首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Methylation of position-specific lysine residues in histone N termini is a central modification for regulating epigenetic transitions in chromatin. Each methylatable lysine residue can exist in a mono-, di-, or trimethylated state, thereby extending the indexing potential of this particular modification. Here, we examine all possible methylation states for histone H3 lysine 9 (H3-K9) and lysine 27 (H3-K27) in mammalian chromatin. Using highly specific antibodies together with quantitative mass spectrometry, we demonstrate that pericentric heterochromatin is selectively enriched for H3-K27 monomethylation and H3-K9 trimethylation. This heterochromatic methylation profile is dependent on the Suv39h histone methyltransferases (HMTases) but independent of the euchromatic G9a HMTase. In Suv39h double null cells, pericentric heterochromatin is converted to alternative methylation imprints and accumulates H3-K27 trimethylation and H3-K9 monomethylation. Our data underscore the selective presence of distinct histone lysine methylation states in partitioning chromosomal subdomains but also reveal a surprising plasticity in propagating methylation patterns in eukaryotic chromatin.  相似文献   

3.
Histone H3 lysine 9 methylation has been proposed to provide a major "switch" for the functional organization of chromosomal subdomains. Here, we show that the murine Suv39h histone methyltransferases (HMTases) govern H3-K9 methylation at pericentric heterochromatin and induce a specialized histone methylation pattern that differs from the broad H3-K9 methylation present at other chromosomal regions. Suv39h-deficient mice display severely impaired viability and chromosomal instabilities that are associated with an increased tumor risk and perturbed chromosome interactions during male meiosis. These in vivo data assign a crucial role for pericentric H3-K9 methylation in protecting genome stability, and define the Suv39h HMTases as important epigenetic regulators for mammalian development.  相似文献   

4.
Histone lysine (K) methylation has been shown to play a fundamental role in modulating chromatin architecture and regulation of gene expression. Here we report on the identification of histone H3K56, located at the pivotal, nucleosome DNA entry/exit point, as a novel methylation site that is evolutionary conserved. We identify trimethylation of H3K56 (H3K56me3) as a modification that is present during all cell cycle phases, with the exception of S-phase, where it is underrepresented on chromatin. H3K56me3 is a novel heterochromatin mark, since it is enriched at pericentromeres but not telomeres and is thereby similar, but not identical, to the localization of H3K9me3 and H4K20me3. Possibly due to H3 sequence similarities, Suv39h enzymes, responsible for trimethylation of H3K9, also affect methylation of H3K56. Similarly, we demonstrate that trimethylation of H3K56 is removed by members of the JMJD2 family of demethylases that also target H3K9me3. Furthermore, we identify and characterize mouse mJmjd2E and its human homolog hKDM4L as novel, functionally active enzymes that catalyze the removal of two methyl groups from trimethylated H3K9 and K56. H3K56me3 is also found in C. elegans, where it co-localizes with H3K9me3 in most, but not all, tissues. Taken together, our findings raise interesting questions regarding how methylation of H3K9 and H3K56 is regulated in different organisms and their functional roles in heterochromatin formation and/or maintenance.  相似文献   

5.
The Suv39h1 and Suv39h2 H3K9 histone methyltransferases (HMTs) have a conserved role in the formation of constitutive heterochromatin and gene silencing. Using a transgenic mouse model system we demonstrate that elevated expression of Suv39h1 increases global H3K9me3 levels in vivo. More specifically, Suv39h1 overexpression enhances the imposition of H3K9me3 levels at constitutive heterochromatin at telomeric and major satellite repeats in primary mouse embryonic fibroblasts. Chromatin compaction is paralleled by telomere shortening, indicating that telomere length is controlled by H3K9me3 density at telomeres. We further show that increased Suv39h1 levels result in an impaired clonogenic potential of transgenic epidermal stem cells and Ras/E1A transduced transgenic primary mouse embryonic fibroblasts. Importantly, Suv39h1 overexpression in mice confers resistance to a DMBA/TPA induced skin carcinogenesis protocol that is characterized by the accumulation of activating H-ras mutations. Our results provide genetic evidence that Suv39h1 controls telomere homeostasis and mediates resistance to oncogenic stress in vivo. This identifies Suv39h1 as an interesting target to improve oncogene induced senescence in premalignant lesions.  相似文献   

6.
Krauss V 《Genetica》2008,133(1):93-106
In eukaryotes, histone methylation is an epigenetic mechanism associated with a variety of functions related to gene regulation or genomic stability. Recently analyzed H3K9 methyltransferases (HMTases) as SUV39H1, Clr4p, DIM-5, Su(var)3-9 or SUVH2 are responsible for the establishment of histone H3 lysine 9 methylation (H3K9me), which is intimately connected with heterochromatinization. In this review, available data will be evaluated concerning (1) the phylogenetic distribution of H3K9me as heterochromatin-specific histone modification and its evolutionary stability in relation to other epigenetic marks, (2) known families of H3K9 methyltransferases, (3) their responsibility for the formation of constitutive heterochromatin and (4) the evolution of Su(var)3-9-like and SUVH-like H3K9 methyltransferases. Compilation and parsimony analysis reveal that histone H3K9 methylation is, next to histone deacetylation, the evolutionary most stable heterochromatic mark, which is established by at least two subfamilies of specialized heterochromatic HMTases in almost all studied eukaryotes.  相似文献   

7.
Here, we describe a role for mammalian DNA methyltransferases (DNMTs) in telomere length control. Mouse embryonic stem (ES) cells genetically deficient for DNMT1, or both DNMT3a and DNMT3b have dramatically elongated telomeres compared with wild-type controls. Mammalian telomere repeats (TTAGGG) lack the canonical CpG methylation site. However, we demonstrate that mouse subtelomeric regions are heavily methylated, and that this modification is decreased in DNMT-deficient cells. We show that other heterochromatic marks, such as histone 3 Lys 9 (H3K9) and histone 4 Lys 20 (H4K20) trimethylation, remain at both subtelomeric and telomeric regions in these cells. Lack of DNMTs also resulted in increased telomeric recombination as indicated by sister-chromatid exchanges involving telomeric sequences, and by the presence of 'alternative lengthening of telomeres' (ALT)-associated promyelocytic leukaemia (PML) bodies (APBs). This increased telomeric recombination may lead to telomere-length changes, although our results do not exclude a potential involvement of telomerase and telomere-binding proteins in the aberrant telomere elongation observed in DNMT-deficient cells. Together, these results demonstrate a previously unappreciated role for DNA methylation in maintaining telomere integrity.  相似文献   

8.
9.
Pericentric regions form epigenetically organized silent heterochromatin structures that accumulate histone H3 lysine 9 trimethylation (H3K9me3) and HP1. At pericentric regions, Suv39h is the major enzyme that generates H3K9me3. Suv39h also interacts directly with HP1, a methylated H3K9-binding protein. However, it is not well characterized how HP1 interaction is important for Suv39h accumulation and Suv39h-mediated H3K9me3 formation at the pericentromere. To address this, we introduced the HP1 binding-defective N-terminally truncated mouse Suv39h1 (ΔN) into Suv39h-deficient embryonic stem cells. Interestingly, pericentric accumulation of ΔN and ΔN-mediated H3K9me3 was observed to recover, but HP1 accumulation was only marginally restored. ΔN also rescued DNA methyltransferase Dnmt3a and -3b accumulation and DNA methylation of the pericentromere. In contrast, other pericentric heterochromatin features, such as ATRX protein association and H4K20me3, were not recovered. Finally, derepressed major satellite repeats were partially silenced by ΔN expression. These findings clearly showed that the Suv39h-HP1 binding is dispensable for pericentric H3K9me3 and DNA methylation, but this interaction and HP1 recruitment/accumulation seem to be crucial for complete formation of heterochromatin.  相似文献   

10.
11.
Among other targets, the protein lysine methyltransferase PR‐Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4‐20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila, partially impairs S‐phase progression and protects from DNA re‐replication induced by stabilization of PR‐Set7. Using Epstein–Barr virus‐derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4‐20h is not sufficient to define an efficient origin per se, but rather serves as an enhancer for MCM2‐7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4‐20h‐mediated H4K20 tri‐methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1‐associated origins, which ensure proper replication timing of late‐replicating heterochromatin domains. Altogether, these results reveal Suv4‐20h‐mediated H4K20 tri‐methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes.  相似文献   

12.
13.
14.
Olivier Binda 《Epigenetics》2013,8(5):457-463
Lysine methylation of histones and non-histone proteins has emerged in recent years as a posttranslational modification with wide-ranging cellular implications beyond epigenetic regulation. The molecular interactions between lysine methyltransferases and their substrates appear to be regulated by posttranslational modifications surrounding the lysine methyl acceptor. Two very interesting examples of this cross-talk between methyl-lysine sites are found in the SET (Su(var)3–9, Enhancer-of-zeste, Trithorax) domain-containing lysine methyltransferases SET7 and SETDB1, whereby the histone H3 trimethylated on lysine 4 (H3K4me3) modification prevents methylation by SETDB1 on H3 lysine 9 (H3K9) and the histone H3 trimethylated on lysine 9 (H3K9me3) modification prevents methylation by SET7 on H3K4. A similar cross-talk between posttranslational modifications regulates the functions of non-histone proteins such as the tumor suppressor p53 and the DNA methyltransferase DNMT1. Herein, in cis effects of acetylation, phosphorylation, as well as arginine and lysine methylation on lysine methylation events will be discussed.  相似文献   

15.
16.
17.
Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16(INK4A), when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.  相似文献   

18.
During meiosis, specific histone modifications at pericentric heterochromatin (PCH), especially histone H3 tri- and dimethylation at lysine 9 (H3K9me3 and H3K9me2, respectively), are required for proper chromosome interactions. However, the molecular mechanism by which H3K9 methylation mediates the synapsis is not yet understood. We have generated a Cbx3-deficient mouse line and performed comparative analysis on Suv39h1/h2-, G9a- and Cbx3-deficient spermatocytes. This study revealed that H3K9me2 at PCH depended on Suv39h1/h2-mediated H3K9me3 and its recognition by the Cbx3 gene product HP1γ. We further found that centromere clustering and synapsis were commonly affected in G9a- and Cbx3-deficient spermatocytes. These genetic observations suggest that HP1γ/G9a-dependent PCH-mediated centromere clustering is an axis for proper chromosome interactions during meiotic prophase. We propose that the role of the HP1γ/G9a axis is to retain centromeric regions of unpaired homologous chromosomes in close alignment and facilitate progression of their pairing in early meiotic prophase. This study also reveals considerable plasticity in the interplay between different histone modifications and suggests that such stepwise and dynamic epigenetic modifications may play a pivotal role in meiosis.  相似文献   

19.
The functional significance of mono-, di-, and trimethylation of lysine residues within histone proteins remains unclear. Antibodies developed to selectively recognize each of these methylated states at histone H3 lysine 9 (H3 Lys9) demonstrated that mono- and dimethylation localized specifically to silent domains within euchromatin. In contrast, trimethylated H3 Lys9 was enriched at pericentric heterochromatin. Enzymes known to methylate H3 Lys9 displayed remarkably different enzymatic properties in vivo. G9a was responsible for all detectable H3 Lys9 dimethylation and a significant amount of monomethylation within silent euchromatin. In contrast, Suv39h1 and Suv39h2 directed H3 Lys9 trimethylation specifically at pericentric heterochromatin. Thus, different methylated states of H3 Lys9 are directed by specific histone methyltransferases to "mark" distinct domains of silent chromatin.  相似文献   

20.
Trimethylation of lysine 9 in histone H3 (H3K9me3) enrichment is a characteristic of pericentric heterochromatin. The hypothesis of a stepwise mechanism to establish and maintain this mark during DNA replication suggests that newly synthesized histone H3 goes through an intermediate methylation state to become a substrate for the histone methyltransferase Suppressor of variegation 39 (Suv39H1/H2). How this intermediate methylation state is achieved and how it is targeted to the correct place at the right time is not yet known. Here, we show that the histone H3K9 methyltransferase SetDB1 associates with the specific heterochromatin protein 1α (HP1α)–chromatin assembly factor 1 (CAF1) chaperone complex. This complex monomethylates K9 on non‐nucleosomal histone H3. Therefore, the heterochromatic HP1α–CAF1–SetDB1 complex probably provides H3K9me1 for subsequent trimethylation by Suv39H1/H2 in pericentric regions. The connection of CAF1 with DNA replication, HP1α with heterochromatin formation and SetDB1 for H3K9me1 suggests a highly coordinated mechanism to ensure the propagation of H3K9me3 in pericentric heterochromatin during DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号