首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The main neurotoxic components, toxins Hydrophis ornatus a and Hydrophis lapemoides a, were isolated from the venoms of the sea snakes Hydrophis ornatus and Hydrophis lapemoides respectively. The amino acid sequence of toxin Hydrophis ornatus a was deduced to be identical with that of toxin Astrotia stokesii a [Maeda & Tamiya (1978) Biochem. J. 175, 507-517] on the basis of identity of the tryptic peptide 'map' and the amino acid composition of each peptide. The amino acid sequence of toxin Hydrophis lapemoides a was determined mainly on the basis of identity of the amino acid compositions, mobilities on paper electrophoresis and migration positions on paper chromatography of the tryptic peptides with those of other sea-snake toxins whose sequences are known. Both toxins Hydrophis ornatus a and Hydrophis lapemoides a consisted of 60 amino acid residues and there were six amino acid replacements between them. The taxonomy of sea snakes in the Hydrophis ornatus complex has long been confused, and the above snakes were originally assigned to taxa that proved to be inconsistent with the relationships indicated by the neurotoxin amino acid sequences obtained. A subsequent re-examination of the specimens revealed an error in the original identifications and demonstrated the value of the protein amino acid sequences in systematic and phylogenetic studies. The isolation procedure and results of amino acid analysis of the tryptic peptides have been deposited as Supplementary Publication SUP 50121 (8 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1983) 209, 5.  相似文献   

2.
From the venom of a population of the sea snake Laticauda colubrina from the Solomon Islands, a neurotoxic component, Laticauda colubrina a (toxin Lc a), was isolated in 16.6% (A280) yield. Similarly, from the venom of a population of L. colubrina from the Philippines, a neurotoxic component, Laticauda colubrina b (toxin Lc b), was obtained in 10.0% (A280) yield. The LD50 values of these toxins were 0.12 microgram/g body wt. on intramuscular injection in mice. Toxins Lc a and Lc b were each composed of molecules containing 69 amino acid residues with eight half-cystine residues. The complete amino acid sequences of these two toxins were elucidated. Toxins Lc a and Lc b are different from each other at five positions of their sequences, namely at positions 31 (Phe/Ser), 32 (Leu/Ile), 33 (Lys/Arg), 50 (Pro/Arg) and 53 (Asp/His) (residues in parentheses give the residues in toxins Lc a and Lc b respectively). Toxins Lc a and Lc b have a novel structure in that they have only four disulphide bridges, although the whole amino acid sequences are homologous to those of other known long-chain neurotoxins. It is remarkable that toxins Lc a and Lc b are not coexistent at the detection error of 6% of the other toxin. Populations of Laticauda colubrina from the Solomon Islands and from the Philippines have either toxin Lc a or toxin Lc b and not both of them.  相似文献   

3.
The 270-MHz proton NMR spectra of the unique long neurotoxins bearing Phe-25, Astrotia stokesii b (As b) and Astrotia stokesii c (As c) from Astrotia stokesii, and Acanthophis antarcticus b (Aa b) from Acanthophis antarcticus, have been analyzed. The aromatic proton resonances of Phe-25 in As b and Aa b were assigned on the basis of the nuclear Overhauser effects observed on irradiation of slowly exchanging amide protons. Phe-25 was found to be involved in hydrophobic interactions with Ile/Val-42, Ala-46 and Ile-58 in As b and As c, and with Ala-46 and Val-58 in Aa b. These hydrophobic interactions, instead of the hydrogen bond between Tyr-25 and Glu-42 found in other neurotoxins, appear to be important for maintenance of the biologically active tertiary structure. The pH dependency of the chemical shift and intensity of the Trp-72 N-1 proton resonance of As b indicates that the indole ring is not fully exposed to the solvent and that the extra tail segment of this long neurotoxin interacts with the main part of the molecule.  相似文献   

4.
The venom of an Australian elapid snake, the common death adder (Acanthophis antarcticus), was chromatographed on a CM-cellulose CM52 column. One of the neurotoxic components, Acanthophis antarcticus b (toxin Aa b) was isolated in about 9.4% (A280) yield. The complete amino acid sequence of toxin Aa b was elucidated. Toxin Aa b is composed of 73 amino acid residues, with ten half-cystine residues, and has a formula weight of 8135. Toxin Aa b has no histidine or methionine residue in its sequence. The amino acid sequence of toxin Aa b is homologous with those of other neurotoxins with known sequences, although it is novel in having a valine residue at its N-terminus and an arginine residue at position-23, where a lysine residue is found in almost all the so-far-known neurotoxins. Irrespective of the latter replacement, the toxin Aa b is fully active, with an LD50 value (in mice) of 0.13 microgram/g body weight on intramuscular injection.  相似文献   

5.
The amino acid sequence of a short-chain neurotoxin Acanthophis antarcticus c (toxin Aa c) from the venom of an Australian elapid snake, the common death adder (Acanthophis antarcticus, subfamily Acanthophiinae) was elucidated. Toxin Aa c is composed of 62 amino acid residues, including eight half-cystine residues and a cysteine residue. The amino acid sequence of toxin Aa c is homologous with those of other short-chain neurotoxins found in snakes of the family Elapidae, especially with those from snakes of the subfamily Hydrophiinae. The single cysteine residue was located in position 4. Toxin Aa c has a lethal dose (LD50) of 0.08 micrograms/g body weight of mouse on intramuscular injection.  相似文献   

6.
Snake venom is an abundant resource of diverse pharmacologically bioactive proteins and peptides and a good natural source of drug lead compounds and used as important research tools in the field of toxicology, pharmacology and neuroscience. Three finger toxins (3FTx) is an important super-family of snake venom proteins which has a conserved three finger like appearance in three dimensional structures. Members of 3FTx family show a wide array of pharmacological effects by targeting different receptors and ion channels with high specificity and many of them are being investigated as potential drug target. Therefore, with a vision to verdict a new edge and attempt we determined the amino acid compositional (%) profile, physiochemical properties, secondary structural and functional analysis and phylogenetic relationship of three finger toxins present in four different elapid snake species namely, Naja naja, Astrotia stokesii, Hydrophis cyanocintus and Pelamis platura using different bioinformatics tools. From the outcome of the current studies, it will be possible to know about a range of biological functions which are responsible mainly for the glowing amino acid composition profile of these proteins. Amino acid composition (%) profile although represents differential amount of different amino acid residues which encompasses a family precise model but all the protein sequence have a conserved amount of cysteine. The analysis of physicochemical properties can be used as a basic approach to contribute in developing rational drug through protein engineering and understanding different physiological function which will be beneficial for the welfare of human being.  相似文献   

7.
Pa ID, a long-chain neurotoxin homologue, was isolated from the venom of an Australian elapid snake, Pseudechis australis, and its amino acid sequence was determined by conventional methods. Pa ID was an acidic protein (pI = 6.2) and consisted of 68 amino acid residues. It did not show binding activity to the acetylcholine receptor of an electric ray (Narke japonica) nor lethal effect on mice, though the amino acid sequence is homologous with those of long-chain neurotoxins isolated from other elapid snakes (homology, 39-51%). In the sequence of Pa ID, a structurally invariant residue (Tyr-22) and two functionally invariant residues (Val/Ala-49 and Lys/Arg-50) in snake venom neurotoxins are replaced by a cysteine, an arginine, and a methionine residue, respectively, and furthermore, four common residues in long-chain neurotoxins, Gly-17, Ala-43, Ser-59, and Phe/His-66 are replaced by a glutamic acid, a threonine, a threonine, and a valine residue, respectively. The conformational change of the protein molecule caused by these replacements and the removal of a positive charge at position 50 are probably the reasons why Pa ID has lost the lethality.  相似文献   

8.
Aipysurus laevis venom was chromatographed on CM-cellulose and Bio-Rex 70 columns. Three neurotoxic components, toxins Aipysurus laevis a, b and c, were isolated. The toxins a, b and c corresponded to 22, 33 and 21% respectively of the proteins in the original venom, and accounted for almost all the lethal activity of the venom. The three toxins a, b and c were monodisperse on disc electrophoresis at pH4; toxins a and b moved at the same velocity and c a little faster. They were monodisperse also on sodium dodecyl sulphate-polyacrylamide-disc-gel electrophoresis, giving a molecular weight of 7600. The molecular weight of toxin b estimated by gel filtration was 7000. The amino acid sequence analyses of these toxins revealed that they consisted of 60 amino acid residues and that Aipysurus laevis b was [25-methionine, 28-arginine] Aipysurus laevis a. Aipysurus laevis c was [28-lysine] Aipysurus laevis a, the tryptic peptide sequence relying on homology. The LD50 values of these toxins for 20g mice were 0.076 mug/g body wt. They inhibited the acetylcholine-induced contracture but did not affect the CKl-induced contracture of the isolated muscle.  相似文献   

9.
Snake toxin secondary structure predictions. Structure activity relationships   总被引:12,自引:0,他引:12  
Modified Chou &; Fasman (1974a,b) secondary structure prediction rules have been successfully applied to the 57 snake venom toxins described as being neurotoxic or cytotoxic. Despite the different toxicities involved, a common distribution of secondary structure was detected throughout these toxins. The results also highlight the contrasts between short and long neurotoxins, and neurotoxins and cytotoxins. From comparisons of the typical structure of each toxin group with the known X-ray data an erabutoxin b and Philippines sea-snake toxin b, regions that dictate neurotoxicity or cytotoxicity can be tentatively identified. These deductions are discussed with regard to known chemical properties of these molecules. Similarly, the relevance of the differences between short and long neurotoxins to the superior binding of the latter to the cholinergic receptor is considered.It appears that the cytotoxins and neurotoxins are variations on a central toxic theme, but have differing specificities, whose origin can be traced to certain regions of the toxin in question.  相似文献   

10.
1. The toxic principles in the venom of the sea-snake Laticauda semifasciata were separated into two components by CM-cellulose chromatography and obtained in crystalline forms. They were named ;erabutoxins a and b'. 2. The homogeneity of each toxin was shown by rechromatography, by disk electrophoresis, by ultracentrifuging, by toxicity measurements before and after repeated crystallizations and by N-terminal analysis. 3. They had molecular weights of about 7000. Both of them contained 61 (or 62) amino acid residues/molecule. The only difference between erabutoxins a and b was that one of the aspartic acid (or asparagine) residues in erabutoxin a was replaced by a histidine residue in erabutoxin b. 4. Both of the toxins had LD(50) values of 0.15mug./g. body wt. for mice and 0.07mug./g. for rats. It was shown with frog-muscle preparations that they acted on postsynaptic membrane to block neuromuscular transmission.  相似文献   

11.
Two novel postsynaptic neurotoxins (-neurotoxins) isolated and purified from the Taiwan cobra venom (Naja naja atra) possess distinct primary sequences and different neurotoxicities as compared with the most abundant and lethal component in the venom, i.e., cobrotoxin characterized before from the same venom. The complete sequences of two neurotoxin analogues were determined by N-terminal Edman degradation and comparison of amino acid compositions of proteolytic toxin fragments with other homologous toxins of known sequences. The short-chain neurotoxin consists of 61 amino acid residues with eight conserved cysteine residues and is found to show 78% sequence identity with cobrotoxin. The other toxin, consisting of 65 residues with ten cysteines, belongs to the family of long-chain neurotoxins. It is the first long-chain -neurotoxin reported from the Taiwan cobra. The lethal toxicities of these two novel neurotoxins were much lower than cobrotoxin, albeit with close structural homology among the three toxins in terms of their primary sequences and tertiary structure predicted by homology modeling. Multiple sequence alignment and comparison coupled with construction of a phylogenetic tree for various -neurotoxins of Naja and closely related genuses have established that all nicotinic -neurotoxins present in the snake family of Elapidae are closely related to each other, presumably derived from an ancestral polypeptide by gene duplication and subsequent multiple mutational substitutions.  相似文献   

12.
Four polypeptide neurotoxins, possessing paralytic activity for mice, were isolated from the venom of the Central Asian black scorpion Orthochirus scrobiculosus. All these toxins, Os-1 - Os-4, were shown to be homogeneous by disc-electrophoresis and N-terminal group analyses. The amino acid composition of the toxins was determined, methionine residues being found in toxin Os-1. The neurotoxin Os-3 was subjected to tryptic and chymotryptic hydrolyses and its total amino acid sequence was established. It was shown that neurotoxin Os-3 consists of 67 amino acid residues with four intramolecular disulfide bonds.  相似文献   

13.
Erabutoxins a and b, the major neurotoxins in the venom of the sea snake Laticauda semifasciata, were detected in the venom of Laticauda schistorhynchus. The identity of the toxins was confirmed on the basis of elution position on CM-cellulose column chromatography, disc electrophoretic mobility, amino acid analysis and toxicity measurement.  相似文献   

14.
Two lethal proteins, which specifically bind to the nAChR from Torpedo californica, were isolated from the venom of Pseudonaja textilis, the common brown snake from Australia. The isolated proteins have masses of 6236 and 6345 Da and are structurally related to short-chain neurotoxins from other elapids. Six cDNAs encoding isoforms of related neurotoxins were cloned using the RT-PCR of the venom gland mRNAs. The sequences of the corresponding proteins consist of 57-58 amino acid residues and display several unique features when compared with all known short-chain neurotoxins. Accordingly, they grouped separately in phylogenetic analysis. The six cDNAs were expressed in Escherichia coli and the recombinant proteins were characterized. They have similar masses and display similar toxicities and binding constants to the nAChR as the native toxins isolated from the venom. Thus, a new group of short-chain postsynaptic neurotoxins from the venom of an Australian elapid has been characterized.  相似文献   

15.
Six minor protein constituents (S4C10-S4C15) have been isolated from the venom of Naja melanoleuca. The complete amino acid sequence of S4C11 has been established and indicates that it is a homologue of the neurotoxins which are found in elapid venoms. The other proteins appear from the amino acid compositions to be homologues of the cyto- or cardiotoxins found in cobra venoms. Protein S4C11 has a low toxicity, failing to kill mice at an intravenous dose of 20 mug/g body weight. The sequence of the first 25 residues out of the total of 65, was determined using the automatic sequenator. The remainder of the sequence was derived with the aid of tryptic and chymotryptic peptides. The sequence showed the unusual feature of having 65 amino acid residues including 10 half-cystine residues.  相似文献   

16.
The amino acid sequences of insect-selective scorpion toxins, purified from the venom of Leiurus quinquestriatus quinquestriatus, have been determined by automatic phenyl isothiocyanate degradation of the S-carboxymethylated proteins and derived proteolytic peptides. The excitatory toxin Lqq IT1 and Lqq IT1' (70 residues) show the shift of one half-cystine from an external position, which is characteristic of anti-mammal toxins, to an internal sequence position. Lqq IT2 (61 residues) displays the half-cystine residue in position 12, common to the sequence of all known anti-mammal toxins; it induces flaccid paralysis on insects but is non-toxic for the mouse. Lqq IT2 structurally defines a new type of anti-insect toxins from scorpion venoms. CD spectra and immunological data are in agreement with this finding.  相似文献   

17.
Li J  Zhang H  Liu J  Xu K 《The Biochemical journal》2006,398(2):233-242
Three-finger toxins are a family of low-molecular-mass toxins (<10 kDa) having very similar three-dimensional structures. In the present study, 19 novel cDNAs coding three-finger toxins were cloned from the venom gland of Ophiophagus hannah (king cobra). Alignment analysis showed that the putative peptides could be divided into six kinds of three-finger toxins: LNTXs (long-chain neurotoxins), short-chain neurotoxins, cardiotoxins (CTXs), weak neurotoxins, muscarinic toxins and a toxin with a free SH group. Furthermore, a phylogenetic tree was established on the basis of the toxin cDNAs and the previously reported similar nucleotide sequences from the same source venom. It indicated that three-finger-toxin genes in O. hannah diverged early in the course of evolution by long- and short-type pathways. Two LNTXs, namely rLNTX1 (recombinant LNTX1) and rLNTX3, were expressed and showed cytolytic activity in addition to their neurotoxic function. By comparing the functional residues, we offer some possible explanations for the differences in their neurotoxic function. Moreover, a plausible elucidation of the additonal cytolytic activity was achieved by hydropathy-profile analysis. This, to our knowledge, is the first observation that recombinant long chain alpha-neurotoxins have a CTX-like cytolytic activity.  相似文献   

18.
蝎短肽链神经毒素研究进展   总被引:2,自引:0,他引:2  
对蝎短肽链神经毒素结构与功能研究进展作了简要的论述,蝎毒中富含短肽链神经毒素,至今已经分离纯化到60多种,它们的大小介于28-41个氨基酸残基之间,分子中含有3-4对二硫键,空间结构紧密,这些毒素可以特异性地与K+,Cl-和Ca2 等离子通道相结合,由于它们对离子通道的选择性,这些毒素在药理学和神经生物学中已经得到了广泛的应用。  相似文献   

19.
蝎长链神经毒素研究进展   总被引:4,自引:0,他引:4  
蝎长链神经毒素由60-76个残基组成,含4对二硫键,主要作用于可兴奋细胞的Na^ 通道,这些毒素的作用方式和选择性各有不同,其中功能相似的毒素,其蛋白质及基因序列也都很相似,所有这些长链毒素的三结构地都采用相似的折叠方式,对这些毒素结构与功能研究的深入,将有利于我们对蝎毒素作用机理的了解,并有可能使其更具有生物防虫害或疾病治疗等实际意义。  相似文献   

20.
Two disulfide-rich, low-molecular mass peptides (approximately 3 kDa and approximately 4 kDa) have been isolated from Buthus sindicus venom using ion-exchange and reverse-phase HPLC. Peptide I has 35 residues with 8 half-cystine residues and is clearly related to four-disulfide core proteins of the neurophysin type and to toxins of other scorpion species (55-63% residue identity). Peptide II, present in low yield, has 28 residues with 6 half-cystine residues and a structure largely dissimilar from that of peptide I and other characterized toxins, although probably still a member of the disulfide core peptide type. Consequently, scorpion venom contains, in addition to toxins characterized before, toxin-like compounds with distant relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号