIP in the cAMP production assay. Therefore, it is concluded that the association between the VIP ligand to the VIP receptor could be tolerable to size increases in the C-terminal region of the VIP ligand and multiplication of the C-terminal does not increase activity.  相似文献   

16.
Structure-activity relationships of the yeast alpha-factor   总被引:4,自引:0,他引:4  
The yeast Saccharomyces cerevisiae produces a peptide pheromone, termed the alpha-factor, as a prelude to sexual conjugation. Haploid MAT alpha-cells, but not haploid MAT a-cells or MAT a/alpha-diploids, produce this tridecapeptide of the structure: Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr. Structural analogues of the alpha-factor have been prepared with alterations in many of the residues, derivatized peptides have been synthesized, and truncated and elongated peptides have been studied. These peptides have been analyzed for their biological activities by various assays. Mutants of S. cerevisiae have been isolated that do not respond to alpha-factor or are supersensitive to the pheromone and its analogues. The mating system of S. cerevisiae provides a powerful model in which genetics, biochemistry, and molecular biology can be used to unravel the mysteries of peptide hormone structure and function.  相似文献   

17.
Urokinase-type plasminogen activator (uPA) binds with high affinity to its specific cell surface receptor (uPAR) (CD87) via a well-defined sequence within the N-terminal region of uPA (uPA(19-31)). Since this uPA/uPAR-interaction plays a significant role in tumor cell invasion and metastasis, it has become an attractive therapeutic target. Two small peptidic cyclic competitive antagonists of uPA/uPAR-interaction have been developed, based on the uPAR binding site in uPA: WX-360 (cyclo(21,29)[D-Cys21]-uPA(21-30)[S21C;H29C]) and its norleucine (Nle) derivative WX-360-Nle (cyclo(21,29)[D-Cys21]-uPA(21-30)[S21C;K23Nle;H29C]). These peptides display an only five to 10-fold lower affinity to uPAR as compared to the naturally occurring uPAR-ligand uPA. In this study, WX-360 and WX-360-Nle were tested in nude mice for their potency to inhibit tumor growth and intraperitoneal spread of lacZ-tagged human ovarian cancer cells. Intraperitoneal administration of either cyclic peptide (20 mg peptide/kg; 1x daily for 37 days) into the tumor-bearing nude mice resulted in a significant reduction of tumor weight and spread within the peritoneum as compared to the untreated control group. This is the first report demonstrating effective reduction of tumor growth and spread of human ovarian cancer cells in vivo by small synthetic uPA-derived cyclic peptides competitively interfering with uPA/uPAR-interaction. Thus, both WX-360 and WX-360-Nle are promising novel compounds to reduce dissemination of human ovarian carcinoma.  相似文献   

18.
Bajaj A  Celić A  Ding FX  Naider F  Becker JM  Dumont ME 《Biochemistry》2004,43(42):13564-13578
The yeast alpha-factor receptor encoded by the STE2 gene is a member of the extended family of G protein coupled receptors (GPCRs) involved in a wide variety of signal transduction pathways. We report here the use of a fluorescent alpha-factor analogue [K(7)(NBD), Nle(12)] alpha-factor (Lys(7) (7-nitrobenz-2-oxa-1,3-diazol-4-yl), norleucine(12) alpha-factor) in conjunction with flow cytometry and fluorescence microscopy to study binding of ligand to the receptor. Internalization of the fluorescent ligand following receptor binding can be monitored by fluorescence microscopy. The use of flow cytometry to detect binding of the fluorescent ligand to intact yeast cells provides a sensitive and reproducible assay that can be conducted at low cell densities and is relatively insensitive to fluorescence of unbound and nonspecifically bound ligand. Using this assay, we determined that some receptor alleles expressed in cells lacking the G protein alpha subunit exhibit a higher equilibrium binding affinity for ligand than the same alleles expressed in isogenic cells containing the normal complement of G protein subunits. On the basis of time-dependent changes in the intensity and shape of the emission spectrum of [K(7)(NBD),Nle(12)] alpha-factor during binding, we infer that the ligand associates with receptors via a two-step process involving an initial interaction that places the fluorophore in a hydrophobic environment, followed by a conversion to a state in which the fluorophore moves to a more polar environment.  相似文献   

19.
The STE2 gene of the yeast Saccharomyces cerevisiae encodes a 431-residue polypeptide that has been shown by chemical cross-linking and genetic studies to be a component of the receptor for the peptide mating pheromone, alpha-factor. To demonstrate directly that the ligand binding site of the alpha-factor receptor is comprised solely of the STE2 gene product, the STE2 protein was expressed in Xenopus oocytes. Oocytes microinjected with synthetic STE2 mRNA displayed specific surface binding for 35S-labeled alpha-factor (up to 40 sites/micron2/ng RNA). Oocytes injected with either STE2 antisense RNA or heterologous receptor mRNA (nicotinic acetylcholine receptor alpha, beta, gamma, and delta subunit mRNAs) showed no binding activity (indistinguishable from uninjected control oocytes). The apparent KD (7 nM) of the alpha-factor binding sites expressed on the oocyte surface, determined by competition binding studies, agreed with the values reported for intact yeast cells and yeast plasma membrane fractions. These findings demonstrate that the STE2 gene product is the only yeast polypeptide required for biogenesis of a functional alpha-factor receptor. Electrophysiological measurements indicated that the membrane conductance of oocytes injected with STE2 mRNA, or with both STE2 and GPA1 (encoding a yeast G protein alpha-subunit) mRNAs, did not change and was not affected by pheromone binding. Thus, the alpha-factor receptor, like mammalian G protein-coupled receptors, apparently lacks activity as an intrinsic or ligand-gated ion channel. This report is the first instance in which a membrane-bound receptor from a unicellular eukaryote has been expressed in a vertebrate cell.  相似文献   

20.
Naider F  Becker JM 《Peptides》2004,25(9):1441-1463
Mating in Saccharomyces cerevisiae is initiated by the secretion of diffusible peptide pheromones that are recognized by G protein-coupled receptors (GPCR). This review summarizes the use of the alpha-factor (WHWLQLKPGQPMY)--GPCR (Ste2p) interaction as a paradigm to understand the recognition between medium-sized peptide hormones and their cognate receptors. Studies over the past 15 years have indicated that the alpha-factor is bent around the center of the pheromone and that residues near the amine terminus play a central role in triggering signal transduction. The bend in the center appears not to be rigid and this flexibility is likely necessary for conformational changes that occur as the receptor switches from the inactive to active state. The results of synthetic, biological, biochemical, molecular biological, and biophysical analyses have led to a preliminary model for the structure of the peptide bound to its receptor. Antagonists for Ste2p have changes near the N-terminus of alpha-factor, and mutated forms of Ste2p were discovered that appear to favor binding of these antagonists relative to agonists. Many features of this yeast recognition system are relevant to and have counterparts in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号