首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Vibrio parahaemolyticus possesses two alternate flagellar systems adapted for movement under different circumstances. A single polar flagellum propels the bacterium in liquid (swimming), while multiple lateral flagella move the bacterium over surfaces (swarming). Energy to rotate the polar flagellum is derived from the sodium membrane potential, whereas lateral flagella are powered by the proton motive force. Lateral flagella are arranged peritrichously, and the unsheathed filaments are polymerized from a single flagellin. The polar flagellum is synthesized constitutively, but lateral flagella are produced only under conditions in which the polar flagellum is not functional, e.g., on surfaces. This work initiates characterization of the sheathed, polar flagellum. Four genes encoding flagellins were cloned and found to map in two loci. These genes, as well as three genes encoding proteins resembling HAPs (hook-associated proteins), were sequenced. A potential consensus polar flagellar promoter was identified by using upstream sequences from seven polar genes. It resembled the enterobacterial sigma 28 consensus promoter. Three of the four flagellin genes were expressed in Escherichia coli, and expression was dependent on the product of the fliA gene encoding sigma 28. The fourth flagellin gene may be different regulated. It was not expressed in E. coli, and inspection of upstream sequence revealed a potential sigma 54 consensus promoter. Mutants with single and multiple defects in flagellin genes were constructed in order to determine assembly rules for filament polymerization. HAP mutants displayed new phenotypes, which were different from those of Salmonella typhimurium and most probably were the result of the filament being sheathed.  相似文献   

2.
3.
4.
Mesophilic Aeromonas strains express a polar flagellum in all culture conditions, and certain strains produce lateral flagella on semisolid media or on surfaces. Although Aeromonas lateral flagella have been described as a colonization factor, little is known about their organization and expression. Here we characterized the complete lateral flagellar gene cluster of Aeromonas hydrophila AH-3 containing 38 genes, 9 of which (lafA-U) have been reported previously. Among the flgLL and lafA structural genes we found a modification accessory factor gene (maf-5) that is involved in formation of lateral flagella; this is the first time that such a gene has been described for lateral flagellar gene systems. All Aeromonas lateral flagellar genes were located in a unique chromosomal region, in contrast to Vibrio parahaemolyticus, in which the analogous genes are distributed in two different chromosomal regions. In A. hydrophila mutations in flhAL, lafK, fliJL, flgNL, flgEL, and maf-5 resulted in a loss of lateral flagella and reductions in adherence and biofilm formation, but they did not affect polar flagellum synthesis. Furthermore, we also cloned and sequenced the A. hydrophila AH-3 alternative sigma factor sigma54 (rpoN); mutation of this factor suggested that it is involved in expression of both types of flagella.  相似文献   

5.
6.
Two types of flagella are responsible for motility in mesophilic Aeromonas strains. A polar unsheathed flagellum is expressed constitutively that allows the bacterium to swim in liquid environments and, in media where the polar flagellum is unable to propel the cell, Aeromonas express peritrichous lateral flagella. Recently, Southern blot analysis using a DNA probe based on the Aeromonas caviae Sch3N lateral flagellin gene sequence showed a good correlation between strains positive for the DNA probe, swarming motility and the presence of lateral flagella by microscopy. Here, we conclude that the easiest method for the detection of the lateral flagellin gene(s) is by PCR (polymerase chain reaction); this showed good correlation with swarming motility and the presence of lateral flagella. This was despite the high degree of DNA heterogeneity found in Aeromonas gene sequences. Furthermore, by reintroducing the laf (lateral flagella) genes into several mesophilic lateral-flagella-negative Aeromonas wild-type strains, we demonstrate that this surface structure enhances the adhesion to and invasion of HEp-2 cells and the capacity for biofilm formation in vitro. These results, together with previous data obtained using Laf- mutants, demonstrate that lateral flagella production is a pathogenic feature due to its enhancement of the interaction with eukaryotic cell surfaces.  相似文献   

7.
8.
9.
Vibrio parahaemolyticus distinguishes between life in a liquid environment and life on a surface. Growth on a surface induces differentiation from a swimmer cell to a swarmer cell type. Each cell type is adapted for locomotion under different circumstances. Swimmer cells synthesize a single polar flagellum (Fla) for movement in a liquid medium, and swarmer cells produce an additional distinct flagellar system, the lateral flagella (Laf), for movement across a solid substratum, called swarming. Recognition of surfaces is necessary for swarmer cell differentiation and involves detection of physical signals peculiar to that circumstance and subsequent transduction of information to affect expression of swarmer cell genes (laf). The polar flagellum functions as a tactile sensor controlling swarmer cell differentiation by sensing forces that restrict its movement. Surface recognition also involves a second signal, i.e. nutritional limitation for iron. Studying surface-induced differentiation could reveal a novel mechanism of gene control and lead to an understanding of the processes of surface colonization by pathogens and other bacteria.  相似文献   

10.
The number and location of bacterial flagella vary with the species. The Vibrio alginolyticus cell has a single polar flagellum, which is driven by sodium ions. We selected mutants on the basis of reduced swarming ability on soft agar plates. Among them, we found two mutants with multiple polar flagella, and named them KK148 and NMB155. In Pseudomonas species, it is known that FlhF and FleN, which are FtsY and MinD homologs, respectively, are involved in regulation of flagellar placement and number, respectively. We cloned homologous genes of V. alginolyticus, flhF and flhG. KK148 cells had a nonsense mutation in flhG; cells expressing transgenic flhG recovered the swarming ability and had a reduced number of polar flagella. NMB155 cells did not have a mutation in either flhF or flhG. In wild-type cells, expression of flhF increased the number of polar flagella; in contrast, expression of flhG reduced both the number of polar flagella and the swarming ability. These results suggest that FlhG negatively regulates the number of polar flagella in V. alginolyticus. KK148 cells expressing both flhF and flhG exhibited fewer polar flagella and better swarming ability than KK148 cells expressing flhG alone, suggesting that FlhG acts with FlhF.  相似文献   

11.
12.
13.
We show in this study that Salmonella cells, which do not upregulate flagellar gene expression during swarming, also do not increase flagellar numbers per μm of cell length as determined by systematic counting of both flagellar filaments and hooks. Instead, doubling of the average length of a swarmer cell by suppression of cell division effectively doubles the number of flagella per cell. The highest agar concentration at which Salmonella cells swarmed increased from the normal 0.5% to 1%, either when flagella were overproduced or when expression of the FliL protein was enhanced in conjunction with stator proteins MotAB. We surmise that bacteria use the resulting increase in motor power to overcome the higher friction associated with harder agar. Higher flagellar numbers also suppress the swarming defect of mutants with changes in the chemotaxis pathway that were previously shown to be defective in hydrating their colonies. Here we show that the swarming defect of these mutants can also be suppressed by application of osmolytes to the surface of swarm agar. The “dry” colony morphology displayed by che mutants was also observed with other mutants that do not actively rotate their flagella. The flagellum/motor thus participates in two functions critical for swarming, enabling hydration and overriding surface friction. We consider some ideas for how the flagellum might help attract water to the agar surface, where there is no free water.  相似文献   

14.
Vibrio parahaemolyticus synthesizes two distinct flagellar organelles, the polar flagellum (Fla), which propels the bacterium in a liquid environment (swimming), and the lateral flagella (Laf), which are responsible for movement over surfaces (swarming). Chemotactic control of each of these flagellar systems was evaluated separately by analyzing the behavioral responses of strains defective in either motility system, i.e., Fla+ Laf- (swimming only) or Fla- Laf+ (swarming only) mutants. Capillary assays, modified by using viscous solutions to measure swarming motility, were used to quantitate chemotaxis by the Fla+ Laf- or Fla- Laf+ mutants. The behavior of the mutants was very similar with respect to the attractant compounds and the concentrations which elicited responses. The effect of chemotaxis gene defects on the operation of the two flagellar systems was also examined. A locus previously shown to encode functions required for chemotactic control of the polar flagellum was cloned and mutated by transposon Tn5 insertion in Escherichia coli, and the defects in this locus, che-4 and che-5, were then transferred to the Fla+ Laf- or Fla- Laf+ strains of V. parahaemolyticus. Introduction of the che mutations into these strains prevented chemotaxis into capillary tubes and greatly diminished movement of bacteria over the surface of agar media or through semisolid media. We conclude that the two flagellar organelles, which consist of independent motor-propeller structures, are directed by a common chemosensory control system.  相似文献   

15.
In this work, we analyzed motility and the flagellar systems of the marine bacterium Vibrio shilonii. We show that this bacterium produces lateral flagella when seeded on soft agar plates at concentrations of 0.5% or 0.6%. However, at agar concentrations of 0.7%, cells become round and lose their flagella. The sodium channel blocker amiloride inhibits swimming of V. shilonii with the sheathed polar flagellum, but not swarming with lateral flagella. We also isolated and characterized the filament–hook–basal body of the polar flagellum. The proteins in this structure were analyzed by MS. Eight internal sequences matched with known flagellar proteins. The comparison of these sequences with the protein database from the complete genome of V. shilonii allows us to conclude that some components of the polar flagellum are encoded in two different clusters of flagellar genes, suggesting that this bacterium has a complex flagellar system, more complex possibly than other Vibrio species reported so far.  相似文献   

16.
17.
18.
19.
Azospirillum brasilense can display a single polar flagellum and several lateral flagella. The A. brasilense Sp7 gene laf1, encoding the flagellin of the lateral flagella, was isolated and sequenced. The derived protein sequence is extensively similar to those of the flagellins of Rhizobium meliloti, Agrobacterium tumefaciens, Bartonella bacilliformis, and Caulobacter crescentus. An amino acid alignment shows that the flagellins of these bacteria are clustered and are clearly different from other known flagellins. A laf1 mutant, FAJ0201, was constructed by replacing an internal part of the laf1 gene by a kanamycin resistance-encoding gene cassette. The mutant is devoid of lateral flagella but still forms the polar flagellum. This phenotype is further characterized by the abolishment of the capacities to swarm on a semisolid surface and to spread from a stab inoculation in a semisolid medium. FAJ0201 shows a normal wheat root colonization pattern in the initial stage of plant root interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号