首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg(2+), Ca(2+) and Ba(2+)) and anions (SO(4)(2-) and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   

2.
The combined effects of ionic strength, divalent cations, pH and toxin concentration on the pore-forming activity of Cry1Ac and Cry1Ca were studied using membrane potential measurements in isolated midguts of Manduca sexta and a brush border membrane vesicle osmotic swelling assay. The effects of ionic strength and divalent cations were more pronounced at pH 10.5 than at pH 7.5. At the higher pH, lowering ionic strength in isolated midguts enhanced Cry1Ac activity but decreased considerably that of Cry1Ca. In vesicles, Cry1Ac had a stronger pore-forming ability than Cry1Ca at a relatively low ionic strength. Increasing ionic strength, however, decreased the rate of pore formation of Cry1Ac relative to that of Cry1Ca. The activity of Cry1Ca, which was small at the higher pH, was greatly increased by adding calcium or by increasing ionic strength. EDTA inhibited Cry1Ac activity at pH 10.5, but not at pH 7.5, indicating that trace amounts of divalent cations are necessary for Cry1Ac activity at the higher pH. These results, which clearly demonstrate a strong effect of ionic strength, divalent cations and pH on the pore-forming activity of Cry1Ac and Cry1Ca, stress the importance of electrostatic interactions in the mechanism of pore formation by B. thuringiensis toxins.  相似文献   

3.
The toxicity and pore-forming ability of the Bacillus thuringiensis Cry9Ca insecticidal toxin, its single-site mutants, R164A and R164K, and the 55-kDa fragment resulting from its proteolytic cleavage at residue 164 were investigated using Manduca sexta neonate larvae and fifth-instar larval midgut brush border membrane vesicles, respectively. Neither the mutations nor the proteolytic cleavage altered Cry9Ca toxicity. Compared with Cry1Ac, Cry9Ca and its mutants formed large poorly selective pores in the vesicles. Pore formation was highly dependent on pH, however, especially for wild-type Cry9Ca and both mutants. Increasing pH from 6.5 to 10.5 resulted in an irregular step-wise decrease in membrane permeabilization that was not related to a change in the ionic selectivity of the pores. Pore formation was much slower with Cry9Ca and its derivatives, including the 55-kDa fragment, than with Cry1Ac and its rate was not influenced by the presence of protease inhibitors or a reducing agent.  相似文献   

4.
The effect of Bacillus thuringiensis toxins on the permeability of the luminal membrane of Manduca sexta midgut columnar epithelial cells is strongly influenced by several biophysical and biochemical factors, including pH, ionic strength, and divalent cations, suggesting an important role for electrostatic interactions. The influence of these factors can differ greatly, however, depending on the toxin being studied, even for closely related toxins such as Cry1Ac and Cry1Ca. In the present study, the possibility of using temperature changes as a tool for controlling the rate and extent of pore formation in midgut brush border membrane vesicles was evaluated. Lowering temperature gradually decreased the rate of pore formation, but had little effect on the permeability of vesicles previously incubated with toxin at room temperature. The formation of new pores, following incubation of the vesicles with toxin, could thus be almost abolished by rapidly cooling the vesicles to 2 degrees C. Using this approach, changes in the rate of pore formation could be more easily distinguished from alterations in the properties of the pores formed, thus allowing a more detailed analysis of the kinetics and mechanism of pore formation.  相似文献   

5.
A potential-sensitive fluorescent probe, 3,3-dipropylthiadicarbocyanine iodide, was used to analyze, at pH 7.5 and 10.5, the effects of Bacillus thuringiensis toxins on the membrane potential generated by the efflux of K+ ions from brush border membrane vesicles purified from the midgut of the tobacco hornworm, Manduca sexta. Fluorescence levels were strongly influenced by the pH and ionic strength of the media. Therefore, characterization of the effects of the toxins was conducted at constant pH and ionic strength. Under these conditions, the toxins had little effect on the fluorescence levels measured in the presence or absence of ionic gradients, indicating that the ionic selectivity of their pores is similar to that of the intact membrane. Valinomycin greatly increased the potential generated by the diffusion of K+ ions although membrane permeability to the other ions used to maintain the ionic strength constant also influenced fluorescence levels. In the presence of valinomycin, active toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1C and Cry1E) efficiently depolarized the membrane at pH 7.5 and 10.5.  相似文献   

6.
To investigate whether membrane proteases are involved in the activity of Bacillus thuringiensis insecticidal toxins, the rate of pore formation by trypsin-activated Cry1Aa was monitored in the presence of a variety of protease inhibitors with Manduca sexta midgut brush border membrane vesicles and by a light-scattering assay. Most of the inhibitors tested had no effect on the pore-forming ability of the toxin. However, phenylmethylsulfonyl fluoride, a serine protease inhibitor, promoted pore formation, although this stimulation only occurred at higher inhibitor concentrations than those commonly used to inhibit proteases. Among the metalloprotease inhibitors, o-phenanthroline had no significant effect; EDTA and EGTA reduced the rate of pore formation at pH 10.5, but only EDTA was inhibitory at pH 7.5. Neither chelator affected the properties of the pores already formed after incubation of the vesicles with the toxin. Taken together, these results indicate that, once activated, Cry1Aa is completely functional and does not require further proteolysis. The effect of EDTA and EGTA is probably better explained by their ability to chelate divalent cations that could be necessary for the stability of the toxin's receptors or involved elsewhere in the mechanism of pore formation.  相似文献   

7.
Bacillus thuringiensis Cry toxins form pores in the apical membrane of insect larval midgut cells. To investigate their mechanism of membrane insertion, mutants in which cysteine replaced individual amino acids located within the pore-forming domain of Cry1Aa were chemically modified with sulfhydryl-specific reagents. The thiol group of cysteine was highly susceptible to oxidation and its reactivity was significantly increased when the toxins were purified under reducing conditions. Addition of a biotin group to the cysteine had little effect on the ability of the toxins to permeabilize Manduca sexta brush border membrane vesicles except for a slight reduction in activity for S252C and a large increase in activity for Y153C. The activity of Y153C was also significantly increased after modification by reagents that added an aromatic or a charged group to the cysteine. When permeability assays were performed in the presence of streptavidin, a large biotin-binding protein, the pore-forming activity of several mutants, including Y153C, where the altered residue is located within the hairpin comprising helices α4 and α5, or in adjacent loops, was significantly reduced. These results support the umbrella model of toxin insertion.  相似文献   

8.
Cry1Ia and Cry1Aa proteins exhibited toxicities against Prays oleae with LC50 of 189 and 116 ng/cm2, respectively. The ability to process Cry1Ia11 protoxin by trypsin, chymotrypsin and P. oleae larvae proteases was studied and compared to that of Cry1Aa11. After solubilization under high alkaline condition (50 mM NaOH), Cry1Aa11 was converted into a major fragment of 65 kDa, whereas Cry1Ia11 protoxin was completely degraded by P. oleae larvae proteases and trypsin and converted into a major fragment of 70 kDa by chymotrypsin. Using less proteases of P. oleae juice, the degradation of Cry1Ia11 was attenuated. When the solubilization (in 50 mM Na2CO3 pH 10.5 buffer) and activation were combined, Cry1Ia11 was converted into a proteolytic product of 70 kDa after 3 h of incubation with trypsin, chymotrypsin and P. oleae juice. These results suggest that the in vivo solubilization of Cry1Ia11 was assured by larval proteases after a swelling of the corresponding inclusion due to the alkalinity of the larval midgut.  相似文献   

9.
10.
After binding to specific receptors, Cry toxins form pores in the midgut apical membrane of susceptible insects. The receptors could form part of the pore structure or simply catalyze pore formation and consequently be recycled. To discriminate between these possibilities, the kinetics of pore formation in brush border membrane vesicles isolated from Manduca sexta was studied with an osmotic swelling assay. Pore formation, as deduced from changes in membrane permeability induced by Cry1Ac during a 60-min incubation period, was strongly dose-dependent, but rapidly reached a maximum as toxin concentration was increased. Following exposure of the vesicles to the toxin, the osmotic swelling rate reached a maximum shortly after a delay period. Under these conditions, at relatively high toxin concentrations, the maximal osmotic swelling rate increased linearly with toxin concentration. When vesicles were incubated for a short time with the toxin and then rapidly cooled to prevent the formation of new pores before and during the osmotic swelling experiment, a plateau in the rate of pore formation was observed as toxin concentration was increased. Taken together, these results suggest that the receptors do not act as simple catalysts of pore formation, but remain associated with the pores once they are formed.  相似文献   

11.
The effect of pH on the pore-forming ability of two Bacillus thuringiensis toxins, Cry1Ac and Cry1C, was examined with midgut brush border membrane vesicles isolated from the tobacco hornworm, Manduca sexta, and a light-scattering assay. In the presence of Cry1Ac, membrane permeability remained high over the entire pH range tested (6.5 to 10.5) for KCl and tetramethylammonium chloride, but was much lower at pH 6.5 than at higher pHs for potassium gluconate, sucrose, and raffinose. On the other hand, the Cry1C-induced permeability to all substrates tested was much higher at pH 6.5, 7.5, and 8.5 than at pH 9.5 and 10.5. These results indicate that the pores formed by Cry1Ac are significantly smaller at pH 6.5 than under alkaline conditions, whereas the pore-forming ability of Cry1C decreases sharply above pH 8.5. The reduced activity of Cry1C at high pH correlates well with the fact that its toxicity for M. sexta is considerably weaker than that of Cry1Aa, Cry1Ab, and Cry1Ac. However, Cry1E, despite having a toxicity comparable to that of Cry1C, formed channels as efficiently as the Cry1A toxins at pH 10.5. These results strongly suggest that although pH can influence toxin activity, additional factors also modulate toxin potency in the insect midgut.  相似文献   

12.
ATPase activity of plasma membranes isolated from oat (Avena sativa L. cv. Goodfield) roots was activated by divalent cations (Mg2+ = Mn2+ > Zn2+ > Fe2+ > Ca2+) and further stimulated by KCl and a variety of monovalent salts, both inorganic and organic. The enzyme exhibited greater specificity for cations than anions. The presence of Mg2+ was necessary for KCl stimulation. Ca2+ was ineffective in replacing Mg2+ for activation of plasma membrane ATPase, but it did activate other membrane-bound ATPases. The pH optima for Mg2+ activation and KCl stimulation of the plasma membrane ATPase were 7.5 and 6.5, respectively.  相似文献   

13.
To investigate whether membrane proteases are involved in the activity of Bacillus thuringiensis insecticidal toxins, the rate of pore formation by trypsin-activated Cry1Aa was monitored in the presence of a variety of protease inhibitors with Manduca sexta midgut brush border membrane vesicles and by a light-scattering assay. Most of the inhibitors tested had no effect on the pore-forming ability of the toxin. However, phenylmethylsulfonyl fluoride, a serine protease inhibitor, promoted pore formation, although this stimulation only occurred at higher inhibitor concentrations than those commonly used to inhibit proteases. Among the metalloprotease inhibitors, o-phenanthroline had no significant effect; EDTA and EGTA reduced the rate of pore formation at pH 10.5, but only EDTA was inhibitory at pH 7.5. Neither chelator affected the properties of the pores already formed after incubation of the vesicles with the toxin. Taken together, these results indicate that, once activated, Cry1Aa is completely functional and does not require further proteolysis. The effect of EDTA and EGTA is probably better explained by their ability to chelate divalent cations that could be necessary for the stability of the toxin's receptors or involved elsewhere in the mechanism of pore formation.  相似文献   

14.
Sphingomyelinase (SMase) activity was measured in Entamoeba histolytica particulate and soluble subcellular fractions. The effects on SMase of incubation time, total protein concentration, pH, and several divalent cations were determined. SMase-C and other unidentified esterase activity were detected in soluble and particulate fractions. SMase-C was 94.5-96.0% higher than the unidentified esterase activity. Soluble and insoluble SMase-C specific activities increased with protein dose and incubation time. Soluble and insoluble SMase-C activities were maximum at pH 7.5 and were dependent on Mg2+, Mn2+, or Co2+, and inhibited by Zn2+, Hg2+, Ca2+, and EDTA. SMase-C was active in the pH range of 3-10 and its maximum activity was at pH 7.5. The soluble and insoluble SMases have remarkably similar physicochemical properties, strongly suggesting that E. histolytica has just one isoform of neutral SMase-C that had not been described before and might be essential for E. histolytica metabolism or virulence.  相似文献   

15.
In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+234Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+234Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins.  相似文献   

16.

Background

Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants.

Results

Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein.

Conclusion

Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.  相似文献   

17.
The pore-forming activity of Cry1Ab, Cry1Fa and Cry1Ca toxins and their interaction with leucine transport mediated by the K+/leucine cotransporter were studied in brush border membrane vesicles (BBMVs) isolated from the midgut of Ostrinia nubilalis and Sesamia nonagrioides. In both species, as in other Lepidoptera, leucine uptake by BBMVs can take place in the absence of cations, but it can also be driven by a K+ gradient. Experiments with the voltage-sensitive fluorescent dye 3,3′-diethylthiacarbocyanine iodide proved that Cry1Ab, a Bacillus thuringiensis toxin active in vivo, enhanced the membrane permeability to potassium in O. nubilalis BBMVs. This result is in agreement with similar effects observed in S. nonagrioides BBMV incubated with various Cry1 toxins active in vivo. The effect of the above toxins was tested on the initial rate of 0.1 mM leucine influx. Instead of an increase in leucine influx, a reduction was observed with the Cry1 toxins active in vivo. Cry1Ab and Cry1Fa, but not the inactive toxin Cry1Da, inhibited in a dose-dependent manner leucine uptake both in the absence and in the presence of a K+ gradient, a clear indication that their effect is independent of the channel formed by the toxins and that this effect is exerted directly on the amino acid transport system.  相似文献   

18.
The pore-formation activity of monomeric and oligomeric forms of different Cry1 toxins (from Cry1A to Cry1G) was analyzed by monitoring ionic permeability across Manduca sexta brush border membrane vesicles. The membrane vesicles were isolated from microvilli structures, showing a high enrichment of apical membrane markers and low intrinsic K+ permeability. A fluorometric assay performed with 3,3′-dipropylthiodicarbocyanine fluorescent probe, sensitive to changes in membrane potential, was used. Previously, it was suggested that fluorescence determinations with this dye could be strongly influenced by the pH, osmolarity and ionic strength of the medium. Therefore, we evaluated these parameters in control experiments using the K+-selective ionophore valinomycin. We show here that under specific ionic conditions changes in fluorescence can be correlated with ionic permeability without effects on osmolarity or ionic strength of the medium. It is extremely important to attenuate the background response due to surface membrane potential and the participation of the endogenous permeability of the membrane vesicles. Under these conditions, we analyzed the pore-formation activity induced by monomeric and oligomeric structures of different Cry1 toxins. The Cry1 toxin samples containing oligomeric structures correlated with high pore activity, in contrast to monomeric samples that showed marginal pore-formation activity, supporting the hypothesis that oligomer formation is a necessary step in the mechanism of action of Cry toxins.  相似文献   

19.
The uptake of Ca2+ and Sr2+ by the yeast Saccharomyces cerevisiae is energy dependent, and shows a deviation from simple Michaelis-Menten kinetics. A model is discussed that takes into account the effect of the surface potential and the membrane potential on uptake kinetics.The rate of Ca2+ and Sr2+ uptake is influenced by the cell pH and by the medium pH. The inhibition of uptake at low concentrations of Ca2+ and Sr2+ at low pH may be explained by a decrease of the surface potential.The inhibition of Ca2+ and Sr2+ uptake by monovalent cations is independent of the divalent cation concentration. The inhibition shows saturation kinetics, and the concentration of monovalent cation at which half-maximal inhibition is observed, is equal to the affinity constant of this ion for the monovalent cation transport system. The inhibition of divalent cation uptake by monovalent cations appears to be related to depolarization of the cell membrane.Phosphate exerts a dual effect on uptake of divalent cations: and initial inhibition and a secondary stimulation. The inhibition shows saturation kinetics, and the inhibition constant is equal to the affinity constant of phosphate for its transport mechanism. The secondary stimulation can only partly be explained by a decrease of the cell pH, suggesting interaction of intracellular phosphate, or a phosphorylated compound, with the translocation mechanism.  相似文献   

20.
The pore-forming ability of the Bacillus thuringiensis toxin Cry9Ca, its two single-site mutants R164A and R164K, and the 55-kDa fragment resulting from its proteolytic cleavage at R164 was evaluated under a variety of experimental conditions using an electrophysiological assay. All four toxin preparations depolarized the apical membrane of freshly isolated third-instar Manduca sexta midguts bathing in a solution containing 122 mM KCl at pH 10.5, but the 55-kDa fragment was considerably more active than Cry9Ca and its mutants. The activity of the latter toxins was greatly enhanced, however, when the experiments were conducted in the presence of fifth-instar M. sexta midgut juice. This effect was also observed after midgut juice proteins had been denatured by heating at 95 °C or after inorganic ions and small molecules had been removed from the midgut juice by extensive dialysis. A similar stimulation of toxin activity was also observed when the experiments were carried out in the presence of the lipids extracted from an equivalent volume of midgut juice. Depolarization of the cell membrane was also greatly enhanced, in the absence of midgut juice, by the addition of a cocktail of water-soluble protease inhibitors. These results indicate that, depending on the cleavage site and on the experimental conditions used, further proteolysis of the activated Cry9Ca toxin can either stimulate or be detrimental to its activity and that M. sexta midgut juice probably contains protease inhibitors that could play a major role in the activity of B. thuringiensis toxins in the insect midgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号