首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel chromogranin A fragment catestatin (bovine chromogranin A(344-364); RSMRLSFRARGYGFRGPGLQL) is a potent inhibitor of catecholamine release (IC50, approximately 0.2-0.3 microM) by acting as a nicotinic cholinergic antagonist. To define the minimal active region within catestatin, we tested the potencies of synthetic serial three-residue deletion (amino-terminal, carboxyl-terminal, or bidirectional) fragments to inhibit nicotine-stimulated catecholamine secretion from PC12 pheochromocytoma cells. The results revealed that a completely active core sequence of catestatin was constituted by chromogranin A(344-364). Nicotinic cationic signal transduction was affected by catestatin fragments in a manner similar to that for secretion (confirming the functional importance of the amino-terminus). To identify crucial residues within the active core, we tested serial single amino acid truncations or single residue substitutions by alanine on nicotine-induced catecholamine secretion and desensitization. Nicotinic inhibition by the active catestatin core was diminished by even single amino acid deletions. Selective alanine substitution mutagenesis of the active core revealed important roles for Met346, Leu348, Phe350, Arg351, Arg353, Gly354, Tyr355, Phe357, and Arg358 on catecholamine secretion, whereas crucial roles to inhibit desensitization of catecholamine release were noted for Arg344, Met346, Leu348, Ser349, Phe350, Arg353, Gly354, Tyr355, Gly356, and Arg358. We conclude that a small, 15-amino acid core of catestatin (chromogranin A(344-364)) is sufficient to exert the peptide's typical inhibitory effects on nicotinic cholinergic-stimulated catecholamine secretion, signal transduction, and desensitization. These studies refine the biologically active domains of catestatin and suggest that the pharmacophores for inhibition of nicotinic secretion and desensitization may not be identical.  相似文献   

2.
The catecholamine release-inhibitory chromogranin A fragment catestatin (chromogranin A(344-364)) exhibits non-competitive antagonism of nicotinic cholinergic signaling in chromaffin cells. A previous homology model of catestatin's likely structure suggested a mode of interaction of the peptide with the nicotinic receptor, but direct evidence has been lacking. Here we found that [125I]-catestatin binds to the surface of intact PC12 and bovine chromaffin cells with high affinity (K(D)=15.2+/-1.53 nM) and specificity (lack of displacement by another [N-terminal] fragment of chromogranin A). Nicotinic agonist (carbamylcholine) did not displace [125I]-catestatin from chromaffin cells, nor did catestatin displace the nicotinic agonist [3H]-epibatidine; these observations indicate a catestatin binding site separate from the agonist binding pocket on the nicotinic receptor, a finding consistent with catestatin's non-competitive nicotinic mechanism. [125I]-catestatin could be displaced from chromaffin cells by substance P (IC(50) approximately 5 microM), though at far lower potency than displacement by catestatin itself (IC(50) approximately 350-380 nM), suggesting that catestatin and substance P occupy an identical or overlapping non-competitive site on the nicotinic receptor, at different affinities (catestatin > substance P). Small, non-peptide non-competitive nicotinic antagonists (hexamethonium or clonidine) did not diminish [125I]-catestatin binding, suggesting distinct non-competitive binding sites on the nicotinic receptor for peptide and non-peptide antagonists. Similar binding and inhibitory profiles for [125I]-catestatin were observed on chromaffin cells as well as nicotinic receptor-enriched Torpedo membranes. Covalent cross-linking of [125I]-catestatin to Torpedo membranes suggested specific contacts of [125I]-catestatin with the delta, gamma, and beta subunits of the nicotinic receptor, a finding consistent with prior homology modeling of the interaction of catestatin with the extracellular face of the nicotinic heteropentamer. We conclude that catestatin occludes the nicotinic cation pore by interacting with multiple nicotinic subunits at the pore vestibule. Such binding provides a physical explanation for non-competitive antagonism of the peptide at the nicotinic receptor.  相似文献   

3.
The catestatin fragment of chromogranin A is an inhibitor of catecholamine release, but its occurrence in vivo has not yet been verified, nor have its precise cleavage sites been established. Here we found extensive processing of catestatin in chromogranin A, as judged by catestatin radioimmunoassay of size-fractionated chromaffin granules. On mass spectrometry, a major catestatin form was bovine chromogranin A(332-364); identity of the peptide was confirmed by diagnostic Met(346) oxidation. Further analysis revealed two additional forms: bovine chromogranin A(333-364) and A(343-362). Synthetic longer (chromogranin A(332-364)) and shorter (chromogranin A(344-364)) versions of catestatin each inhibited catecholamine release from chromaffin cells, with superior potency for the shorter version (IC(50) approximately 2.01 versus approximately 0.35 microm). Radioimmunoassay demonstrated catestatin release from the regulated secretory pathway in chromaffin cells. Human catestatin was cleaved in pheochromocytoma chromaffin granules, with the major form, human chromogranin A(340-372), bounded by dibasic sites. We conclude that catestatin is cleaved extensively in vivo, and the peptide is released by exocytosis. In chromaffin granules, the major form of catestatin is cleaved at dibasic sites, while smaller carboxyl-terminal forms also occur. Knowledge of cleavage sites of catestatin from chromogranin A may provide a useful starting point in analysis of the relationship between structure and function for this peptide.  相似文献   

4.
Increased arachidonic acid release occurred during activation of catecholamine secretion from cultured bovine adrenal medullary chromaffin cells. The nicotinic agonist 1,1-dimethyl-4- phenylpiperazinium (DMPP) caused an increased release of preincubated [3H]arachidonic acid over a time course which corresponded to the stimulation of catecholamine secretion. Like catecholamine secretion, the DMPP-induced [3H]arachidonic acid release was calcium-dependent and was blocked by the nicotinic antagonist mecamylamine. Depolarization by elevated K+, which induced catecholamine secretion, also stimulated arachidonic acid release. Because arachidonic acid release from cells probably results from phospholipase A2 activity, our findings indicate that phospholipase A2 may be activated in chromaffin cells during secretion.  相似文献   

5.
Bovine adrenal chromaffin cells possess both nicotinic and muscarinic cholinergic receptors, but only nicotinic receptors have heretofore appeared to mediate Ca2+-dependent exocytosis. We have now found that muscarinic receptor stimulation in bovine adrenal chromaffin cells leads to enhanced inositol phospholipid metabolism as evidenced by the rapid (less than 1 min) formation of inositol trisphosphate (IP3) and inositol bisphosphate (IP2). Muscarinic receptor-mediated accumulation of IP3 and IP2 continues beyond 1 min in the presence of LiCl and is accompanied by large increases in inositol monophosphate. Muscarinic receptor stimulation was also found to enhance nicotine-induced catecholamine secretion by 1.7-fold if muscarine was added 30 s before nicotine addition. Moreover, since the muscarinic antagonist atropine reduces acetylcholine-induced secretion, we conclude that muscarinic receptor stimulation somehow primes these cells for nicotinic receptor-mediated secretion, perhaps by causing small nonstimulatory increases in cytosolic free Ca2+ mediated by IP3. Furthermore, we show that small depolarizations of these cells with 10 mM K+, which themselves do not affect basal secretion, also enhance nicotine-induced secretion. Thus, small increases in cytosolic free Ca2+ produced either by physiologic muscarinic receptor stimulation or by small experimental depolarizations with K+ may prime the chromaffin cells for nicotinic receptor-mediated secretion.  相似文献   

6.
7.
Cultured bovine chromaffin cells cosecrete catecholamines and enkephalins following cholinergic nicotinic stimulation. Initial reports on the inhibitory effect of clonidine on catecholamine secretion raised the possibility of a modulation of chromaffin cell function through a presynaptic adrenergic mechanism. The purpose of this work was to investigate the pharmacological characteristics of this inhibitory effect of clonidine on the cosecretion of catecholamines and enkephalins in 4-day-old cultured chromaffin cells. We observed that clonidine completely inhibits nicotine-stimulated secretion of both leucine-enkephalin and catecholamines with an IC50 of 34 microM. Treatment of chromaffin cells for 3 days with 100 nM reserpine leads to a 67% increase in nicotine-stimulated secretion of leucine-enkephalin without any effect on the IC50 of clonidine. In reserpine-treated chromaffin cells, norepinephrine (100 microM) inhibits only by 27% nicotine-stimulated secretion of leucine-enkephalin with an IC50 of 50 microM. Neither the alpha 2-adrenergic antagonist yohimbine nor the alpha 1-adrenergic antagonist prazosin could fully reverse the inhibitory effect of clonidine on leucine-enkephalin secretion at 10 nM. These results tend to rule out the role of alpha-adrenergic receptors in the mediation of clonidine inhibition of cosecretion in chromaffin cells.  相似文献   

8.
9.
Catestatin is an active 21-residue peptide derived from the chromogranin A (CgA) precursor, and catestatin is secreted from neuroendocrine chromaffin cells as an autocrine regulator of nicotine-stimulated catecholamine release. The goal of this study was to characterize the primary sequences of high molecular mass catestatin intermediates and peptides to define the proteolytic cleavage sites within CgA that are utilized in the biosynthesis of catestatin. Catestatin-containing polypeptides, demonstrated by anti-catestatin western blots, of 54-56, 50, 32, and 17 kDa contained NH(2)-terminal peptide sequences that indicated proteolytic cleavages of the CgA precursor at KK downward arrow, KR downward arrow, R downward arrow, and KR downward arrow basic residue sites, respectively. The COOH termini of these catestatin intermediates were defined by the presence of the COOH-terminal tryptic peptide of the CgA precursor, corresponding to residues 421-430, which was identified by MALDI-TOF mass spectrometry. Results also demonstrated the presence of 54-56 and 50 kDa catestatin intermediates that contain the NH(2) terminus of CgA. Secretion of catestatin intermediates from chromaffin cells was accompanied by the cosecretion of catestatin (CgA(344)(-)(364)) and variant peptide forms (CgA(343)(-)(368) and CgA(332)(-)(361)). These determined cleavage sites predicted that production of high molecular mass catestatin intermediates requires cleavage at the COOH-terminal sides of paired basic residues, which is compatible with the cleavage specificities of PC1 and PC2 prohormone convertases. However, it is notable that production of catestatin itself (CgA(344)(-)(364)) utilizes more unusual cleavage sites at the NH(2)-terminal sides of downward arrow R and downward arrow RR basic residue sites, consistent with the cleavage specificities of the chromaffin granule cysteine protease "PTP" that participates in proenkephalin processing. These findings demonstrate that production of catestatin involves cleavage of CgA at paired basic and monobasic residues, necessary steps for catestatin peptide regulation of nicotinic cholinergic-induced catecholamine release.  相似文献   

10.
11.
Adrenal medullary chromaffin cells are a major peripheral output of the sympathetic nervous system. Catecholamine release from these cells is driven by synaptic excitation from the innervating splanchnic nerve. Acetylcholine has long been shown to be the primary transmitter at the splanchnic-chromaffin synapse, acting through ionotropic nicotinic acetylcholine receptors to elicit action potential-dependent secretion from the chromaffin cells. This cholinergic stimulation has been shown to desensitize under sustained stimulation, yet catecholamine release persists under this same condition. Recent evidence supports synaptic chromaffin cell stimulation through alternate transmitters. One candidate is pituitary adenylate cyclase activating peptide (PACAP), a peptide transmitter present in the adrenal medulla shown to have an excitatory effect on chromaffin cell secretion. In this study we utilize native neuronal stimulation of adrenal chromaffin cells in situ and amperometric catecholamine detection to demonstrate that PACAP specifically elicits catecholamine release under elevated splanchnic firing. Further data reveal that the immediate PACAP-evoked stimulation involves a phospholipase C and protein kinase C-dependant pathway to facilitate calcium influx through a Ni2+ and mibefradil-sensitive calcium conductance that results in catecholamine release. These data demonstrate that PACAP acts as a primary secretagogue at the sympatho-adrenal synapse under the stress response.  相似文献   

12.
Besides cholinergic regulation, catecholamine secretion from adrenal chromaffin cells can be elicited and/or modulated by noncholinergic neurotransmitters and hormones. This study was undertaken to investigate the influence of somatostatin and octreotide on [3H]MPP+ secretion evoked by KCl or cholinergic agents, from bovine adrenal chromaffin cells. The release of [3H]MPP+ was markedly increased by excess KCl (50 mM), acetylcholine (50 microM-10 mM) and by the nicotinic agonists, nicotine (5-100 microM) and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP, 10-100 microM), but not by the muscarinic agonist, pilocarpine (10-100 microM). Acetylcholine-evoked release of [3H]MPP+ from these cells was mainly mediated by nicotinic receptors: a) nicotine and DMPP stimulated the release of [3H]MPP+, b) a nicotinic antagonist, hexamethonium, markedly blocked the acetylcholine-evoked response and c) pilocarpine was devoid of effect on [3H]MPP+ secretion. At all concentrations tested, somatostatin and octreotide interfered neither with [3H]MPP+ basal release nor with KCl-induced release of [3H]MPP+. However, somatostatin (0.01-0.3 microM) increased the release of [3H]MPP+ induced by a high concentration of acetylcholine (10 mM). Octreotide (1-10 microM) had no effect. These results, showing that somatostatin potentiates acetylcholine-induced [3H]MPP+ release, support the hypothesis that somatostatin may increase the release of catecholamines from adrenal medullary cells.  相似文献   

13.
The chromogranin/secretogranin proteins are costored and coreleased with catecholamines from secretory vesicles in chromaffin cells and noradrenergic neurons. Chromogranin A (CHGA) regulates catecholamine storage and release through intracellular (vesiculogenic) and extracellular (catecholamine release-inhibitory) mechanisms. CHGA is a candidate gene for autonomic dysfunction syndromes, including intermediate phenotypes that contribute to human hypertension. Here, we show a surprising pattern of CHGA variants that alter the expression and function of this gene, both in vivo and in vitro. Functional variants include both common alleles that quantitatively alter gene expression and rare alleles that qualitatively change the encoded product to alter the signaling potency of CHGA-derived catecholamine release-inhibitory catestatin peptides.  相似文献   

14.
Abstract— Suspensions of isolated adrenal cells were prepared by digesting hamster adrenal glands with collagenase, and the secretion of catecholamine from these cells was studied. Acetylcholine (ACh) produces a dose-dependent increase in catecholamine secretion; half-maximal secretion is produced by 3 μm -ACh, and maximal secretion by 100 μm -ACh. The cholinergic receptor in these cells appears to be nicotinic, since catecholamine secretion is stimulated by the nicotinic agonists nicotine and dimeth-ylphenylpiperaziniurn, but not by the muscarinic agonists pilocarpine or oxotremorine. ACh-induced catecholamine secretion is inhibited by hexamethonium, tubocurarine, and atropine, but is not inhibited by α-bungarotoxin. ACh-induced catecholamine secretion is dependent upon the presence of extracellular Ca2+, and appears to occur by exocytosis, since the release of catecholamine is accompanied by the release of dopamine β-monooxygenase, but not of lactate dehydrogenase. These biochemical studies complement the morphological evidence for exocytosis in hamster adrenal glands, and indicate that catecholamine secretion from hamster chromaffin cells is similar to that from chromaffin cells of other species.  相似文献   

15.
Chromogranin A Synthesis and Secretion in Chromaffin Cells   总被引:3,自引:1,他引:2  
A sensitive and selective radioimmunoassay for chromogranin A (Chrg A) has been developed to quantitate content, release, and biosynthesis of this secretory protein in neuroendocrine tissues. An antiserum raised against Chrg A from bovine adrenal medulla was found to detect predominantly only the Mr 70-75 kilodalton Chrg A in its native form, allowing the use of this antiserum as a quantitatively specific probe for Chrg A in cell-free extracts of the adrenal medulla and chromaffin cells. Chrg A comprises about 10% of the total protein of the chromaffin cell. It is released in parallel with Met-enkephalin and catecholamines from the bovine chromaffin cell in primary culture in response to nicotine and nicotinic cholinergic agonists. From 14 to 22% of total Chrg A is released from the cell during a 15-min exposure to a maximally stimulatory dose of nicotine (10-100 microM). Chrg A release on nicotinic stimulation is blocked by D-600 and hexamethonium to the same extent as Met-enkephalin and catecholamine release. The parallel time course and percent release of Chrg A and Met-enkephalin indicate that these secretory polypeptides are contained in, and released from, functionally identical cellular compartments. Chrg A and Met-enkephalin pentapeptide sequences are present in the chromaffin cell at a ratio of about 2:1, although Chrg A is far more abundant on a mass basis. Chrg A and Met-enkephalin biosynthesis appear to be differentially regulated within the chromaffin cell, since chronic treatment of cells with nicotine and forskolin causes an elevation of Met-enkephalin pentapeptide without a concomitant elevation of intracellular levels of Chrg A.  相似文献   

16.
Catestatin (bovine CgA(344-364)) is a cationic peptide, which besides reducing catecholamine secretion from chromaffin cells in vitro also acts a potent vasodilator in the rat in vivo. The alleged histamine releasing effect of catestatin was tested in vitro in rat mast cells. The most active domain of catestatin (bovine CgA(344-358): RSMRLSFRARGYGFR) caused concentration-dependent (0.01-5 microM) release of histamine from peritoneal and pleural mast cells. The potency and efficacy of catestatin was higher than for the wasp venom peptide, mastoparan. Only in the pleural cells was neurotensin (NT) more potent than catestatin, mastoparan and substance P (SP), consistent with a receptor-mediated histamine release by neurotensin. Amongst these cationic peptides, substance P was least effective. The acidic CgA peptide (WE-14, bovine CgA (324-337)) neither stimulated nor modulated histamine release by the cationic peptides. The catestatin and neurotensin evoked histamine release were suppressed by pertussis toxin (PTX), suggesting involvement of a G(i) subunit. Electron micrographs of rat pleural mast cells responding to catestatin revealed a concentration-dependent discharge of granular material. We propose that catestatin activates histamine release from rat mast cells by a mechanism analogous to that already established for mastoparan and other amphiphilic cationic neuropeptides (the peptidergic pathway) and distinct from the mechanism of inhibition of catecholamine release from chromaffin cells.  相似文献   

17.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

18.
Chromaffin cells were isolated from the posterior cardinal vein of rainbow trout (Oncorhynchus mykiss) to assess their suitability as a model system for studying mechanisms of catecholamine secretion in fish and to evaluate intracellular calcium changes associated with cholinoreceptor stimulation. Immunocytochemistry in concert with fluorescence microscopy was employed to identify characteristic chromaffin cell proteins and thus to confirm the presence of these specific cells in suspensions and cultures. Dopamine-β-hydroxylase, an enzyme of the catecholamine-synthesising Blaschko pathway, was identified in cytoplasmic vesicles of the isolated chromaffin cells. The actin filament-severing protein, scinderin, was co-localized with actin in the sub-plasmalemmal membrane of these chromaffin cells. Intracellular calcium [Ca2+]i was measured in single chromaffin cells by microspectrofluorometry using the fluorescent dye Fura-2. Significant increases in [Ca2+]i were observed in chromaffin cells in response to depolarisation of the cell membrane by high concentrations of K+ or by the stimulation of the cell by the cholinergic receptor agonists, nicotine, acetylcholine or carbachol. The response to the reversible agonist, nicotine, was attenuated following addition of the nicotinic receptor blocker hexamethonium. Such attenuation, however, did not occur when hexamethonium was added after stimulation with the non-specific irreversible cholinergic agonist, carbachol. These results demonstrate the presence of functional cholinoreceptors, linked to intracellular calcium signalling, on isolated trout chromaffin cells and reveal the potential of these cells as a model system for studying aspects of catecholamine secretion in fish.  相似文献   

19.
The current view of stimulation-secretion coupling in adrenal neuroendocrine chromaffin cells holds that catecholamines are released upon transsynaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. However, this traditional vertical scheme would merit to be revisited in the light of recent data. Although electrical discharges invading the splanchnic nerve endings are the major physiological stimulus to trigger catecholamine release in vivo, growing evidence indicates that intercellular chromaffin cell communication mediated by gap junctions represents an additional route by which biological signals (electrical activity, changes in intracellular Ca2+ concentration,…) propagate between adjacent cells and trigger subsequent catecholamine exocytosis. Accordingly, it has been proposed that gap junctional communication efficiently helps synapses to lead chromaffin cell function and, in particular, hormone secretion. The experimental clues supporting this hypothesis are presented and discussed with regards to both interaction with the excitatory cholinergic synaptic transmission and physiopathology of the adrenal medulla.  相似文献   

20.
The effects of temperature on ion fluxes and catecholamine secretion that are mediated by nicotinic acetylcholine receptors (nAChRs), voltage-sensitive calcium channels (VSCCs), and voltage-sensitive sodium channels (VSSCs) were investigated using bovine adrenal chromaffin cells. When the chromaffin cells were stimulated with DMPP, a nicotinic cholinergic agonist, or 50 mM K+, the intracellular calcium ([Ca2+]i) elevation reached a peak and decreased more slowly at lower temperatures. The DMPP-induced responses were more sensitive to temperature changes compared to high K+-induced ones. In the measurement of intracellular sodium concentrations ([Na+]i), it was found that nicotinic stimulation required a longer time to attain the maximal level of [Na+]i at lower temperatures. In addition, the VSSCs-mediated [Na+]i increase evoked by veratridine was also reduced as the temperature decreased. The measurement of [3H]norepinephrine (NE) secretion showed that the secretion within the first 3 min evoked by DMPP or high K+ was greatest at 37 degrees C. However, at 25 degrees C, the secretion evoked by DMPP, but not that by the 50 mM K+, was greater after 10 min of stimulation. This data suggest that temperature differentially affects the activity of nAChRs, VSCCs, and VSSCs, resulting in differential [Na+]i and [Ca2+]i elevation, and in the [3H]NE secretion by adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号