首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In mammals, gamete recognition and sperm binding to the oocyte are mediated by the zona pellucida (ZP), an acellular coat surrounding the plasma membrane of the oocyte that consists of particular ZP proteins. The ZP2 protein mediates secondary sperm binding to the ZP. Its primary structures are highly conserved as revealed by cDNA cloning. In the present study, we investigated the localization of ZP2 in human and bovine ovaries and oocytes and the influence of monoclonal anti-ZP2 peptide antibodies upon bovine sperm-egg interactions. We generated a monoclonal anti-ZP2 synthetic peptide antibody, mAb ZP2-20, against a sequence that is strongly conserved in the mammalian ZP2 amino acid sequence. Specificity of mAb ZP2-20 was determined by ELISA and immunoblotting, respectively. Our results show that mAb ZP2-20 specifically detected the peptide used as an antigen and reacted with its corresponding protein antigen in human and bovine ovaries. In order to elucidate effects of mAb ZP2-20 upon bovine sperm-ZP binding, we used the competitive hemizona assay (cHZA) and found that the antibodies clearly inhibit sperm binding to the ZP. We conclude that (i). monoclonal antibodies against ZP2 peptides react with ZP proteins present in bovine and human ovaries and can be used as a specific marker for ZP2; and that (ii). mAb ZP2-20 detects a ZP2 epitope that is of functional relevance for sperm-ZP interactions.  相似文献   

2.
In some animal species, the zona pellucida protein 3 (ZP3) plays a central role during fertilization, functioning as a specific receptor for sperm and as an inducer of the acrosome reaction. On the other hand, the zona pellucida protein 2 (ZP2) acts as a secondary receptor, binding to acrosome-reacted sperm. The objective of these studies was to identify ZP2 and ZP3 domains that may be of importance for the induction of the acrosome reaction. For this purpose, we synthesized a number of ZP2 and ZP3 peptides that were either conserved among species or that were species-specific according to their respective primary structures. We identified a defined, conserved ZP3 decapeptide (ZP3-6 peptide) that bound to the surface of the acrosomal region and induced the acrosome reaction in a concentration-dependent manner in capacitated bovine sperm; this effect was significant in the nanomolar range. Pertussis toxin inhibited the ZP3-6 peptide-induced acrosome reaction but had no effect on the progesterone-induced exocytotic event. Our data are in accordance with previous studies showing that progesterone induces acrosomal exocytosis via a different pathway than ZP3 and strengthen the hypothesis that the effect of ZP3-6 peptide upon acrosomal exocytosis is G protein regulated. Despite the commonly accepted idea that glycosylation of ZP proteins is required for successful sperm-oocyte interaction, we found that acrosomal exocytosis can be induced by a synthetic ZP3 peptide that is not glycosylated. The results presented in this study may be useful for the investigation of the molecular mechanisms of sperm-egg interaction in bovine and other species.  相似文献   

3.
猪精子中与卵透明带糖蛋白ZP3结合的蛋白质   总被引:3,自引:0,他引:3  
依次经PSL-Sepharose亲和层析柱和纤维素CM-52离子交换层析柱,从猪精子的CHAPS抽提液分离得4个蛋白质组分。用固相透明带精蛋白结合试验(IZPGBA)检测;表明精子蛋白SP1和SP2具有结合透明带糖蛋白ZP3的活性,SP2并显示凝集血球的活性。精子蛋白SP1与卵预温育明显抑制精卵结合,抑制活性与加入的精子蛋白的浓度呈正相关。用生物素标记的ZP3和蛋白质印迹技术,证明SP1中的68kD精子蛋白与ZP3结合,提示68kD精子蛋白参与精卵结合。  相似文献   

4.
The extracellular zona pellucida surrounds mammalian eggs and mediates taxon-specific sperm-egg recognition at fertilization. In mice, the zona pellucida is composed of three glycoproteins, but the presence of ZP2 and ZP3 is sufficient to form a biologically functional structure. Each zona pellucida glycoprotein is synthesized in growing oocytes and traffics through the endomembrane system to the cell surface, where it is released from a transmembrane domain and assembled into the insoluble zona pellucida matrix. ZP2 and ZP3 colocalize in the endoplasmic reticulum and in 1- to 5-microm post-Golgi structures comprising multivesicular aggregates (MVA), but a coimmunoprecipitation assay does not detect physical interactions. In addition, ZP2 traffics normally in growing oocytes in the absence of ZP3 or if ZP3 has been mutated to prevent incorporation into the zona pellucida matrix, complementing earlier studies indicating the independence of ZP3 secretion in Zp2 null mice. N glycosylation has been implicated in correct protein folding and intracellular trafficking of secreted proteins. Although ZP3 contain five N-glycans, enhanced green fluorescent protein-tagged ZP3 lacking N glycosylation sites is present in MVA and is incorporated into the zona pellucida matrix of transgenic mice. Thus, ZP2 secretion is seemingly unaffected by ZP3 lacking N-glycans. Taken together, these observations indicate that ZP2 and ZP3 traffic independently through the oocyte prior to assembly into the zona pellucida.  相似文献   

5.
To circumvent autoimmune oophoritis after immunization with zona pellucida (ZP) glycoproteins, synthetic peptides encompassing B cell epitope(s) and devoid of oophoritogenic T cell epitopes as immunogens have been proposed. In this study, bonnet monkey (Macaca radiata) ZP glycoprotein-B (bmZPB) was expressed as polyhistidine fusion protein in Escherichia coli. Rabbit polyclonal antibodies against recombinant bmZPB (r-bmZPB) significantly inhibited human sperm-oocyte binding. To map B cell epitopes on ZPB, a panel of 7 murine monoclonal antibodies (mAbs) was generated against r-bmZPB. All 7 mAbs, when tested in an indirect immunofluorescence assay, reacted with bonnet monkey ZP, and only 6 recognized human zonae. Monoclonal antibodies MA-809, -811, -813, and -825 showed significant inhibition in the binding of human spermatozoa to human ZP in a hemizona assay. Epitope-mapping studies using multipin peptide synthesis strategy revealed that these 4 mAbs recognized a common epitope corresponding to amino acids (aa) 136-147 (DAPDTDWCDSIP). Competitive binding studies revealed that the synthetic peptide corresponding to the identified epitope (aa 136-147) inhibited the binding of MA-809, -811, -813, and -825 to r-bmZPB in an ELISA and to bonnet monkey ZP in an indirect immunofluorescence assay. The epitopic domain corresponding to aa 136-147 of bmZPB was completely conserved in human ZPB. These studies will further help in designing ZP-based synthetic peptide immunogens incorporating relevant B cell epitope for fertility regulation in humans.  相似文献   

6.
Our understandings of the molecular and cellular mechanisms underlying tubal transport of embryos are poor. This study describes the essential role of the molecules on the zona pellucida (ZP) in the tubal transport of mouse embryos. The bovine and porcine embryos that were interspecifically transferred to the mouse oviduct were selectively retained in the oviduct and rarely transported to the uterus. Antiserum ZP3-9 against synthetic peptides that are specific for mouse ZP3, significantly interfered with tubal transport of the treated embryos. The treatment of mouse embryos with antiserum ZP2-20 against the synthetic peptides, deduced from the sequences that are conserved in the structure of ZP2 from mouse and human, also inhibited their tubal transport. Among various proteolytic and glycosidic enzymes, treatments with trypsin and beta-glucosidase prior to transfer to the oviduct, significantly interfered with the tubal transport of the enzyme-treated mouse embryos. We hypothesize that species-specific epitopes on the ZP may be recognized by the oviductal cilia and/or the epithelial cells of ducts for tubal transport.  相似文献   

7.
Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1-3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm-egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy.  相似文献   

8.
To minimize ovarian dysfunction subsequent to immunization with zona pellucida (ZP) glycoproteins, synthetic peptides encompassing the antigenic B cell epitopes as immunogens have been proposed. In this study, attempts have been made to clone and express a recombinant chimeric protein encompassing the epitopes corresponding to bonnet monkey (Macaca radiata) ZP glycoprotein-1 (bmZP1, amino acid residues 132-147), ZP glycoprotein-2 (bmZP2, amino acid residues 86-113), and ZP glycoprotein-3 (bmZP3, amino acid residues 324-347). The above chimeric recombinant protein (r-bmZP123) was expressed as a polyhistidine fusion protein in Escherichia coli. Immunoblot with murine monoclonal antibody, MA-813, generated against recombinant bmZP1 revealed a major band of approximately 10 kDa. The r-bmZP123 was purified on nickel-nitrilotriacetic acid resin under denaturing conditions. The female rabbits immunized with purified r-bmZP123 conjugated to diphtheria toxoid (DT) generated antibodies that reacted with r-bmZP123 and DT in an ELISA. In addition, the immune sera also reacted with E. coli expressed recombinant bmZP1, bmZP2, and bmZP3. In an indirect immunofluorescence assay, the antibodies against r-bmZP123 recognized native ZP of bonnet monkey as well as human. The immune sera also inhibited, in vitro, the binding of human spermatozoa to the human zona in the hemizona assay (HZA). These studies, for the first time, demonstrate the feasibility of assembling multiple epitopes of different ZP glycoproteins as a recombinant protein that elicit antibodies which are reactive with native zona and also inhibit, in vitro, human sperm-oocyte binding.  相似文献   

9.
Mapping of dominant B-cell epitopes of a human zona pellucida protein (ZP1)   总被引:2,自引:0,他引:2  
Zona pellucida (ZP) glycoproteins contain numerous antigenic determinants including carbohydrate, protein, and conformational epitopes; and the immunogenicity of these complex glycoproteins varies in different mammalian hosts. Studies have now shown that antibodies from primates immunized with a cDNA-expressed recombinant rabbit ZP protein (the homologue of the human ZP1 [hZP1]) inhibit sperm binding to the ZP without altering ovarian function, unlike immunization with ZP3 and ZP2 protein families. The ZP1 protein or peptides derived from it (recombinant or synthetic) are therefore primary candidates for use in designing safe and reversible human and animal contraceptive vaccines. In order to define peptide epitope(s) that may be critical for eliciting an immune response sufficient to effect immunological contraception without causing any adverse effects on ovarian physiology, studies have been carried out to identify immunodominant B-cell epitopes of the ZP1 protein. The amino acid sequence of the hZP1 was used to design a set of 94 (15-mer) biotinylated peptides having an overlap of 9 amino acids. Using these peptides in a modified enzyme-linked immunoassay, antibodies in sera from rabbits or baboons immunized with native porcine ZP protein were screened for ZP1 peptide recognition. These studies demonstrate that there are a limited number of peptides recognized by primate antibodies but that the overlapping peptides sharing the sequence GPLTLELQI are recognized by both rabbit and baboon antibodies regardless of the adjuvant system used to induce the immune response. This peptide is 100% conserved in amino acid sequence between the human and pig, although the rabbit protein has two conserved amino acid substitutions (100% similar, 77% identical). Because this peptide is immunogenic as well as antigenic in primates, it could play a major role in the development of human contraceptive vaccines.  相似文献   

10.
Zona pellucida, a transparent envelope surrounding the mammalian oocyte, plays major roles in fertilization and consists of three or four glycoproteins. Primary structures, and especially the positions of cysteine (Cys) residues in the zona glycoproteins, are well conserved among mammals. In this study, we analyzed the disulfide linkages of pig ZP3 and ZP4 purified from ovaries. While disulfide linkage patterns of four Cys residues in the N-terminal halves of the ZP domains of ZP3 and ZP4 were identical to those previously reported for mice, rats, humans, and fish, the disulfide linkage patterns of six Cys residues in the C-terminal half of the ZP domain in ZP4, as well as eight Cys residues in the C-terminal region of the ZP domain and a following region unique to ZP3, were different from those previously reported. Thus, higher-order structures of zona glycoproteins might not be conserved in the C-terminal regions.  相似文献   

11.
In the mouse, considerable evidence indicates that initial sperm binding to the zona pellucida (ZP) is mediated by ZP3. In addition, this same glycoprotein is also responsible for inducing the acrosome reaction (AR). Whereas the O-linked oligosaccharides of ZP3 appear to mediate sperm-ZP binding, the portion of ZP3 bearing AR activity has not been defined. To try to understand the bifunctional role of ZP3 (binding and AR inducing activities), we have examined the hypothesis that ZP3 aggregates sperm receptor molecules. By analogy with findings in a variety of other extracellular signal transducing systems, including receptors for growth factors and insulin, this aggregation event could initiate the cascade resulting in the AR. To test this hypothesis, we have generated monospecific polyclonal antibodies against ZP2 and against ZP3, and examined the effects of these probes on capacitated sperm incubated in the absence or presence of various ZP protein preparations. For some experiments, we have used proteolytic fragments of ZP3, a preparation known to retain specific binding, but not AR-inducing, activity. We show here that capacitated mouse sperm, incubated with ZP glycopeptides, displayed ARs when incubated subsequently with anti-ZP3 IgG; ARs did not occur when parallel sperm samples were incubated with anti-ZP2 IgG or with anti-ZP3 Fab fragments. When capacitated sperm were treated successively, with (a) ZP3 glycopeptides, (b) anti-ZP3 Fab fragments, and (c) goat anti-rabbit IgG, ARs occurred in the majority of sperm. An alternative approach to examine this hypothesis used ZP proteins obtained from tubal eggs treated previously with bioactive phorbol diester (12-O-tetradecanoyl phorbol-13-acetate [TPA]). This preparation arrests capacitated sperm in an intermediate state of the AR. We demonstrate here that these sperm can be induced to undergo a complete AR by subsequent treatment with anti-ZP3 IgG. Together, these findings are consistent with the hypothesis under examination, and suggest that the aggregation of sperm molecules recognized by ZP3 glycopeptides or by TPA-treated ZP is sufficient to trigger the events that occur during acrosomal exocytosis.  相似文献   

12.
Here, we describe an in vitro assay that has permitted further characterization of a proteinase (called "ZP2-proteinase") that is released upon activation of ovulated mouse eggs and cleaves ZP2, one of three glycoproteins present in mouse zonae pellucidae. Results presented suggest that ZP2-proteinase readily diffuses through the zona pellucida within 5 min of activation of eggs by ionophore A23187 and carries out limited proteolysis of ZP2. Appearance of ZP2-proteinase is completely dependent upon activation of eggs, consistent with it being present in cortical granule exudate. The proteinase is insensitive to a wide variety of proteinase inhibitors, but is inhibited when either an anti-ZP2 monoclonal antibody or an Fab fragment of the antibody is bound to ZP2. Proteolysis occurs near the amino- or carboxy-terminus of ZP2, producing a 23,000 Mr glycopeptide(s) that remains attached to ZP2 by intramolecular disulfide bonds. HPLC fractionation of activated egg exudate suggests that ZP2-proteinase has an apparent Mr between 21,000 and 34,000. Proteolysis of ZP2 correlates with "hardening" of the zona pellucida following egg activation and, thus, may be responsible for one aspect of the zona reaction.  相似文献   

13.
Two zebrafish cDNA clones encoding homologs of mammalian zona pellucida proteins ZP2 and ZP3 were isolated from a whole adult cDNA library. The ZP2 clone encodes a protein of 428 amino acids. Unlike other teleost ZP2s that contain an N-terminal repetitive domain enriched with prolines and glutamines, the zebrafish ZP2 has no such repetitive domain. In the C-terminal non-repetitive domain, the zebrafish ZP2 shares 55-76% sequence identity with other teleost ZP2s. The ZP3 cDNA clone encodes a protein of 431 amino acids, which shares 61% sequence identity with a carp ZP3. Similar to mammalian ZP proteins, both zebrafish ZP2 and ZP3 contain several potential phosphorylation sites. However, unlike mammalian ZP proteins, both zebrafish ZP proteins contain almost no glycosylation site, which has been proposed to be important for interaction with sperm; thus, the ZP proteins may behave differently in mammals and teleosts. Northern blot analysis indicated that both zebrafish ZP2 and ZP3 mRNAs were expressed exclusively in the ovary and hence the ovary is likely the only site for ZP2 and ZP3 biosynthesis.  相似文献   

14.
The zona pellucida is an extracellular matrix that mediates taxon-specific fertilization in which human sperm will not bind to mouse eggs. The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, ZP3). The primary structure of each has been deduced from the cDNA nucleic acid sequence, and each has been analyzed by mass spectrometry. However, determination of the secondary structure and processing of the human zona proteins have been hampered by the paucity of biological material. To investigate if taxon-specific sperm-egg recognition was ascribable to structural differences in a zona protein required for matrix formation, recombinant human ZP3 was expressed in CHO-Lec3.2.8.1 cells and compared to mouse ZP3. With nearly complete coverage, LC-QTOF mass spectrometry was used to determine the cleavage of an N-terminal signal peptide (amino acids 1-22) and the release of secreted ZP3 from a C-terminal transmembrane domain (amino acids 379-424). The resultant N-terminal glutamine was cyclized to pyroglutamate (pyrGln(23)), and several C-terminal peptides were detected, including one ending at Asn(350). The disulfide bond linkages of eight cysteine residues in the conserved zona domain were ascertained (Cys(46)/Cys(140), Cys(78)/Cys(99), Cys(217)/Cys(282), Cys(239)/Cys(300)), but the precise linkage of two additional disulfide bonds was indeterminate due to clustering of the remaining four cysteine residues (Cys(319), Cys(321), Cys(322), Cys(327)). Three of the four potential N-linked oligosaccharide binding sites (Asn(125), Asn(147), Asn(272)) were occupied, and clusters of O-glycans were observed within two regions, amino acids 156-173 and 260-281. Taken together, these data indicate that human and mouse ZP3 proteins are quite similar, and alternative explanations of taxon-specific sperm binding warrant exploration.  相似文献   

15.
The zona pellucida (ZP) is a transparent envelope that surrounds the mammalian oocyte and mediates species-selective sperm-egg interactions. Porcine and bovine ZPs are composed of the glycoproteins ZP2, ZP3, and ZP4. We previously established an expression system for porcine ZP glycoproteins (ZPGs) using baculovirus in insect Sf9 cells. Here we established a similar method for expression of bovine ZPGs. The recombinant ZPGs were secreted into the medium and purified by metal-chelating column chromatography. A mixture of bovine recombinant ZP3 (rZP3) and rZP4 coexpressed in Sf9 cells exhibited inhibitory activity for bovine sperm-ZP binding similar to that of a native bovine ZPG mixture, whereas neither bovine rZP3 nor rZP4 inhibited binding. An immunoprecipitation assay revealed that the coexpressed rZP3/rZP4 formed a hetero-complex. We examined the functional domain structure of bovine rZP4 by constructing ZP4 mutants lacking the N-terminal domain or lacking both the N-terminal and trefoil domains. When either of these mutant proteins was coexpressed with bovine rZP3, the resulting mixtures exhibited inhibitory activity comparable to that of the bovine rZP3/rZP4 complex. Hetero-complexes of bovine rZP3 and porcine rZP4, or porcine rZP3 and bovine rZP4, also inhibited bovine sperm-ZP binding. Our results demonstrate that the N-terminal and trefoil domains of bovine rZP4 are dispensable for formation of the sperm-binding active bovine rZP3/rZP4 complex and, furthermore, that the molecular interactions between rZP3 and rZP4 are conserved in the bovine and porcine systems.  相似文献   

16.
The zona pellucida (ZP) is an extracellular coat synthesized and secreted by the oocyte during follicular development and surrounding the plasma membrane of mammalian eggs. To date, the mechanism of synthesis and secretion, mode of assembly, and intracellular trafficking of the ZP glycoproteins have not been fully elucidated. Using antibodies against mouse ZP1, ZP2, and ZP3 in conjunction with the protein A-gold technique, we have shown an association of immunolabeling with the Golgi apparatus, secretory granules, and a complex structure called vesicular aggregate, respectively, in mouse ovarian follicles. In contrast, the neighboring granulosa cells were not reactive to any of the three antibodies used. Immunolabeling of ZP1, ZP2, and ZP3 was detected throughout the entire thickness of the ZP, irrespective of the developmental stage of ovarian follicles. Double and triple immunolocalization studies, using antibodies tagged directly to different sizes of gold particles, revealed an asymmetric spatial distribution of the three ZP glycoproteins in the zona matrix at various stages of follicular development. All three glycoproteins were specifically localized over small patches of darkly stained flocculent substance dispersed throughout the zona matrix. Very often, ZP1, ZP2, and ZP3 were found in close association. These results confirm findings from previous studies demonstrating that ovarian oocytes and not granulosa cells are the only source for mouse ZP glycoproteins. In addition, results from our morphological and immunocytochemical experiments suggest that the vesicular aggregates in the ooplasm are likely to serve as an intermediary in the synthesis and secretion of ZP glycoproteins. The stoichiometric disposition of ZP1, ZP2, and ZP3 in the zona matrix as revealed by double and triple immunolocalization studies provide further insight into some of the unanswered questions pertinent to the current model of mouse ZP structure proposed by the Wassarman group.  相似文献   

17.
Wassarman PM  Litscher ES 《Cell》2010,143(3):337-338
Binding of mammalian sperm to eggs depends in part on ZP3, a glycoprotein in the egg's extracellular coat, the zona pellucida. In this issue, Han et?al. (2010) describe the structure of an avian ZP3 homolog, providing insights into ZP3 processing and polymerization and the roles of the ZP3 polypeptide and its carbohydrate in sperm binding.  相似文献   

18.
The zona pellucida is an extracellular coat that surrounds mammalian eggs and early embryos. This insoluble matrix separates germ from somatic cells during folliculogenesis and plays critical roles during fertilization and early development. The mouse and human zona pellucida contain three glycoproteins (ZP1 or ZPB, ZP2, ZP3), the primary structures of which have been deduced by molecular cloning. Targeted mutagenesis of endogenous mouse genes and transgenesis with human homologues provide models to investigate the roles of individual zona components. Collectively, the genetic data indicate that no single mouse zona pellucida protein is obligatory for taxon-specific sperm binding and that two human proteins are not sufficient to support human sperm binding. An observed post-fertilization persistence of mouse sperm binding to "humanized" zona pellucida correlates with uncleaved ZP2. These observations are consistent with a model for sperm binding in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

19.
20.
Han L  Monné M  Okumura H  Schwend T  Cherry AL  Flot D  Matsuda T  Jovine L 《Cell》2010,143(3):404-415
ZP3, a major component of the zona pellucida (ZP) matrix coating mammalian eggs, is essential for fertilization by acting as sperm receptor. By retaining a propeptide that contains a polymerization-blocking external hydrophobic patch (EHP), we determined the crystal structure of an avian homolog of ZP3 at 2.0 ? resolution. The structure unveils the fold of a complete ZP domain module in a homodimeric arrangement required for secretion and reveals how EHP prevents premature incorporation of ZP3 into the ZP. This suggests mechanisms underlying polymerization and how local structural differences, reflected by alternative disulfide patterns, control the specificity of ZP subunit interaction. Close relative positioning of a conserved O-glycan important for sperm binding and the hypervariable, positively selected C-terminal region of ZP3 suggests a concerted role in the regulation of species-restricted gamete recognition. Alternative conformations of the area around the O-glycan indicate how sperm binding could trigger downstream events via intramolecular signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号