首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Salinisphaera sp. P7-4 was isolated from the intestine of silver whiting, Sillago japonicas caught in the Pacific Ocean, and the esterase gene was cloned using the shotgun method. The amino acid sequence deduced from the nucleotide sequence (951 bp) corresponded to a protein of 316 amino acid residues with a molecular weight of 34,443. The esterase had 46 and 44% identities with the esterase enzymes of Ralstonia eutropha JMP134 and Rhodopseudomonas palustris HaA2, respectively. The primary structure of P7-4 esterase showed the conserved catalytic triad (Ser, Asp, His), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein P7-4 was successfully expressed in Escherichia coli in a biologically active form. The enzyme showed high catalytic activity at low temperatures (5-25° C) with an activation energy of 2.18 kcal/mol. This result indicated that the esterase from Salinisphaera sp. P7-4 is a new cold-adapted enzyme. The enzyme preferentially hydrolyzed acyl-group chains with short chain lengths of ≤10 carbon. Metal ions such as Cd2(+), Co2(+), Cu2(+), Hg2(+), Ni2(+) and Zn2(+) inhibited enzymatic activity. Additionally, EDTA has no effect on its activity, whereas inhibition was observed with PMSF, a serine hydrolase inhibitor.  相似文献   

2.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45 degrees C and the half-life was 1 h at 64 degrees C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chain fatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37 degrees C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

3.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45°C and the half-life was 1 h at 64°C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chainfatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37°C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

4.
The gene for esterase (rEst1) was isolated from a new species of genus Rheinheimera by functional screening of E. coli cells transformed with the pSMART/HaeIII genomic library. E. coli cells harboring the esterase gene insert could grow and produce clear halo zones on tributyrin agar. The rEst1 ORF consisted of 1,029 bp, corresponding to 342 amino acid residues with a molecular mass of 37 kDa. The signal P program 3.0 revealed the presence of a signal peptide of 25 amino acids. Esterase activity, however, was associated with a homotrimeric form of molecular mass 95 kDa and not with the monomeric form. The deduced amino acid sequence showed only 54% sequence identity with the closest lipase from Cellvibrio japonicus strain Ueda 107. Conserved domain search and multiple sequence alignment revealed the presence of an esterase/ lipase conserved domain consisting of a GXSXG motif, HGGG motif (oxyanion hole) and HGF motif, typical of the class IV hormone sensitive lipase family. On the basis of the sequence comparison with known esterases/ lipases, REst1 represents a new esterase belonging to class IV family. The purified enzyme worked optimally at 50 degrees C and pH 8, utilized pNP esters of short chain lengths, and showed best catalytic activity with p-nitrophenyl butyrate (C?), indicating that it was an esterase. The enzyme was completely inhibited by PMSF and DEPC and showed moderate organotolerance.  相似文献   

5.
A gene coding for a thermostable esterase was isolated by functional screening of Escherichia coli cells that had been transformed with fosmid environmental DNA libraries constructed with metagenomes from thermal environmental samples. The gene conferring esterase activity on E. coli grown on tributyrin agar was composed of 936 bp, corresponding to 311 amino acid residues with a molecular mass of 34 kDa. The enzyme showed significant amino acid similarity (64%) to the enzyme from a hyperthermophilic archaeon, Pyrobaculum calidifontis. An amino acid sequence comparison with other esterases and lipases revealed that the enzyme should be classified as a new member of the hormone-sensitive lipase family. The recombinant esterase that was overexpressed and purified from E. coli was active above 30 degrees C up to 95 degrees C and had a high thermal stability. It displayed a high degree of activity in a pH range of 5.5 to 7.5, with an optimal pH of approximately 6.0. The best substrate for the enzyme among the p-nitrophenyl esters (C(4) to C(16)) examined was p-nitrophenyl caproate (C(6)), and no lipolytic activity was observed with esters containing an acyl chain length of longer than 10 carbon atoms, indicating that the enzyme is an esterase and not a lipase.  相似文献   

6.
7.
An esterase-encoding gene, estR5, was directly obtained from the genomic DNA of goat rumen contents. The 555-bp full-length gene encodes a 184-residue polypeptide (EstR5) without putative signal peptide. Deduced EstR5 shared the highest identity (50%) to a putative arylesterase from Ruminococcaceae bacterium D16. Phylogenetic analysis indicated that EstR5 was closely related with microbial esterases of gastrointestinal source. A comparison of the conserved motifs shared with GDSL proteins revealed that EstR5 could be grouped into the GDSL family and was further classified into the subfamily of SGNH hydrolases. The gene estR5 was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. Recombinant EstR5 exhibited highest catalytic efficiency towards α-naphthyl acetate followed by phenyl acetate and p-nitrophenyl acetate and had no activity towards PNP esters with acyl chains longer than C8. The enzyme exhibited optimal activity at around 60°C and pH 8.0, was stable at pH ranging from 6.0 to 11.0 and was slightly activated by detergent Tween, Nonidet P-40, and Triton X-100. These properties suggest that EstR5 has great potential for basic research and industrial applications. To our knowledge, this is the first arylesterase obtained from rumen microenvironment.  相似文献   

8.
Several thermo- and mesoacidophilic bacterial strains that revealed high lipolytic activity were isolated from water samples derived from acidic hot springs in Los Nevados National Natural Park (Colombia). A novel lipolytic enzyme named 499EST was obtained from the thermoacidophilic alpha-Proteobacterium Acidicaldus USBA-GBX-499. The gene estA encoded a 313-amino-acid protein named 499EST. The deduced amino acid sequence showed the highest identity (58 %) with a putative α/β hydrolase from Acidiphilium sp. (ZP_08632277.1). Sequence alignments and phylogenetic analysis indicated that 499EST is a new member of the bacterial esterase/lipase family IV. The esterase reveals its optimum catalytic activity at 55 °C and pH 9.0. Kinetic studies showed that 499EST preferentially hydrolyzed middle-length acyl chains (C6-C8), especially p-nitrophenyl (p-NP) caproate (C6). Its thermostability and activity were strongly enhanced by adding 6 mM FeCl3. High stability in the presence of water-miscible solvents such as dimethyl sulfoxide and glycerol was observed. This enzyme also exhibits stability under harsh environmental conditions and enantioselectivity towards naproxen and ibuprofen esters, yielding the medically relevant (S)-enantiomers. In conclusion, according to our knowledge, 499EST is the first thermoalkalostable esterase derived from a Gram-negative thermoacidophilic bacterium.  相似文献   

9.
目的:对从新疆精河地区一处工业污水中分离得到的一株产碱性脂肪酶细菌进行研究.方法:通过生理生化检测,16SrDNA序列同源性分析和G+Cmol%含量的测定对命名为XJU-13的这株菌进行鉴定.结果:该菌株可在pH 3.0~12.5的广泛酸碱泛围的营养肉汤培养基中生长.最适生长温度为37℃.基于16S rDNA序列同源性构建系统进化树分析表明与Bacillus pumilus clone B257聚在同一亚分枝,序列相似性达100%.数据证明XJU-13属于Bacillus pumilus.由于在氧化酶反应及淀粉水解实验与伯杰氏鉴定手册有差异,具不可比拟的pH耐受性,且脂肪酸含量与参考菌株差异较大,认为这是Bacillus pumilus中的一个新品系.该菌株产生的脂肪酶最适pH为10,最适温度为35℃,且在广泛pH(pH4-10)范围具稳定性.酶活可被Mg2+、K+、Ba2+、Pb+盐强烈抑制,被Ca2+、Cu2+、Al+及Fe2+盐激活.Zn2+对酶活无影响.结论:实验表明,XJU-13应属于B.pumilus.B.pumilus XJu-13中分离到的碱性脂肪酶有很好的特性及潜能,以期为工业应用提供数据.  相似文献   

10.
11.
Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaE(Dm) and phaC(Dm) genes. PhaC(Dm) and PhaE(Dm) were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaC(Dm) alone (pBBRMCS-2::phaC(Dm)) and of phaE(Dm)C(Dm) (pBBRMCS-2::phaE(Dm)C(Dm)) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB(-)4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaE(Dm)C(Dm) small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaC(Dm) and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.  相似文献   

12.
Rao L  Xue Y  Zhou C  Tao J  Li G  Lu JR  Ma Y 《Biochimica et biophysica acta》2011,1814(12):1695-1702
An unidentified α/β hydrolase gene lipA3 from thermostable eubacterium species Thermoanaerobacter tengcongensis MB4 was cloned and heterologously expressed by Escherichia coli BL21(DE3)pLysS. The purified recombinant enzyme EstA3 turned out to be a monomeric thermostable esterase with optimal activity at 70°C and pH 9.5. The enzyme showed lipolytic activity towards a wide range of ester substrates including p-nitrophenyl esters and triacylglycerides, with the highest activity being observed for p-nitrophenyl caproate at 150 U/mg and for Triacetin at 126U/mg, respectively. Phylogenetic analysis revealed that EstA3 did not show homology to any identified bacterial lipolytic hydrolases. Sequence alignment showed that there was a common pentapeptide CHSMG with a cysteine replacing the first glycine in most esterase and lipase conserved motif GXSXG. The catalytic triad of EstA3 is Ser92, Asp269 and His292, which was confirmed by site directed mutagenesis. Based on the enzymatic properties and sequence alignment we concluded that the esterase EstA3 represented a novel bacterial lipolytic enzyme group and in chronological order this group was assigned as Family XIV.  相似文献   

13.
A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica. Analysis of the 1,203 bp coding region revealed that the deduced peptide sequence is composed of 400 amino acids with a predicted molecular mass of 44.1 kDa. EstO contains a N-terminal esterase domain and an additional OsmC domain at the C-terminus (osmotically induced family of proteins). The highly conserved five-residue motif typical for all α/β hydrolases (G × S × G) was detected from position 104 to 108 together with a putative catalytic triad consisting of Ser106, Asp196, and His225. Sequence comparison showed that EstO exhibits 90% amino acid identity with hypothetical proteins containing similar esterase and OsmC domains but only around 10% identity to the amino acid sequences of known esterases. EstO variants with and without the OsmC domain were produced and purified as His-tag fusion proteins in E. coli. EstO displayed an optimum pH of 7.5 and optimum temperature of 25°C with more than 50% retained activity at the freezing point of water. The thermostability of EstO (50% activity after 5 h at 40°C) dramatically increased in the truncated variant (50% activity after 2.5 h at 90°C). Furthermore, the esterase displays broad substrate specificity for esters of short-chain fatty acids (C2–C8).  相似文献   

14.
We report the cloning and characterization of a gene encoding a ferulic acid esterase, faeA, from Aspergillus niger and Aspergillus tubingensis. The A. niger and A. tubingensis genes have a high degree of sequence identity and contain one conserved intron. The gene product, FAEA, was overexpressed in wild-type A. tubingensis and a protease-deficient A. niger mutant. Overexpression of both genes in wild-type A. tubingensis and an A. niger protease-deficient mutant showed that the A. tubingensis gene product is more sensitive to degradation than the equivalent gene product from A. niger. FAEA from A. niger was identical to A. niger FAE-III (C. B. Faulds and G. Williamson, Microbiology 140:779-787, 1994), as assessed by molecular mass, pH and temperature optima, pI, N-terminal sequence, and activity on methyl ferulate. The faeA gene was induced by growth on wheat arabinoxylan and sugar beet pectin, and its gene product (FAEA) released ferulic acid from wheat arabinoxylan. The rate of release was enhanced by the presence of a xylanase. FAEA also hydrolyzed smaller amounts of ferulic acid from sugar beet pectin, but the rate was hardly affected by addition of an endo-pectin lyase.  相似文献   

15.
The enzymatic properties of phytolacain G, a protease isolated from green fruit of pokeweed, were compared with those of phytolacain R, a protease obtained from ripe fruit. The optimum pH of phytolacain G was 7.5-8.0 at 37°C using casein as the substrate. The enzyme was strongly inhibited by iodoacetic acid and p-chloromercuribenzoic acid, but not by diisopropyl fluorophosphate or EDTA. These results indicated that phytolacain G was a cysteine protease, like phytolacain R. Nine sites of oxidized insulin B-chain were cleaved by phytolacain G during 20 h of hydrolysis. The six sites cleaved by phytolacain G were also cleaved by phytolacain R. The substrate specificity of phytolacain G was broad, but the preference for hydrophobic residues at the P2 position was similar to the substrate specificity of papain. The amino-terminal sequence of phytolacain G was not identical with that of phytolacain R; however, the amino acid residues conserved in the papain family were also conserved in this enzyme.  相似文献   

16.
A gene-specific, metagenomic PCR method has led to the discovery of a novel esterase subfamily consisting of five homologous members. Sequence analysis of this esterase subfamily, named the ArmEst subfamily, revealed a unique conserved pattern with a significant variable interior sequence flanked by two symmetric and identical long arm sequences. The two homologous long arm sequences had 100 % sequence identity and symmetry at both ends between the five members of this esterase class, but only 17–58 % identity was shared for the internal sequence. The biochemical properties of two of the ArmEst esterases definitively demonstrated that they are true active esterases rather than pseudogenes. This is the first report presenting an esterase subfamily containing a unique arm sequence, indicating a rare homologous recombination occurring in the coding area of a functional gene to generate their functional diversity.  相似文献   

17.

Background

Microbial derived lipolytic hydrolysts are an important class of biocatalysts because of their huge abundance and ability to display bioactivities under extreme conditions. In spite of recent advances, our understanding of these enzymes remains rudimentary. The aim of our research is to advance our understanding by seeking for more unusual lipid hydrolysts and revealing their molecular structure and bioactivities.

Methodology/Principal Findings

Bacillus. pseudofirmus OF4 is an extreme alkaliphile with tolerance of pH up to 11. In this work we successfully undertook a heterologous expression of a gene estof4 from the alkaliphilic B. pseudofirmus sp OF4. The recombinant protein called EstOF4 was purified into a homologous product by Ni-NTA affinity and gel filtration. The purified EstOF4 was active as dimer with the molecular weight of 64 KDa. It hydrolyzed a wide range of substrates including p-nitrophenyl esters (C2–C12) and triglycerides (C2–C6). Its optimal performance occurred at pH 8.5 and 50°C towards p-nitrophenyl caproate and triacetin. Sequence alignment revealed that EstOF4 shared 71% identity to esterase Est30 from Geobacillus stearothermophilus with a typical lipase pentapeptide motif G91LS93LG95. A structural model developed from homology modeling revealed that EstOF4 possessed a typical esterase 6α/7β hydrolase fold and a cap domain. Site-directed mutagenesis and inhibition studies confirmed the putative catalytic triad Ser93, Asp190 and His220.

Conclusion

EstOF4 is a new bacterial esterase with a preference to short chain ester substrates. With a high sequence identity towards esterase Est30 and several others, EstOF4 was classified into the same bacterial lipolytic family, Family XIII. All the members in this family originate from the same bacterial genus, bacillus and display optimal activities from neutral pH to alkaline conditions with short and middle chain length substrates. However, with roughly 70% sequence identity, these enzymes showed hugely different thermal stabilities, indicating their diverse thermal adaptations via just changing a few amino acid residues.  相似文献   

18.
A novel alkaliphilic esterase (EstJ) was identified from a soil metagenome of Jeju Island, Korea, using a 96-well plate-based functional assay for determination of pH dependence of activity. The amino acid sequence of EstJ showed low similarity (32–45 %) to putative α/β hydrolases derived from whole-genome sequencing studies. EstJ, although not belonging to any of the known families of bacterial lipolytic enzymes, however, it showed closest sequence identity to the family IV enzymes that are related to the mammalian hormone-sensitive lipases. The highly conserved motifs of family IV enzymes were found in EstJ, but the corresponding sequences of each motif in EstJ were unique; most particularly the –(F/Y)(F/Y/L)HGGG– motif was represented by –WMVSGG–. The purified EstJ was highly active from pH 8.5 to 10.5. More than 90 % of maximum activity was also retained over a wide pH range of 5.5–0.5 after prolonged incubation. EstJ was also moderately thermophilic with an optimum temperature of 55 °C. Therefore, EstJ is the first metagenome-derived bacterial family IV esterase possessing both highly alkaliphilic and moderately thermophilic properties.  相似文献   

19.
Lipophilic Malassezia species may induce catheter-associated sepsis in premature neonates and immunocompromised patients receiving parenteral lipid emulsions. To assess the participation of lipolytic enzymes in the pathogenesis of this yeast, we cloned a gene encoding the enzyme. A lipolytic enzyme in the culture supernatant of Malassezia pachydermatis was purified 210-fold to homogeneity. The enzyme showed high esterase activity toward p-nitrophenyl octanoate. The cDNA encoding the enzyme was cloned using a degenerate oligonucleotide primer constructed from the N-terminal amino acid sequence. The cDNA consisted of 1582 bp, including an open reading frame encoding 470 amino acids. The first 19 amino acids and the following 13 amino-acid sequence were predicted to be the signal peptides for secretion and prosequence, respectively. The predicted molecular mass of the 438-amino acid mature protein was 48 kDa. Analysis of the deduced amino acid sequence revealed that it contains the consensus motif (Gly-X-Ser-X-Gly), which is conserved among lipolytic enzymes. Homology investigations showed that the enzyme has similarities principally with 11 lipases produced by Candida albicans (29-34% identity) and some other yeast lipases.  相似文献   

20.
The glycoprotein egasyn complexes with and stabilizes precursor beta-glucuronidase in microsomes of several mouse organs. Several observations indicate egasyn is, in addition, an esterase. Liver homogenates of egasyn-positive strains have specific electrophoretically separable esterases which are absent in egasyn-negative mice. These esterases react with anti-egasyn serum. A specific esterase was likewise complexed with immunopurified microsomal beta-glucuronidase. The esterases were, like egasyn and microsomal beta-glucuronidase, concentrated in the microsomal subcellular fraction. Egasyn which is not bound to beta-glucuronidase, which represents 80-90% of total liver egasyn, is not complexed with other liver proteins. Egasyn, therefore, specifically stabilizes beta-glucuronidase in microsomes. The esterase activity is inhibited by bis-p-nitrophenyl phosphate indicating it is a carboxyl esterase. Several possible functions of egasyn-esterase activity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号