首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
A simple, efficient and cost-effective method for municipal wastewater treatment is examined in this paper. The municipal wastewater is treated using an upflow anaerobic sludge bed (UASB) reactor followed by flash aeration (FA) as the post-treatment, without implementing aerobic biological processes. The UASB reactor was operated without recycle, at hydraulic retention time (HRT) of 8 h and achieved consistent removal of BOD, COD and TSS of 60-70% for more than 12 months. The effect of FA on UASB effluent post-treatment was studied at different HRT (15, 30 and 60 min) and dissolved oxygen (DO) concentrations (low DO = 1-2 mg/L and high DO = 5-6 mg/L). The optimum conditions for BOD, COD and sulfide removal were 30-60 min HRT and high DO concentration inside the FA tank. The final effluent after clarification was characterized by BOD and COD values of 28-35 and 50-58 mg/L, respectively. Sulfides were removed by more than 80%, but the fecal coliform only by ~2 log. The UASB followed by FA is a simple and efficient process for municipal wastewater treatment, except for fecal coliform, enabling water and nutrients recycling to agriculture.  相似文献   

2.
Evolutionary operation (EVOP) was used to experimentally investigate the optimum steady state operating conditions for a step aeration activated sludge waste treatment process. A laboratory scale two tank step aeration activated sludge unit with fixed total volume, total influent flow rate, recycle flow rate, and sludge wasting rate was employed. The volume ratio and flow rate ratio which minimized effluent chemical oxygen demand were determined. The results indicate that EVOP is a useful technique for improving the performance of biological processes.  相似文献   

3.
Enhanced biological nitrogen removal processes are necessarily required to cope with more stringent wastewater discharging regulations, especially for wastewater with low level of organic carbon to nitrogen ratios. The intermittent aeration activated sludge process has been received comprehensive attention over the past decades, due to its excellent performance in nitrogen removal and remarkable reduction of energy consumption. Recent advances for this technology was reviewed from aspects of characteristics of system, factors affecting nitrogen removal, nitrous oxide (N2O) emission and its control, and application of the technology and its operation control. Finally, future development was proposed. In the intermittent aeration activated sludge process, aeration duration should be controlled for adequate nitrification and non-aeration duration should be adequate for complete denitrification, and these would benefit both nitrogen removal and N2O mitigation. The step feed strategy could be applied to enhance the better utilization of influent organic carbon for nitrogen removal. Dissolved oxygen (DO) and aerobic duration both affected nitrogen removal in particular that via nitrite in the intermittent aeration process. Nitrite should be removed efficiently to avoid a high N2O emission under both anoxic and aerobic conditions. Intermittent aeration activated sludge process has been applied in the treatment of various wastewaters, such as municipal wastewater, swine wastewater, anaerobic effluents and landfill leachate. For practical application, DO, pH and oxidation–reduction potential could be used as indices for controlling nitrogen removal and N2O mitigation. Microbial ecology in the intermittent aeration activated sludge process should be specifically focused in future studies.  相似文献   

4.
Synthetic wastewater was treated in a bench scale submerged membrane bioreactor (SMBR). A long‐term experiment was conducted by varying the sludge residence time (SRT) (10–500 d) and BOD loading (1.3–0.25 kg/m3·d). The biological activity was observed in terms of the oxygen utilization rate (OUR) and adenosine triphosphate (ATP) profile; the process stability was analyzed based on the extent of organic degradation and suction pressure. The microbial population in the SMBR was dependent on the SRT and BOD loading, and its biological activity was increased with an increase in the SRT or BOD loading. At a low feed to microorganism (F/M) ratio (0.06 kg BOD/kg MLSS·d), the sludge production of the reactor was reduced to 0.04 kg MLSS/kg BOD, which is much less than in the conventional activated sludge process (0.4–0.6 kg MLSS/kg BOD). The F/M ratio influenced the biological activity (via ATP and the OUR) significantly at a short SRT (≤90 d). However, the effect of the F/M ratio ceased at a low F/M ratio (≤ 0.07 kg BOD/kg MLSS·d). The accumulation of organics in the SMBR was accompanied with an increase in the supernatant TOC, which caused a high suction pressure and an abrupt change in the operating conditions to process instability. However, the process stability of the SMBR increased with an increase in the SRT and a decrease in the BOD loading along with a concomitant decrease in the biological activity and sludge production.  相似文献   

5.
In this study, the performance of partial nitrification via nitrite and microbial community structure were investigated and compared in two sequencing batch reactors (SBR) with different dissolved oxygen (DO) levels. Both reactors achieved stable partial nitrification with nitrite accumulation ratio of above 95% by using real-time aeration duration control. Compared with high DO (above 3 mg/l on average) SBR, simultaneous nitrification and denitrification (SND) via nitrite was carried out in low DO (0.4–0.8 mg/l) SBR. The average efficiencies of SND in high DO and low DO reactor were 7.7% and 44.9%, and the specific SND rates were 0.20 and 0.83 mg N/(mg MLSS h), respectively. Low DO did not produce sludge with poorer settling properties but attained lower turbidities of the effluent than high DO. Fluorescence in situ hybridization (FISH) analysis in both the reactors showed that ammonia-oxidizing bacteria (AOB) were the dominant nitrifying bacteria and nitrite-oxidizing bacteria (NOB) did not be recovered in spite of exposing nitrifying sludge to high DO. The morphology of the sludge from both two reactors according to scanning electron microscope indicated that small rod-shaped and spherical clusters were dominant, although filamentous bacteria and few long rod-shaped coexisted in the low DO reactor. By selecting properly DO level and adopting process control method is not only of benefit to the achievement of novel biological nitrogen removal technology, but also favorable to sludge population optimization.  相似文献   

6.
Biological treatment of saline wastewater by conventional activated sludge culture usually results in low removal of chemical oxygen demand (COD) because of plasmolysis of the organisms at high salt concentrations. Since salt removal operations by physicochemical processes before biological treatment are costly, a salt-tolerant organism (Halobacter halobium) was used for effective biological treatment of saline wastewater in this study. Halobacter halobium was used in activated sludge culture for COD removal from saline wastewater (1–5% salt) by fed-batch operation of an aeration tank. Inclusion of Halobacter halobium into activated sludge culture improved the rate and extent of COD removals especially with salt above 2% (w/v).  相似文献   

7.
Activated sludge from a wastewater treatment plant consists of a consortium of microbes that utilize various organic molecules including persistent organic pollutants for their survival. Phenolic compounds and their derivatives along with dibenzofuran (DBF) are found as dominating pollutants in distillery waste. The acclimatization process leads to selective enrichment of the microbial community; and in this study, we report the acclimatizing effect of phenol on improving the treatment efficiency of two different distillery sludges—sludge from conventional aeration tanks (CAT), and from an extended aeration tank (EAT). The adaptation-dependent performance of activated biomass was studied by monitoring the increase in colony-forming units (CFUs) on mineral media and the utilization pattern for phenol (300×103 and 530×103 CFU for CAT and EAT sludge, respectively) and DBF (260×103 and 430×103 CFU for CAT and EAT sludge, respectively). The study showed that the acclimatization process remarkably improved the performance sludge for treatment of distillery wastewater. There was an improvement in chemical oxygen demand (COD) removal efficiency from 19% (unacclimatized sludge) to 31% in the case of acclimatized sludge (raw wastewater), which improved further to 82% and 87% with dilution of wastewater by 10 times (0.1×) and by 50 times (0.02×), respectively. Highest growth yields were observed with 0.1× wastewater (0.324 and 0.308 g g−1 d−1 for CAT and EAT sludges, respectively), while lower values are reported for the remaining two forms of wastewater. The study proposes that acclimatization step could be included as part of a treatment plant where the activated biomass could be intermittently metabolically charged by exposing it to selected molecules to increase treatment efficiency.  相似文献   

8.
The dynamic behavior of a laboratory-scale activated sludge biological waste treatment process with recycle and wasting of sludge was investigated by subjecting the system to step changes in the influent waste concentration, the recycle flow rate, or the sludge wasting rate. The dynamic behavior of the system was examined by measuring adenosine triphosphate (ATP) in addition to dissolved chemical oxygen demand (COD) and cell dry weight in the aeration tank. Cell dry weight of the recyle flow and effluent COD were also measured. Analysis of the results and estimation of time constants assuming first order responses showed that the time constants characterizing the dynamic responses of the sludge were directly related to the sludge mean residence time. The time constants estimated from dissolved COD measurements were of the same order of magnitude as the fluid residence time in the aeration tank. The ATP transient response was frequently different from that of the cell dry weight in the aeration tank.  相似文献   

9.
生物废水处理系统的细胞自动机模型   总被引:1,自引:0,他引:1  
廖金宝  李镇清 《生态学报》2009,29(8):4231-4241
建立了活性污泥处理生物废水的细胞自动机模型,对活性污泥生物量与有机物浓度动态进行了研究,提出了计算活性污泥回流循环比的方法.结果表明,在Moore邻居模型下废水达标排放所需时间较Von. Neumann邻居模型少,不同生长阶段的微生物浓度波动具有时滞性.稳定期有机物浓度和生物量不受活性污泥初始浓度的影响.活性污泥处理生物废水的细胞自动机模型有助于为污水处理提供理论依据.  相似文献   

10.
Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.  相似文献   

11.
The nutrient removal performance of a membrane bioreactor (MBR) plant treating the wastewater of 10,000 PE was investigated with dynamic simulations. The average process performance with respect to chemical oxygen demand and total nitrogen were reported to be 97 and 81 %, respectively. The modeling study showed that low dissolved oxygen (DO) levels (0.2–0.3 mgO2/L) due to limited aeration capacity within aeration tank that provided additional total nitrogen removal of 15–20 mgN/L. Simultaneous nitrification and denitrification process was found to be the reason of performance increase. However, low DO levels <0.3 mgO2/L in the aeration tank triggered the proliferation of filamentous microorganisms within one month as a side effect. In this respect, the morphotypes of Type 0092 and Nocardia (Gordonia) amarae were found to be excessively abundant in the MBR system. Overflow of foam layer covering the tanks was frequently reported during bulking period. A hypochloride dosing of 4.5 gCL/kgMLSS/day was applied to get over filamentous bulking problem as a short term action.  相似文献   

12.
Although biological nitrogen removal via nitrite is recognized as one of the cost-effective and sustainable biological nitrogen removal processes, nitrite accumulation has proven difficult to achieve in continuous processes treating low-strength nitrogenous wastewater. Partial nitrification to nitrite was achieved and maintained in a lab-scale completely stirred tank reactor (CSTR) treating real domestic wastewater. During the start-up period, sludge with ammonia-oxidizing bacteria (AOB) but no nitrite-oxidizing bacteria (NOB) was obtained by batch operation with aeration time control. The nitrifying sludge with the dominance of AOB was then directly switched into continuous operation. It was demonstrated that partial nitrification to nitrite in the continuous system could be repeatedly and reliably achieved using this start-up strategy. The ratio of dissolved oxygen to ammonium loading rate (DO/ALR) was critical to maintain high ammonium removal efficiency and nitrite accumulation ratio. Over 85% of nitrite accumulation ratio and more than 95% of ammonium removal efficiency were achieved at DO/ALR ratios in an optimal range of 4.0–6.0 mg O2/g N d, even under the disturbances of ammonium loading rate. Microbial population shift was investigated, and fluorescence in situ hybridization analysis indicated that AOB were the dominant nitrifying bacteria over NOB when stable partial nitrification was established.  相似文献   

13.
In order to improve the water quality in the shrimp aquaculture, we tested a sequencing batch reactor (SBR) for the treatment of shrimp wastewater. A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system. The SBR accomplishes pH correction, aeration, and clarification in a timed sequence, in a single reactor basin. This is achieved in a simple tank, through sequencing stages, which includes fill, react, settle, decant, and idle. The wastewater from the Waddell Mariculture Center, South Carolina was successfully treated using a SBR. The wastewater contained high concentration of carbon and nitrogen. By operating the reactor sequentially, viz, aerobic, anaerobic, and aerobic modes, nitrification and denitrification were achieved as well as removal of carbon. We optimized various environmental parameters such as temperature, salinity, and carbon and nitrogen ratio (C:N ratio) for the best performance of SBR. The results indicated that the salinity of 28-40 parts per thousand (ppt), temperature range of 22-37 degrees C, and a C:N ratio of 10:1 produced best results in terms of maximum nitrogen and carbon removal from the wastewater. The SBR system showed promising results and could be used as a viable treatment alternative in the shrimp industry.  相似文献   

14.
A formulation to calculate the mean cell residence time (MCRT or sludge age) of unsteady-state activated sludge systems is presented. The formulation was studied by applying it to data generated by computer simulation and to data obtained from an actual wastewater treatment plant. The computer simulation study allowed the effects of step and pulse changes in biochemical oxygen demand (BOD) loading, and step changes in a control variable, waste sludge flow rate, to be studied independently of each other and of other disturbances. The unsteady-state MCRT formulation (herein called the dynamic sludge age, or DSA) was found to be an improvement over the traditional steady-state calculation, both for process control, and for research into activated sludge dynamics.  相似文献   

15.
Silicone rubber hollow fiber was able to enrich the oxygen concentration in air by about 30%, and oxygen was transferred sufficiently from the membrane to water. When an aeration tank was filled with hollow fiber to up to 10% of its volume, the oxygen utilization rate, Rr, was about seven times as much as the value in the standard activated sludge method. It is suggested that there is some possibility of improving the efficiency of aerobic wastewater treatment by using this system.  相似文献   

16.
While an aeration tank in an activated sludge process is often operated with high dissolved oxygen (DO) concentration to ensure organic degradation and nitrification, it may be operated at low DO concentration to reduce energy consumption and achieve desired denitrification. The ASM1 (Activated Sludge Model No. 1) can be used to describe the activated sludge process if the nitrification and denitrification occur either during different phases or in different tanks, but it may encounter problems in simulating the denitrification phenomenon caused by low DO concentration in the aeration tank. In the present work, we developed a model integrating the ASM1 kinetics and a biofloc model to account for the actual anoxic and aerobic rates. Oxygen was assumed the only substrate of both bio-kinetically and flux limiting in the flocs and its dispersion coefficient was estimated as 1.2 × 10−4 m2 day−1 by using a set of measured effluent qualities of a full-scale wastewater treatment plant (WWTP) operating at low DO concentration (∼0.80 mg L−1) for 60 days. Simulation studies predicted the optimal DO level of 0.36 mg L−1 which would lead to minimum total nitrogen of 15.7 mg N L−1 and also showed the insignificance of the addition of carbon source for nitrogen removal for the operation under study. The developed model may be helpful for process engineers to predict the plant behaviors under various configurations or operating strategies.  相似文献   

17.
18.
The biological nitrification-denitrification process is used extensively for removal of ammonia nitrogen from wastewaters. Saves in aeration, organic matter (for denitrification) and surplus sludge are achievable if nitrite accumulation is possible in the nitrification step. In this paper, operational parameters were studied for each process for maximum nitrite accumulation in the nitrification step and nitrite adaptation in the denitrification step. Nitrite accumulation during nitrification can be controlled by the dissolved oxygen (DO) concentration, presenting a maximum of 65% at around 0.7 mg DO/L. Denitrification can be adapted to nitrite and the process is stable if nitrite in the reactor is keep low. The performance of a continuous stirred tank reactor (CSTR) and an up flow sludge blanket reactor (USB) were compared. Once the operational parameters were established, a CSTR for nitrification and an USB reactor for denitrification were operated in series for 25 days. The process was stable and a steady state was maintained for 20 days, and 93.5% of overall nitrogen removal was achieved in the nitrification-denitrification via the nitrite process.  相似文献   

19.
Demand for wastewater treatment facilities will increase as Jordan's population grows. In addition, currently available systems of treatment desperately need upgrades in capacity or supplementary systems; especially in the Amman-Zarqa region. Overall; based on the current wastewater flow rates; approximately 85% of the collected sewerage is treated in stabilization ponds, 10% in trickling filters, and 5% in activated sludge systems. This study was carried out to analyze and identify the properties of Jordanian wastewater; compare it to the common characteristics internationally known; and couple that with a proposal of an appropriate treatment technology. Five treatment plants were selected to achieve the objectives of this study; the flow rate of which constitutes approximately 80% of the total treated wastewater in Jordan, based on the design capacity. The study concluded that the wastewater generated in Jordan is classified as strong in terms of total dissolved solids content, total suspended solids content, and chemical and biochemical oxygen demands (COD and BOD). The efficiency of the selected technologies in removing dissolved solids from wastewater was low while it was reasonably high in terms of suspended solids removal. The technology achieving highest percent removals of BOD and solids was that of activated sludge and its modifications. Based on the factors considered in evaluating and selecting unit operations and processes, the activated sludge and its modifications are probably the process technology that should be used in treating Jordanian domestic wastewaters.  相似文献   

20.
This study was conducted to investigate the chemical precipitation (CP) and membrane bioreactor (MBR) hybrid process for the treatment of piggery wastewater. Average removal efficiencies for BOD, COD and turbidity in CP process were 64.3%, 77.3% and 96.4%, respectively. CP process had a moderate effect on NH3–N removal (40.4%) which improved up to 98.2% mainly due to nitrification and filtration processes in MBR. The average removal efficiencies of BOD, COD and turbidity in MBR were 99.5%, 99.4% and 99.8%, respectively. Monod equation was used to explain the microbial activities in terms of specific growth rate. The specific growth rate of bacteria in aeration tank (N-batch) and anoxic tank (D-batch) were 0.013 and 0.005 d?1 with a biomass yield of 0.78 and 0.43 mg MLSS produced/mg COD utilized, respectively. Microorganisms from the N-batch and D-batch showed a low-level of nitrifying and moderate-level of denitrifying capabilities which were 1.08 mg NH3–N/(g MLVSS.h) and 2.82 mg NO3–N/(g MLVSS.h), respectively. Carbohydrates were the main component in extracellular polymeric substance (EPS) compounds that could be attached to the membrane surface easily and led to membrane biofouling. The increase of MLSS, EPS and sludge viscosity concentration, decrease of sludge floc size and incomplete chemical cleaning procedure resulted in the increase of membrane resistance. Total membrane resistance increased from 3.19 × 1012 m?1 to 5.43 × 1014 m?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号