首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Molecular Dynamics (MD) simulations were carried out for human acetylcholinesterase (hAChE) and its complex with Axillaridine–A, in order to dynamically explore the active site of the protein and the behaviour of the ligand at the peripheral binding site. Simulation of the enzyme alone showed that the active site of AChE is located at the bottom of a deep and narrow cavity whose surface is lined with rings of aromatic residues while Tyr72 is almost perpendicular to the Trp286, which is responsible for stable π -π interactions. The complexation of AChE with Axillaridine-A, results in the reduction of gorge size due to interaction between the ligand and the active site residues. The gorge size was determined by the distance between the center of mass of Glu81 and Trp286. As far as the geometry of the active site is concerned, the presence of ligand in the active site alters its specific conformation, as revealed by stable hydrogen bondings established between amino acids. With the increasing interaction between ligand and the active amino acids, size of the active site of the complex decreases with respect to time. Axillaridine-A, forms stable π -π interactions with the aromatic ring of Tyr124 that results in inhibition of catalytic activity of the enzyme. This π -π interaction keeps the substrate stable at the edge of the catalytic gorge by inhibiting its catalytic activity. The MD results clearly provide an explanation for the binding pattern of bulky steroidal alkaloids at the active site of AChE.  相似文献   

2.
Insect acetylcholinesterase (AChE), an enzyme whose catalytic site is located at the bottom of a gorge-like structure, hydrolyzes its substrate over a wide range of concentrations (from 2 microm to 300 mm). AChE is activated at low substrate concentrations and inhibited at high substrate concentrations. Several rival kinetic models have been developed to try to describe and explain this behavior. One of these models assumes that activation at low substrate concentrations partly results from an acceleration of deacetylation of the acetylated enzyme. To test this hypothesis, we used a monomethylcarbamoylated enzyme, which is considered equivalent to the acylated form of the enzyme and a non-hydrolyzable substrate analog, 4-oxo-N,N,N-trimethylpentanaminium iodide. It appears that this substrate analog increases the decarbamoylation rate by a factor of 2.2, suggesting that the substrate molecule bound at the activation site (K(d) = 130 +/- 47 microm) accelerates deacetylation. These two kinetic parameters are consistent with our analysis of the hydrolysis of the substrate. The location of the active site was investigated by in vitro mutagenesis. We found that this site is located at the rim of the active site gorge. Thus, substrate positioning at the rim of the gorge slows down the entrance of another substrate molecule into the active site gorge (Marcel, V., Estrada-Mondaca, S., Magné, F., Stojan, J., Klaébé, A., and Fournier, D. (2000) J. Biol. Chem. 275, 11603-11609) and also increases the deacylation step. This results in an acceleration of enzyme turnover.  相似文献   

3.
Pseudouridine synthase 1 (Pus1p) is an enzyme that converts uridine to Pseudouridine (Ψ) in tRNA and other RNAs in eukaryotes. The active site of Pus1p is composed of stretches of amino acids that are highly conserved and it is hypothesized that mutation of select residues would impair the enzyme's ability to catalyze the formation of Ψ. However, most mutagenesis studies have been confined to substitution of the catalytic aspartate, which invariably results in an inactive enzyme in all Ψ synthases tested. To determine the requirements for particular amino acids at certain absolutely conserved positions in Pus1p, three residues (R116, Y173, R267) that correspond to amino acids known to compose the active site of TruA, a bacterial Ψ synthase that is homologous to Pus1p, were mutated in human Pus1p (hPus1p). The effects of those mutations were determined with three different in vitro assays of pseudouridylation and several tRNA substrates. Surprisingly, it was found that each of these components of the hPus1p active site could tolerate certain amino acid substitutions and in fact most mutants exhibited some activity. The most active mutants retained near wild-type activity at positions 27 or 28 in the substrate tRNA, but activity was greatly reduced or absent at other positions in tRNA readily modified by wild-type hPus1p.  相似文献   

4.
Acetylcholinesterase (AChE) is one of the fastest enzymes known, even though the active site is buried inside the protein at the end of a 20-A deep narrow gorge. Among the great variety of crystal structures of this enzyme, both in the absence and presence of various ligands and proteins, the structure of a complex of AChE with the pseudo-irreversible inhibitor Mf268 is of particular interest, as it assists in the proposal of a back door for product clearance from the active site. Binding of Mf268 to AChE results in the carbamoylation of Ser200 and liberation of an eseroline-fragment as the leaving group. The crystal structure of the AChE-Mf268 complex, however, proves that eseroline has escaped from the enzyme, despite the fact that the Ser-bound inhibitor fragment blocks the gorge entrance. The existence of alternative routes other than through the gorge for product clearance has been postulated but is still controversially discussed in the literature, as an experimental proof for such a back door is still missing. We have used Monte Carlo-based molecular docking methods in order to examine possible alternative pathways that could allow eseroline to be released from the protein after being cleaved from the substrate by Ser200. Based on our results, a short channel at the bottom of the gorge seems to be the most probable back-door site, which begins at amino acid Trp84 and ends at the enzyme surface in a cavity close to amino acid Glu445. [Figure: see text].  相似文献   

5.
The active site of acetylcholinesterase (AChE) from Torpedo californica is located 20 A from the enzyme surface at the bottom of a narrow gorge. To understand the role of this gorge in the function of AChE, we have studied simulations of its molecular dynamics. When simulations were conducted with pure water filling the gorge, residues in the vicinity of the active site deviated quickly and markedly from the crystal structure. Further study of the original crystallographic data suggests that a bis-quaternary decamethonium (DECA) ion, acquired during enzyme purification, residues in the gorge. There is additional electron density within the gorge that may represent small bound cations. When DECA and 2 cations are placed within the gorge, the simulation and the crystal structure are dramatically reconciled. The small cations, more so than DECA, appear to stabilize part of the gorge wall through electrostatic interactions. This part of the gorge wall is relatively thin and may regulate substrate, product, and water movement through the active site.  相似文献   

6.
We recently reported on a non-neuronal secreted acetylcholinesterase (AChE B) from the nematode parasite Nippostrongylus brasiliensis. Here we describe the primary structure and enzymatic properties of a second secreted variant, termed AChE C after the designation of native AChE isoforms from this parasite. As for the former enzyme, AChE C is truncated at the carboxyl terminus in comparison with the Torpedo AChE, and three of the 14 aromatic residues that line the active site gorge are substituted by nonaromatic residues, corresponding to Tyr70 (Ser), Trp279 (Asn) and Phe288 (Met). A recombinant form of AChE C was highly expressed by Pichia pastoris. The enzyme was monomeric and hydrophilic, and displayed a marked preference for acetylthiocholine as substrate. A double mutation (W302F/W345F, corresponding to positions 290 and 331 in Torpedo) rendered the enzyme 10-fold less sensitive to excess substrate inhibition and two times less susceptible to the bis quaternary inhibitor BW284C51, but did not radically affect substrate specificity or sensitivity to the 'peripheral site' inhibitor propidium iodide. In contrast, a triple mutant (M300G/W302F/W345F) efficiently hydrolysed propionylthiocholine and butyrylthiocholine in addition to acetylthiocholine, while remaining insensitive to the butyrylcholinesterase-specific inhibitor iso-OMPA and displaying a similar profile of excess substrate inhibition as the double mutant. These data highlight a conserved pattern of active site architecture for nematode secreted AChEs characterized to date, and provide an explanation for the substrate specificity that might otherwise appear inconsistent with the primary structure in comparison to other invertebrate AChEs.  相似文献   

7.
Fasciculin 2 (Fas2), a three-fingered peptide of 61 amino acids, binds tightly to the peripheral site of acetylcholinesterases (AChE; EC ), occluding the entry portal into the active center gorge of the enzyme and inhibiting its catalytic activity. We investigated the mechanism of Fas2 inhibition by studying hydrolysis of cationic and neutral substrates and by determining the kinetics of interaction for fast equilibrating cationic and neutral reversible inhibitors with the AChE.Fas2 complex and free AChE. Catalytic parameters, derived by eliminating residual Fas2-resistant activity, reveal that Fas2 reduces k(cat)/K(m) up to 10(6)-fold for cationic substrates and less than 10(3)-fold for neutral substrates. Rate constants for association of reversible inhibitors with the active center of the AChE.Fas2 complex were reduced about 10(4)-fold for both cationic and neutral inhibitors, while dissociation rate constants were reduced 10(2)-to 10(3)-fold, compared with AChE alone. Rates of ligand association with both AChE and AChE.Fas2 complex were dependent on the protonation state of ionizable ligands but were also markedly reduced by protonation of enzyme residue(s) with pK(a) of 6.1-6.2. Linear free energy relationships between the equilibrium constant and the kinetic constants show that Fas2, presumably through an allosteric influence, markedly alters the position of the transition state in the reaction pathway. Since Fas2 complexation introduces an energetic barrier for hydrolysis of substrates that exceeds that found for association of reversible ligands, Fas2 influences catalytic parameters by a more complex mechanism than simple restriction of diffusional entry and exit from the active center. Conformational flexibility appears critical for facilitating ligand passage in the narrow active center gorge for both AChE and the AChE.Fas2 complex.  相似文献   

8.
Site-directed mutagenesis was used to generate mutants of recombinant mouse dihydrofolate reductase to test the role of some amino acids in the binding of two inhibitors, methotrexate and trimethoprim. Eleven mutations changing eight amino acids at positions all involved in hydrogen bonding or hydrophobic interactions with dihydrofolate or one of the two inhibitors were tested. Nine mutants were obtained by site-directed mutagenesis and two were spontaneous mutants previously obtained by in vivo selection (Grange, T., Kunst, F., Thillet, J., Ribadeau-Dumas, B., Mousseron, S., Hung, A., Jami, J., and Pictet, R. (1984) Nucleic Acids Res. 12, 3585-3601). The choice of the mutated positions was based on the knowledge of the active site of chicken dihydrofolate reductase established by x-ray crystallographic studies since the sequences of all known eucaryotic dihydrofolate reductases are greatly conserved. Enzymes were produced in great amounts and purified using a plasmid expressing the mouse cDNA into a dihydrofolate reductase-deficient Escherichia coli strain. The functional properties of recombinant mouse dihydrofolate reductase purified from bacterial extracts were identical to those of dihydrofolate reductase isolated from eucaryotic cells. The Km(NADPH) values for all the mutants except one (Leu-22----Arg) were only slightly modified, suggesting that the mutations had only minor effects on the ternary conformation of the enzyme. In contrast, all Km(H2folate) values were increased, since the mutations were located in the dihydrofolate binding site. The catalytic activity was also modified for five mutants with, respectively, a 6-, 10-, 36-, and 60-fold decrease of Vmax for Phe-31----Arg, Ile-7----Ser, Trp 24----Arg and Leu-22----Arg mutants and a 2-fold increase for Val-115----Pro. All the mutations affected the binding of methotrexate and six, the binding of trimethoprim: Ile-7----Ser, Leu-22----Arg, Trp-24----Arg, Phe-31----Arg, Gln-35----Pro and Phe-34----Leu. The relative variation of Ki for methotrexate and trimethoprim were not comparable from one mutant to the next, reflecting the different binding modes of the two inhibitors. The mutations which yielded the greatest increases in Ki are those which involved amino acids making hydrophobic contacts with the inhibitor.  相似文献   

9.
A novel indigo-producing oxygenase gene, designated ipoA (1,197 bp) was characterized from Rhodococcus sp. strain T104. Three indigo-negative mutations (A58V, P59L, and G251D) were obtained through random mutagenesis using an E. coli mutator strain. Subsequent saturation mutagenesis resulted in the identification of nine and three amino acid substitutions that restore activity in the A58V and P59L mutants, respectively. Activity was not restored in the G251D mutation by any other amino acids. Interestingly, activity in the A58V mutant, where a methyl group is only replaced by an isopropyl side chain, is restored by a variety of amino acids, including polar ones. A molecular modeling study suggests that the residues at positions 58, 59, and 251 of the T104 IpoA enzyme are far from the active site, indicating that the mutations must alter the overall structure of the enzyme.  相似文献   

10.
The acetylcholinesterase (AChE) active site consists of a narrow gorge with two separate ligand binding sites: an acylation site (or A-site) at the bottom of the gorge where substrate hydrolysis occurs and a peripheral site (or P-site) at the gorge mouth. AChE is inactivated by organophosphates as they pass through the P-site and phosphorylate the catalytic serine in the A-site. One strategy to protect against organophosphate inactivation is to design cyclic ligands that will bind specifically to the P-site and block the passage of organophosphates but not acetylcholine. To accelerate the process of identifying cyclic compounds with high affinity for the AChE P-site, we introduced a cysteine residue near the rim of the P-site by site-specific mutagenesis to generate recombinant human H287C AChE. Compounds were synthesized with a highly reactive methanethiosulfonyl substituent and linked to this cysteine through a disulfide bond. The advantages of this tethering were demonstrated with H287C AChE modified with six compounds, consisting of cationic trialkylammonium, acridinium, and tacrine ligands with tethers of varying length. Modification by ligands with short tethers had little effect on catalytic properties, but longer tethering resulted in shifts in substrate hydrolysis profiles and reduced affinity for acridinium affinity resin. Molecular modeling calculations indicated that cationic ligands with tethers of intermediate length bound to the P-site, whereas those with long tethers reached the A-site. These binding locations were confirmed experimentally by measuring competitive inhibition constants KI2 for propidium and tacrine, inhibitors specific for the P- and A-sites, respectively. Values of KI2 for propidium increased 30- to 100-fold when ligands had either intermediate or long tethers. In contrast, the value of KI2 for tacrine increased substantially only when ligands had long tethers. These relative changes in propidium and tacrine affinities thus provided a sensitive molecular ruler for assigning the binding locations of the tethered cations.  相似文献   

11.
Hydrolysis of acetylcholine catalyzed by acetylcholinesterase (AChE), one of the most efficient enzymes in nature, occurs at the base of a deep and narrow active center gorge. At the entrance of the gorge, the peripheral anionic site provides a binding locus for allosteric ligands, including substrates. To date, no structural information on substrate entry to the active center from the peripheral site of AChE or its subsequent egress has been reported. Complementary crystal structures of mouse AChE and an inactive mouse AChE mutant with a substituted catalytic serine (S203A), in various complexes with four substrates (acetylcholine, acetylthiocholine, succinyldicholine, and butyrylthiocholine), two non-hydrolyzable substrate analogues (m-(N,N,N-trimethylammonio)-trifluoroacetophenone and 4-ketoamyltrimethylammonium), and one reaction product (choline) were solved in the 2.05-2.65-A resolution range. These structures, supported by binding and inhibition data obtained on the same complexes, reveal the successive positions and orientations of the substrates bound to the peripheral site and proceeding within the gorge toward the active site, the conformations of the presumed transition state for acylation and the acyl-enzyme intermediate, and the positions and orientations of the dissociating and egressing products. Moreover, the structures of the AChE mutant in complexes with acetylthiocholine and succinyldicholine reveal additional substrate binding sites on the enzyme surface, distal to the gorge entry. Hence, we provide a comprehensive set of structural snapshots of the steps leading to the intermediates of catalysis and the potential regulation by substrate binding to various allosteric sites at the enzyme surface.  相似文献   

12.
Methionine-42, distal to the active site of Escherichia coli dihydrofolate reductase, was substituted by site-directed mutagenesis with 14 amino acids (Ala, Cys, Glu, Gln, Gly, His, Ile, Leu, Pro, Ser, Thr, Trp, Tyr, and Val) to elucidate its role in the stability and function of this enzyme. Far-ultraviolet circular dichroism spectra of these mutants showed a distinctive negative peak at around 230 nm beside 220 nm, depending on the hydrophobicity of the amino acids introduced. The fluorescence intensity also increased in an order similar to that of the amino acids. These spectroscopic data suggest that the mutations do not affect the secondary structure, but strongly perturb the exciton coupling between Trp47 and Trp74. The free energy of urea unfolding, deltaG(o)u, increased with increases in the side-chain hydrophobicity in the range 2.96-6.40 kcal x mol(-1), which includes the value for the wild-type enzyme (6.08 kcal x mol(-1)). The steady-state kinetic parameters, Km and kcat, also increased with increases in the side-chain hydrophobicity, with the M42W mutant showing the largest increases in Km (35-fold) and kcat (4.3-fold) compared with the wild-type enzyme. These results demonstrate that site 42 distal to the active site plays an important role in the stability and function of this enzyme, and that the main effect of the mutations is to modify of hydrophobic interactions with the residues surrounding this position.  相似文献   

13.
Nachon F  Stojan J  Fournier D 《The FEBS journal》2008,275(10):2659-2664
To test a product exit differing from the substrate entrance in the active site of acetylcholinesterase (EC 3.1.1.7), we enlarged a channel located at the bottom of the active site gorge in the Drosophila enzyme. Mutation of Trp83 to Ala or Glu widens the channel from 5 A to 9 A. The kinetics of substrate hydrolysis and the effect of ligands that close the main entrance suggest that the mutations facilitate both product exit and substrate entrance. Thus, in the wild-type, the channel is so narrow that the 'back door' is used by at most 5% of the traffic, with the majority of traffic passing through the main entrance. In mutants Trp83Ala and Trp83Glu, ligands that close the main entrance do not inhibit substrate hydrolysis because the traffic can pass via an alternative route, presumably the enlarged back channel.  相似文献   

14.
15.
Variants of the Thermoascus aurantiacus Eg1 enzyme with higher catalytic efficiency than wild-type were obtained via site-directed mutagenesis. Using a rational mutagenesis approach based on structural bioinformatics and evolutionary analysis, two positions (F16S and Y95F) were identified as priority sites for mutagenesis. The mutant and parent enzymes were expressed and secreted from Pichia pastoris and the single site mutants F16S and Y95F showed 1.7- and 4.0-fold increases in k(cat) and 1.5- and 2.5-fold improvements in hydrolytic activity on cellulosic substrates, respectively, while maintaining thermostability. Similar to the parent enzyme, the two variants were active between pH 4.0 and 8.0 and showed optimal activity at temperature 70°C at pH 5.0. The purified enzymes were active at 50°C for over 12 h and retained at least 80% of initial activity for 2 h at 70°C. In contrast to the improved hydrolysis seen with the single mutation enzymes, no improvement was observed with a third variant carrying a combination of both mutations, which instead showed a 60% reduction in catalytic efficiency. This work further demonstrates that non-catalytic amino acid residues can be engineered to enhance catalytic efficiency in pretreatment enzymes of interest.  相似文献   

16.
We have used random sequence mutagenesis to generate mutants of DNA polymerase β in an effort to identify amino acid residues important for function, catalytic efficiency and fidelity of replication. A library containing 100 000 mutants at residues 274–278 in the N-helix of the thumb subdomain of the polymerase was constructed and screened for polymerase activity by genetic complementation. The genetic screen identified 4000 active pol β mutants, 146 of which were sequenced. Each of the five positions mutagenized tolerated substitutions, but residues G274 and F278 were only found substituted in combination with mutations at other positions. The least conserved residue, D276, was replaced by a variety of amino acids and, therefore, does not appear to be essential for function. Steady-state kinetic analysis, however, demonstrated that D276 may be important for catalytic efficiency. Mutant D276E exhibited a 25-fold increase in catalytic efficiency over the wild-type enzyme but also a 25-fold increase in G:T misincorporation efficiency. We present a structural model that can account for the observations and we discuss the implications of this study for the question of enzyme optimization by natural selection.  相似文献   

17.
台湾家白蚁内切葡聚糖酶活性中心氨基酸的饱和突变   总被引:1,自引:0,他引:1  
对内切葡聚糖酶的功能改进一直是纤维素酶研究领域的焦点。本研究对台湾家白蚁内切葡聚糖酶(CfEG)的活性位点做了饱和突变。首先,以PDB数据库中高山象白蚁内切葡聚糖酶(NtEG)的三维结构(PDB id=1ks8)为模板,对CfEG进行三维结构同源建模,二者序列一致性高达79%。位于CfEG活性中心的D53、D56、E411,分别与NtEG的催化残基D54、D57、E412重合。用简并引物对CfEG的假定活性位点D53、D56、E411进行定点饱和突变。在位点D53、D56各筛选到羧甲基纤维素酶活有一定提高的突变子D53E、D56C,其中D56C的Km值减小为原始酶的三分之一。双突变子D53L/D56I的比活比原始酶提高了近2倍,同时Km值减小至原始酶的一半。而E411的饱和突变子库均没有活性,进一步将其替换为近似氨基酸的E411D、E411Q定点突变子也丧失了酶活。由突变结果可推断,位点E411为该酶行使功能的必需残基。  相似文献   

18.
Amphioxus (Branchiostoma floridae) cholinesterase 2 (ChE2) hydrolyzes acetylthiocholine (AsCh) almost exclusively. We constructed a homology model of ChE2 on the basis of Torpedo californica acetylcholinesterase (AChE) and found that the acyl pocket of the enzyme resembles that of Drosophila melanogaster AChE, which is proposed to be comprised of Phe330 (Phe290 in T. californica AChE) and Phe440 (Val400), rather than Leu328 (Phe288) and Phe330 (Phe290), as in vertebrate AChE. In ChE2, the homologous amino acids are Phe312 (Phe290) and Phe422 (Val400). To determine if these amino acids define the acyl pocket of ChE2 and its substrate specificity, and to obtain information about the hydrophobic subsite, partially comprised of Tyr352 (Phe330) and Phe353 (Phe331), we performed site-directed mutagenesis and in vitro expression. The aliphatic substitution mutant F312I ChE2 hydrolyzes AsCh preferentially but also butyrylthiocholine (BsCh), and the change in substrate specificity is due primarily to an increase in kcat for BsCh; Km and Kss are also altered. F422L and F422V produce enzymes that hydrolyze BsCh and AsCh equally due to an increase in kcat for BsCh and a decrease in kcat for AsCh. Our data suggest that Phe312 and Phe422 define the acyl pocket. We also screened mutants for changes in sensitivity to various inhibitors. Y352A increases the sensitivity of ChE2 to the bulky inhibitor ethopropazine. Y352A decreases inhibition by BW284c51, consistent with its role as part of the choline-binding site. Aliphatic replacement mutations produce enzymes that are more sensitive to inhibition by iso-OMPA, presumably by increasing access to the active site serine. Y352A, F353A and F353V make ChE2 considerably more resistant to inhibition by eserine and neostigmine, suggesting that binding of these aromatic inhibitors is mediated by π–π or cation–π interactions at the hydrophobic site. Our results also provide information about the aromatic trapping of the active site histidine and the inactivation of ChE2 by sulfhydryl reagents.  相似文献   

19.
杨之帆  何光存 《昆虫学报》2006,49(6):1034-1041
利用反转录聚合酶链式反应(RT_PCR)结合快速扩增cDNA末端(RACE)技术克隆了褐飞虱Nilaparvata lugens 乙酰胆碱酯酶基因cDNA。该cDNA全长2 467 bp,包含一个1 938 bp的开放阅读框(GenBank登录号AJ852420); 在推导出的646个氨基酸残基的前体蛋白中, N端的前30个氨基酸残基为信号肽,随后的616个氨基酸残基是成熟的乙酰胆碱酯酶序列,其预测的分子量为69 418 D。在一级结构中,形成催化活性中心的3个氨基酸残基(Ser242,Glu371和His485),以及在亚基内形成二硫键的6个半胱氨酸完全保守; 位于催化功能域的14个芳香族氨基酸中有10 个完全保守。该酶的氨基酸序列与黑尾叶蝉的同源性最高,达83%。对来自23种昆虫(包括褐飞虱)的30个乙酰胆碱酯酶的聚类分析显示,褐飞虱的乙酰胆碱酯酶与其中6个Ⅱ型乙酰胆碱酯酶(AChE2)同属一个支系; 此外,只存在于昆虫AChE2中的超变区及特异的氨基酸残基,也存在于褐飞虱的乙酰胆碱酯酶中。以上结果表明,所克隆的褐飞虱的乙酰胆碱酯酶基因是一个与黑腹果蝇的orthologous型基因同源的AChE2基因。  相似文献   

20.
Fasciculin, a peptidic toxin from snake venom, inhibits mammalian and fish acetylcholinesterases (AChE) by binding to the peripheral site of the enzyme. This site is located at the rim of a narrow, deep gorge which leads to the active center triad, located at its base. The proposed mechanisms for AChE inhibition by fasciculin include allosteric events resulting in altered conformation of the AChE active center gorge. However, a fasciculin-induced altered topography of the active center gorge has not been directly demonstrated. Using electron paramagnetic resonance with the spin-labeled organophosphate 1-oxyl-2,2,6, 6-tetramethyl-4-piperidinylethylphosphorofluoridate (EtOSL) specifically bound to the catalytic serine of mouse AChE (mAChE), we show that bound fasciculin on mAChE slows down, but does not prevent phosphorylation of the active site serine by EtOSL and protects the gorge conformation against thermal denaturation. Most importantly, a restricted freedom of motion of the spin label bound to the fasciculin-associated mAChE, compared to mAChE, is evidenced. Molecular models of mAChE and fasciculin-associated mAChE with tethered EtOSL enantiomers indicate that this restricted motion is due to greater proximity of the S-EtOSL nitroxide radical to the W86 residue in the fasciculin-associated enzyme. Our results demonstrate a topographical alteration indicative of a restricted conformation of the active center gorge of mAChE with bound fasciculin at its rim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号