首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283897篇
  免费   29266篇
  国内免费   211篇
  2016年   3198篇
  2015年   4486篇
  2014年   5083篇
  2013年   7752篇
  2012年   8362篇
  2011年   8596篇
  2010年   5664篇
  2009年   5242篇
  2008年   7702篇
  2007年   7831篇
  2006年   7442篇
  2005年   7174篇
  2004年   7040篇
  2003年   6824篇
  2002年   6615篇
  2001年   11916篇
  2000年   11966篇
  1999年   9427篇
  1998年   3364篇
  1997年   3590篇
  1996年   3465篇
  1995年   3190篇
  1994年   3178篇
  1993年   3171篇
  1992年   8030篇
  1991年   7997篇
  1990年   7657篇
  1989年   7612篇
  1988年   6965篇
  1987年   6730篇
  1986年   6133篇
  1985年   6347篇
  1984年   5286篇
  1983年   4475篇
  1982年   3479篇
  1981年   3228篇
  1980年   3009篇
  1979年   5079篇
  1978年   3904篇
  1977年   3815篇
  1976年   3505篇
  1975年   3874篇
  1974年   4263篇
  1973年   4174篇
  1972年   3754篇
  1971年   3494篇
  1970年   3145篇
  1969年   3054篇
  1968年   2789篇
  1967年   2417篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
1.
Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)‐based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single‐cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per‐cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV0.14. The maximum growth rate could be well predicted by a combination of per‐cell ribotype CN and temperature. Our empirical data and modeling on single‐cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance‐based interpretation of quantitative ribotype data in population and community ecology of protists.  相似文献   
2.
3.
There is a diverse range of microbiological challenges facing the food, healthcare and clinical sectors. The increasing and pervasive resistance to broad‐spectrum antibiotics and health‐related concerns with many biocidal agents drives research for novel and complementary antimicrobial approaches. Biofilms display increased mechanical and antimicrobial stability and are the subject of extensive research. Cold plasmas (CP) have rapidly evolved as a technology for microbial decontamination, wound healing and cancer treatment, owing to the chemical and bio‐active radicals generated known collectively as reactive oxygen and nitrogen species. This review outlines the basics of CP technology and discusses the interactions with a range of microbiological targets. Advances in mechanistic insights are presented and applications to food and clinical issues are discussed. The possibility of tailoring CP to control specific microbiological challenges is apparent. This review focuses on microbiological issues in relation to food‐ and healthcare‐associated human infections, the role of CP in their elimination and the current status of plasma mechanisms of action.  相似文献   
4.
Podosphaera leucotricha is the causal agent of powdery mildew (PM) in apple. To reduce the amount of fungicides required to control this pathogen, the development of resistant apple cultivars should become a priority. Resistance to PM was achieved in various crops by knocking out specific members of the MLO gene family that are responsible for PM susceptibility (S-genes). In apple, the knockdown of MdMLO19 resulted in PM resistance. However, since gene silencing technologies such as RNAi are perceived unfavorably in Europe, a different approach that exploits this type of resistance is needed. This work evaluates the presence of non-functional naturally occurring alleles of MdMLO19 in apple germplasm. The screening of the re-sequencing data of 63 apple individuals led to the identification of 627 single nucleotide polymorphisms (SNPs) in five MLO genes (MdMLO5, MdMLO7, MdMLO11, MdMLO18, and MdMLO19), 127 of which were located in exons. The T-1201 insertion of a single nucleotide in MdMLO19 caused the formation of an early stop codon, resulting in a truncated protein lacking 185 amino acids, including the calmodulin-binding domain. The presence of the insertion was evaluated in 115 individuals. It was heterozygous in 64 and homozygous in 25. Twelve of the 25 individuals carrying the insertion in homozygosity were susceptible to PM. After barley, pea, cucumber, and tomato, apple would be the fifth species for which a natural non-functional mlo allele has been found.  相似文献   
5.
Crop improvement is a long-term, expensive institutional endeavor. Genomic selection (GS), which uses single nucleotide polymorphism (SNP) information to estimate genomic breeding values, has proven efficient to increasing genetic gain by accelerating the breeding process in animal breeding programs. As for crop improvement, with few exceptions, GS applicability remains in the evaluation of algorithm performance. In this study, we examined factors related to GS applicability in line development stage for grain yield using a hard red winter wheat (Triticum aestivum L.) doubled-haploid population. The performance of GS was evaluated in two consecutive years to predict grain yield. In general, the semi-parametric reproducing kernel Hilbert space prediction algorithm outperformed parametric genomic best linear unbiased prediction. For both parametric and semi-parametric algorithms, an upward bias in predictability was apparent in within-year cross-validation, suggesting the prerequisite of cross-year validation for a more reliable prediction. Adjusting the training population’s phenotype for genotype by environment effect had a positive impact on GS model’s predictive ability. Possibly due to marker redundancy, a selected subset of SNPs at an absolute pairwise correlation coefficient threshold value of 0.4 produced comparable results and reduced the computational burden of considering the full SNP set. Finally, in the context of an ongoing breeding and selection effort, the present study has provided a measure of confidence based on the deviation of line selection from GS results, supporting the implementation of GS in wheat variety development.  相似文献   
6.
7.
  • Studies on plant electrophysiology are mostly focused on specific traits of single cells. Inspired by the complexity of the signalling network in plants, and by analogy with neurons in human brains, we sought evidence of high complexity in the electrical dynamics of plant signalling and a likely relationship with environmental cues.
  • An EEG‐like standard protocol was adopted for high‐resolution measurements of the electrical signal in Glycine max seedlings. The signals were continuously recorded in the same plants before and after osmotic stimuli with a ?2 MPa mannitol solution. Non‐linear time series analyses methods were used as follows: auto‐correlation and cross‐correlation function, power spectra density function, and complexity of the time series estimated as Approximate Entropy (ApEn).
  • Using Approximate Entropy analysis we found that the level of temporal complexity of the electrical signals was affected by the environmental conditions, decreasing when the plant was subjected to a low osmotic potential. Electrical spikes observed only after stimuli followed a power law distribution, which is indicative of scale invariance.
  • Our results suggest that changes in complexity of the electrical signals could be associated with water stress conditions in plants. We hypothesised that the power law distribution of the spikes could be explained by a self‐organised critical state (SOC) after osmotic stress.
  相似文献   
8.
The application of Gas Chromatography (GC)–Atmospheric Pressure Chemical Ionization (APCI)–Time-of-Flight Mass Spectrometry (TOF-MS) is presented for sterol analysis in human plasma. A commercial APCI interface was modified to ensure a well-defined humidity which is essential for controlled ionization. In the first step, optimization regarding flow rates of auxiliary gases was performed by using a mixture of model analytes. Secondly, the qualitative and quantitative analysis of sterols including oxysterols, cholesterol precursors, and plant sterols as trimethylsilyl-derivatives was successfully carried out. The characteristics of APCI together with the very good mass accuracy of TOF-MS data enable the reliable identification of relevant sterols in complex matrices. Linear calibration lines and plausible results for healthy volunteers and patients could be obtained whereas all mass signals were extracted with an extraction width of 20 ppm from the full mass data set. One advantage of high mass accuracy can be seen in the fact that from one recorded run any search for m/z can be performed.  相似文献   
9.
Wheat is the most important cereal grown in the European Union and Spain is its fifth largest wheat producer. There is little information about Fusarium species associated with wheat in Spain. Phylogenetic diversity of 51 strains belonging to Fusarium incarnatum-equiseti species complex (FIESC) isolated from Spanish wheat was investigated using partial sequences of the translation elongation factor gene (EF-1α). Maximum-parsimony and Bayesian analysis of aligned DNA sequences resolved 18 haplotypes and 7 phylogenetic species. Strains morphologically identified as F. equiseti belonged to two different phylogenetic species, FIESC-5 and FIESC-14. Some correlation between phylogenetic species and geographical region was found. The present results highlight the potential contribution of FIESC to the mycotoxin contamination of Spanish wheat.  相似文献   
10.
Lipid-mimetic metallosurfactant based luminophores are promising candidates for labeling phospholipid membranes without altering their biophysical characteristics. The metallosurfactants studied exhibit high structural and physicochemical similarity to phospholipid molecules, designed to incorporate into the membrane structure without the need for covalent attachment to a lipid molecule. In this work, two lipid-mimetic phosphorescent metal complexes are described: [Ru(bpy)2(dn-bpy)]2 + and [Ir(ppy)2(dn-bpy)]+ where bpy is 2,2′-bipyridine, dn-bpy is 4,4′-dinonyl-2,2′-bipyridine and ppy is 2-phenylpyridine. Apart from being lipid-mimetic in size, shape and physical properties, both complexes exhibit intense photoluminescence and enhanced photostability compared with conventional organic fluorophores, allowing for prolonged observation. Moreover, the large Stokes shift and long luminescence lifetime associated with these complexes make them more suitable for spectroscopic studies. The complexes are easily incorporated into dimyristoil-phosphatidyl-choline (DMPC) liposomes by mixing in the organic solvent phase. DLS reveals the labeled membranes form liposomes of similar size to that of neat DMPC membrane. Synchrotron Small-Angle X-ray Scattering (SAXS) measurements confirmed that up to 5% of either complex could be incorporated into DMPC membranes without producing any structural changes in the membrane. Fluorescence microscopy reveals that 0.5% label content is sufficient for imaging. Atomic Force Microscopic imaging confirms that liposomes of the labeled bilayers on a mica surface can fuse into a flat lamellar membrane that is morphologically identical to neat lipid membranes. These results demonstrate the potential of such lipid-mimetic luminescent metal complexes as a new class of labels for imaging lipid membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号