首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In contrast to HLA-B*2705, B*2709 is weakly or not associated to ankylosing spondylitis. Both allotypes differ by a single D116H change. We compared the B*2705- and B*2709-bound peptide repertoires by mass spectrometry to quantify the effect of B*2709 polymorphism on peptide specificity. In addition, shared and differentially bound ligands were sequenced to define the structural features of the various peptide subsets. B*2705 shared 79% of its peptide repertoire with B*2709. Shared ligands accounted for 88% of the B*2709-bound repertoire. All B*2705 ligands not bound to B*2709 had C-terminal basic or Tyr residues. Most B*2709-bound peptides had C-terminal aliphatic and Phe residues, but two showed C-terminal Arg or Tyr. The B*2709-bound repertoire included 12% of peptides not found in B*2705. These had aliphatic C-terminal residues, which are also favored in B*2705. However, these peptides bound weakly B*2705 in vitro, indicating distinct contribution of secondary anchor residues in both subtypes. Differences in peptide binding did not affect the ratio of native to beta2-microglobulin-free HLA-B27 heavy chain at the cell surface. Our results suggest that weaker association of B*2709 with ankylosing spondylitis is based on differential binding of a limited subset of natural ligands by this allotype.  相似文献   

2.
Tapasin is critical for efficient loading and surface expression of most HLA class I molecules. The high level surface expression of HLA-B*2705 on tapasin-deficient 721.220 cells allowed the influence of this chaperone on peptide repertoire to be examined. Comparison of peptides bound to HLA-B*2705 expressed on tapasin-deficient and -proficient cells by mass spectrometry revealed an overall reduction in the recovery of B*2705-bound peptides isolated from tapasin-deficient cells despite similar yields of B27 heavy chain and beta(2)-microglobulin. This indicated that a proportion of suboptimal ligands were associated with B27, and they were lost during the purification process. Notwithstanding this failure to recover these suboptimal peptides, there was substantial overlap in the repertoire and biochemical properties of peptides recovered from B27 complexes derived from tapasin-positive and -negative cells. Although many peptides were preferentially or uniquely isolated from B*2705 in tapasin-positive cells, a number of species were preferentially recovered in the absence of tapasin, and some of these peptide ligands have been sequenced. In general, these ligands did not exhibit exceptional binding affinity, and we invoke an argument based on lumenal availability and affinity to explain their tapasin independence. The differential display of peptides in tapasin-negative and -positive cells was also apparent in the reactivity of peptide-sensitive alloreactive CTL raised against tapasin-positive and -negative targets, demonstrating the functional relevance of the biochemical observation of changes in peptide repertoire in the tapasin-deficient APC. Overall, the data reveal that tapasin quantitatively and qualitatively influences ligand selection by class I molecules.  相似文献   

3.
HLA-B*2702, B*2704, and B*2705 are strongly associated with spondyloarthritis, whereas B*2706 is not. Subtypes differ among each other by a few amino acid changes and bind overlapping peptide repertoires. In this study we asked whether differential subtype association with disease is related to differentially bound peptides or to altered antigenicity of shared ligands. Alloreactive CTL raised against B*2704 were analyzed for cross-reaction with B*2705, B*2702, B*2706, and mutants mimicking subtype changes. These CTL are directed against many alloantigen-bound peptides and can be used to analyze the antigenicity of HLA-B27 ligands on different subtypes. Cross-reaction of anti-B*2704 CTL with B*2705 and B*2702 correlated with overlap of their peptidic anchor motifs, suggesting that many shared ligands have similar antigenic features on these three subtypes. Moreover, the percent of anti-B*2704 CTL cross-reacting with B*2706 was only slightly lower than the overlap between the corresponding peptide repertoires, suggesting that most shared ligands have similar antigenic features on these two subtypes. Cross-reaction with B*2705 or mutants mimicking changes between B*2704 and B*2705 was donor-dependent. In contrast, cross-reaction with B*2702 or B*2706 was less variable among individuals. Conservation of antigenic properties among subtypes has implications for allorecognition, as it suggests that shared peptides may determine cross-reaction across exposed amino acid differences in the MHC molecules and that the antigenic distinctness of closely related allotypes may differ among donors. Our results also suggest that differential association of HLA-B27 subtypes with spondyloarthritis is more likely related to differentially bound peptides than to altered antigenicity of shared ligands.  相似文献   

4.
The peptide specificity of HLA-B*1403, an allotype associated with ankylosing spondylitis (Lopez-Larrea, C., Mijiyawa, M., Gonzalez, S., Fernandez-Morera, J. L., Blanco-Gelaz, M. A., Martinez-Borra, J., and Lopez-Vazquez, A. (2002) Arthritis Rheum. 46, 2968-2971) was compared with those of the non-associated B*1402 and the prototypic disease-associated B*2705 allotypes. Although differing by a single residue (L156R), B*1402 and B*1403 shared only 32-35% of their peptide repertoires. Subtype-related differences observed in multiple peptide positions, including P3 and P7, were largely explained by a direct effect of the L156R change on peptide specificity. The HLA-B14 subtypes shared only approximately 3% of their peptide repertoires with B*2705. This was due to distinct residue usage at most positions, as revealed by statistical comparison of B*1402, B*1403, and B*2705-bound nonamers. Nevertheless, shared ligands between B*2705 and B*1403 were formally identified, although ligands common to B*2705 and B*1403, but absent from B*1402, were not found. Alloreactive T-cells were used as a tool to analyze epitope sharing among B*1402, B*1403, and B*2705. The percentage of cross-reactive T-cell clones closely paralleled peptide overlap, suggesting that shared ligands tend to maintain their antigenic features when bound to the different allotypes. Our results indicate that B*1403 and B*2705 can present common peptides. However, both the disparity of their peptide repertoires and the lack of binding features shared by these two allotypes, but not B*1402, argue against, although do not exclude, a mechanism of spondyloarthritis mediated by specific ligands of B*2705 and B*1403.  相似文献   

5.
The influence of various factors along the processing-loading pathway in limiting the diversity of HLA-B27-bound peptides around a core protein sequence was analyzed. The C5 proteasome subunit-derived RRFFPYYV and RRFFPYYVY peptides are natural B*2705 ligands. The octamer is an allospecific CTL epitope. Digestion of a 27-mer fragment of C5 revealed that both ligands are generated from this precursor substrate with the 20S proteasome in vitro in a ratio comparable to that in the B*2705-bound peptide pool. The C5 sequence allowed to derive a nested set of six additional peptides with 8-11 residues containing the core octamer sequence and the Arg2 motif of HLA-B27, none of which was found in the B27-bound pool. Together, low proteasomal yield, disfavored TAP-binding motifs, and low affinity for B*2705 accounted for the absence of four of the six peptides. The two remaining differed from the natural octamer or nonamer ligands only by an additional N-terminal Ser residue. Their stability in complex with B*2705 was lower than the respective natural ligands, raising the possibility that N-terminal trimming might have favored a shift toward the more stable peptides. The results suggest that the B*2705-bound peptide repertoire has a highly restricted diversity around a core alloantigenic sequence. This is not explained by a single bottleneck feature, but by multiple factors, including proteasomal generation, TAP-binding motifs, MHC-binding efficiency, and perhaps optimized stability through N-terminal trimming. Tapasin-dependent restrictions, although not excluded, were not required to explain the absence in vivo of the particular peptide set in this study.  相似文献   

6.
HLA-B27 is strongly associated with ankylosing spondylitis. Natural HLA-B27 ligands derived from polymorphic regions of its own or other class I HLA molecules might be involved in autoimmunity or provide diversity among HLA-B27-bound peptide repertoires from individuals. In particular, an 11-mer spanning HLA-B27 residues 169-179 is a natural HLA-B27 ligand with homology to proteins from Gram-negative bacteria. Proteasomal digestion of synthetic substrates demonstrated direct generation of the B27-(169-179) ligand. Cleavage after residue 181 generated a B27-(169-181) 13-mer that was subsequently found as a natural ligand of B*2705 and B*2704. Its binding to HLA-B27 subtypes in vivo correlated better than B27-(169-179) with association to spondyloarthropathy. Proteasomal cleavage generated also a peptide spanning B*2705 residues 150-158. This region is polymorphic among HLA-B27 subtypes and class I HLA antigens. The peptide was a natural B*2704 ligand. Since this subtype differs from B*2705 at residue 152, it was concluded that the ligand arose from HLA-B*3503, synthesized in the cells used as a source for B*2704-bound peptides. Thus, polymorphic HLA-B27 ligands derived from HLA-B27 or other class I molecules are directly produced by the 20 S proteasome in vitro, and this can be used for identification of such ligands in the constitutive HLA-B27-bound peptide pool.  相似文献   

7.
HLA-B*2704 is strongly associated with ankylosing spondylitis. B*2706, which differs from B*2704 by two amino acid changes, is not associated with this disease. A systematic comparison of the B*2704- and B*2706-bound peptide repertoires was carried out to elucidate their overlap and differential features and to correlate them with disease susceptibility. Both subtypes shared about 90% of their peptide repertoires, consisting of peptides with Arg(2) and C-terminal aliphatic or Phe residues. B*2706 polymorphism influenced specificity at three anchor positions: it favored basic residues at P3 and POmega-2 and impaired binding of Tyr and Arg at POmega. Thus, the main structural feature of peptides differentially bound to B*2704 was the presence of C-terminal Tyr or Arg, together with a strong preference for aliphatic/aromatic P3 residues. This is the only known feature of B*2704 and B*2706 that correlates to their differential association with spondyloarthropathy. The concomitant presence of basic P3 and POmega-2 residues was observed only among peptides differentially bound to B*2706, suggesting that it impairs binding to B*2704. Similarity between peptide overlap and the degree of cross-reaction with alloreactive T lymphocytes suggested that the majority of shared ligands maintain unaltered antigenic features in the context of both subtypes.  相似文献   

8.
The ER protein tapasin (Tpn) forms a bridge between MHC class I H chain (HC)/beta(2)-microglobulin and the TAP peptide transporter. The function of this TAP-associated complex was unclear because it was reported that soluble Tpn that has lost TAP interaction would be fully competent in terms of peptide loading and Ag presentation. We found, however, that only wild-type human Tpn (hTpn), but not three soluble hTpn variants, a transmembrane domain point mutant of hTpn (L410-->F), wild-type mouse Tpn, nor a mouse-human Tpn hybrid, fully up-regulated peptide-dependent Bw4 epitopes when expressed in Tpn-deficient.220.B*4402 cells. Consistent with suboptimal peptide loading, the t(1/2) of class I molecules was considerably reduced in the presence of soluble hTpn, hTpn-L410F, and murine Tpn. Furthermore, eluted peptide spectra and the class I-mediated inhibition of NK clones showed distinct differences to the hTpn transfectant. Only wild-type hTpn efficiently recruited HC and calreticulin (Crt) into complexes with TAP and endoplasmic reticulum p57 (ERp57). The L410F mutant was defective in TAP association, but bound to class I molecules, Crt, and ERp57. Mouse Tpn associated with human TAP and ERp57 on the one hand, and with HC and Crt on the other, but failed to recruit normal amounts of HLA class I molecules into the TAP complex. We conclude that the loading with peptides conferring high stability requires the Tpn-mediated introduction of HC into the TAP complex, whereas the mere interaction with Tpn is not sufficient.  相似文献   

9.
B*2704 is strongly associated to ankylosing spondylitis in Asian populations. It differs from the main HLA-B27 allotype, B*2705, in three amino acid changes. We analyzed the influence of tapasin, TAP, and immunoproteasome induction on maturation, surface expression, and T cell allorecognition of B*2704 and compared some of these features with B*2705 and B*2706, allotypes not associated to disease. In the tapasin-deficient .220 cell line, this chaperone significantly influenced the extent of folding of B*2704 and B*2705, but not their egress from the endoplasmic reticulum. In contrast, B*2706 showed faster folding and no accumulation in the endoplasmic reticulum in the absence of tapasin. Surface expression of B*2704 was more tapasin dependent than B*2705. However, expression of free H chain decreased in the presence of this chaperone for B*2705 but not B*2704, suggesting that more suboptimal ligands were loaded on B*2705 in the absence of tapasin. Despite its influence on surface expression, tapasin had little effect on allorecognition of B*2704. Both surface expression and T cell recognition of B*2704 were critically dependent on TAP, as established with TAP-deficient and TAP-proficient T2 cells. Both immunoproteasome and surface levels of B*2704 were induced by IFN-gamma, but this had little effect on allorecognition. Thus, except for the differential effects of tapasin on surface expression, the tapasin, TAP, and immunoproteasome dependency of B*2704 for maturation, surface expression, and T cell recognition are similar to B*2705, indicating that basic immunological features are shared by the two major HLA-B27 allotypes associated to ankylosing spondylitis in human populations.  相似文献   

10.
HLA-B*2705 is strongly associated with ankylosing spondylitis (AS) and reactive arthritis. In contrast, B*2709 has been reported to be more weakly or not associated to AS. These two molecules differ by a single amino acid change: aspartic acid in B*2705 or histidine in B*2709 at position 116. In this study, we analyzed the degree of T cell epitope sharing between the two subtypes. Ten allospecific T cell clones raised against B*2705, 10 clones raised against B*2703 but cross-reactive with B*2705, and 10 clones raised against B*2709 were examined for their capacity to lyse B*2705 and B*2709 target cells. The anti-B*2705 and anti-B*2703 CTL were peptide dependent as demonstrated by their failure to lyse TAP-deficient B*2705-T2 transfectant cells. Eight of the anti-B*2705 and five of the anti-B*2703 CTL clones lysed B*2709 targets. The degree of cross-reaction between B*2705 and B*2709 was donor dependent. In addition, the effect of the B*2709 mutation (D116H) on allorecognition was smaller than the effect of the other naturally occurring subtype change at this position, D116Y. These results demonstrate that B*2705 and B*2709 are the antigenically closest HLA-B27 subtypes. Because allospecific T cell recognition is peptide dependent, our results imply that the B*2705- and B*2709-bound peptide repertoires are largely overlapping. Thus, to the extent to which linkage of HLA-B27 with AS is related to the peptide-presenting properties of this molecule, our results would imply that peptides within a relatively small fraction of the HLA-B27-bound peptide repertoire influence susceptibility to this disease.  相似文献   

11.
A strategy for the stable expression of proteins, or large protein fragments, from Chlamydia trachomatis into human cells was designed to identify bacterial epitopes endogenously processed and presented by HLA-B27. Fusion protein constructs in which the green fluorescent protein gene was placed at the 5'-end of the bacterial DNA primase gene or some of its fragments were transfected into B*2705-C1R cells. One of these constructs, including residues 90-450 of the bacterial protein, was stably and efficiently expressed. Mass spectrometry-based comparative analysis of HLA-B27-bound peptide pools led to identification of three HLA-B27 ligands differentially presented in the transfectant cells. Sequencing of these peptides confirmed that they were derived from the bacterial DNA primase. One of them, spanning residues 211-221, showed 55% sequence identity with a known self-ligand of HLA-B27 derived from its own molecule. The other two bacterial ligands, P-(112-121) and P-(112-122), were derived from the same region and differed in length by one residue at the C terminus. Both peptides showed >50% identity with multiple human protein sequences that possessed the optimal peptide motifs for HLA-B27 binding. Thus, expression of proteins from arthritogenic bacteria in HLA-B27-positive human cells allows identifying bacterial peptides that are endogenously processed and presented by HLA-B27 and show molecular mimicry with known self-ligands of this molecule and human proteins.  相似文献   

12.
Cys-67 of HLA-B27 is located in the B pocket, which determines peptide-binding specificity. We analyzed effects of the Cys-67 --> Ser mutation on cell surface expression, peptide specificity, and T-cell recognition of HLA-B*2705. Surface expression was assessed with antibodies recognizing either native or unfolded HLA proteins. Whereas native B*2705 molecules predominated over unfolded ones, this ratio was reversed in the mutant, suggesting lower stability. Comparison of B*2705- and Cys-67 --> Ser-bound peptides revealed that the mutant failed to bind approximately 15% of the B*2705 ligands, while binding as many novel ones. Two peptides with Gln-2 found in both B*2705 and Cys-67 --> Ser are the first demonstration of natural B*2705 ligands lacking Arg-2. Other effects of the mutation on peptide specificity were: 1) average molecular mass of natural ligands higher than for B*2705, 2) bias against small residues at peptide position (P) 1, and 3) increased P2 permissiveness. The results suggest that the Cys-67 --> Ser mutation weakens B pocket interactions, leading to decreased stability of the mutant-peptide complexes. This may be partially compensated by interactions involving bulky P1 residues. The effect of the mutation on allorecognition was consistent with that on peptide specificity. Our results may aid understanding of the pathogenetic role of HLA-B27 in spondyloarthropathy.  相似文献   

13.
Selected HLA-B27 subtypes are associated with spondyloarthropathies, but the underlying mechanism is not understood. To explain this association in molecular terms, a comparison of peptide-dependent dynamic and structural properties of the differentially disease-associated subtypes HLA-B*2705 and HLA-B*2709 was carried out. These molecules differ only by a single amino acid at the floor of the peptide binding groove. The thermostabilities of a series of HLA-B27 molecules complexed with nonameric and decameric peptides were determined and revealed substantial differences depending on the subtype as well as the residues at the termini of the peptides. In addition we present the crystal structure of the B*2709 subtype complexed with a decameric peptide. This structure provides an explanation for the preference of HLA-B27 for a peptide with an N-terminal arginine as secondary anchor and the lack of preference for tyrosine as peptide C terminus in B*2709. The data show that differences in thermodynamic properties between peptide-complexed HLA-B27 subtypes are correlated with a variety of structural properties.  相似文献   

14.
Knowledge about the magnitude of individual polymorphism is a critical part in understanding the complexity of comprehensive mismatching. HLA-B*44:09 differs from the highly frequent HLA-B*44:02 allele by amino acid exchanges at residues 77, 80, 81, 82 and 83. We aimed to identify the magnitude of these mismatches on the features of HLA-B*44:09 bound peptides since residues 77, 80 and 81 comprise part of the F pocket which determines sequence specificity at the pΩ position of the peptide. Using soluble HLA technology we determined >200 individual (nonduplicate) self-peptides from HLA-B*44:09 and compared their features with that of the published peptide features of HLA-B*44:02. Both alleles illustrate an anchor motif of E at p2. In contrast to the C-terminal peptide binding motif of B*44:02 (W, F, Y or L), B*44:09-derived peptides are restricted predominantly to L or F. The source of peptides for both alleles is identical (LCL 721.221 cells) allowing us to identify 23 shared peptides. The majority of these peptides however contained the restricted B*44:09 anchor motif of F or L at the pΩ position. Molecular modelling based on the B*44:02 structure highlights that the differences of the C-terminal peptide anchor between both alleles can be explained primarily by the B*44:02(81Ala)?>?B*44:09(81Leu) polymorphism which restricts the size of the amino acid that can be accommodated in the F pocket of B*44:09. These results highlight that every amino acid substitution has an impact of certain magnitude on the alleles function and demonstrate how surrounding residues orchestrate peptide specificity.  相似文献   

15.
Analysis of antigen dissociation provides insight into peptide presentation modes of folded human leukocyte antigen (HLA) molecules, which consist of a heavy chain, beta2-microglobulin (beta2m), and an antigenic peptide. Here we have monitored peptide-HLA interactions and peptide dissociation kinetics of two HLA-B27 subtypes by fluorescence depolarization techniques. A single natural amino-acid substitution distinguishes the HLA-B*2705 subtype that is associated with the autoimmune disease ankylosing spondylitis from the non-disease-associated HLA-B*2709 subtype. Peptides with C-terminal Arg or Lys represent 27% of the natural B*2705 ligands. Our results show that dissociation of a model peptide with a C-terminal Lys (GRFAAAIAK) follows a two-step mechanism. Final peptide release occurs in the second step for both HLA-B27 subtypes. However, thermodynamics and kinetics of peptide-HLA interactions reveal different molecular mechanisms underlying the first step, as indicated by different activation energies of 95+/-8 kJ/mol (HLA-B*2705) and 150+/-10 kJ/mol (HLA-B*2709). In HLA-B*2709, partial peptide dissociation probably precedes fast final peptide release, while in HLA-B*2705 an allosteric mechanism based on long-range interactions between beta2m and the peptide binding groove controls the first step. The resulting peptide presentation mode lasts for days at physiological temperature, and determines the peptide-HLA-B*2705 conformation, which is recognized by cellular ligands such as T-cell receptors.  相似文献   

16.
This study addressed the mechanisms by which HLA class I polymorphism modulates allorecognition. CTL 27S69 is an alloreactive clone raised against HLA-B*2705, with a known peptide epitope. This CTL cross-reacts with B*2702, which differs from B*2705 in the D77N, T80I, and L81A changes, but not with B*2701, which has D74Y, D77N, and L81A changes. To explain this differential recognition, B*2705 mutants mimicking subtype changes were used. The A81 mutant was not recognized, despite binding the natural epitope in vivo, suggesting that, when bound to this mutant, this peptide adopts an inappropriate conformation. The N77 and I80 mutations restored recognition in the N77A81 or I80A81 mutants. These compensatory effects explain the cross-reaction with B*2702. The Y74 and the Y74N77 mutants were weakly recognized or not recognized by CTL 27S69. This correlated with the absence or marginal presence of the peptide epitope in the Y74N77-bound pool. As with B*2701, exogenous addition of the peptide epitope sensitized Y74 and Y74N77 targets for lysis, indicating that failure to cross-react with B*2701 or these mutants was due to poor binding of the peptide in vivo and not to inappropriate presentation. The abrogating effect of Y74 was critically dependent upon the K70 residue, conserved among subtypes, as demonstrated with mutants at this position. Thus, HLA polymorphism affects allorecognition by modulating peptide binding or the conformation of bound peptides. Compensatory mutations and indirect effects of a polymorphic residue on residues conserved play a critical role.  相似文献   

17.
Chen M  Bouvier M 《The EMBO journal》2007,26(6):1681-1690
We examined interactions in a soluble tapasin (TPN)/HLA-B*0801 complex to gain mechanistic insights into the functions of TPN. Results show that TPN acts as a chaperone by increasing the ratio of active-to-inactive peptide-deficient HLA-B*0801 molecules in solution. TPN causes peptides to associate and dissociate faster owing to its effect on widening the binding groove of HLA-B*0801 molecules. Our data indicate that a TPN-assisted mechanism of peptide selection relies on disruption of conserved hydrogen bonds at the C-terminal end of the groove. Peptide sequence-dependent interactions along the entire length of the groove also play a role in this mechanism. We suggest that TPN influences presentation of antigenic peptides according to a mechanistically complicated process in which bound candidate peptides that are unable to conformationally disengage TPN from class I molecules are excluded from the repertoire. Overall, these studies unify our understanding of the functions of TPN.  相似文献   

18.
Human leukocyte antigen (HLA) class I molecules consist of a heavy chain, β2-microglobulin, and a peptide that are noncovalently bound. Certain HLA-B27 subtypes are associated with ankylosing spondylitis (such as HLA-B*2705), whereas others (such as HLA-B*2709) are not. Both differ in only one residue (Asp116 and His116, respectively) in the F pocket that accommodates the peptide C-terminus. An isotope-edited IR spectroscopy study of these HLA-B27 subtypes complexed with the self-peptide RRKWRRWHL was carried out, revealing that the heavy chain is more flexible in the HLA-B*2705 than in the HLA-B*2709 subtype. In agreement with these experimental data, molecular dynamics simulations showed an increased flexibility of the HLA-B*2705 binding groove in comparison with that of the HLA-B*2709 subtype. This difference correlates with an opening of the HLA-B*2705 binding groove, accompanied by a partial detachment of the C-terminal peptide anchor. These combined results demonstrate how the deeply embedded polymorphic heavy-chain residue 116 influences the flexibility of the peptide binding groove in a subtype-dependent manner, a feature that could also influence the recognition of the HLA-B27 complexes by effector cells.  相似文献   

19.
A direct binding assay has been used to investigate the effect of the secondary anchor residues on peptide binding to class I proteins of the major histocompatibility complex. Based on predictions from a previous chemometric approach, synthetic peptide analogues containing unnatural amino acids were synthesized and tested for B*2705 binding. Hydrophobic unnatural amino acids such as α-naphthyl- and cyclohexyl-alanine were found to be excellent substituents in the P3 secondary anchor position giving peptides with very high B*2705-binding affinity. The binding to B*2705 of peptides optimized for their secondary anchor residues, but lacking one of the P2 or P9 primary anchor residues was also investigated. Most such peptides did not bind, but one peptide, lacking the P2 Arg residue generally considered essential for binding to all B27 subtypes, was found to bind quite strongly. These findings demonstrate that peptide binding to class I proteins is due to a combination of all the anchor residues, which may be occupied also by unnatural amino acids–a necessary step towards the development of peptidic or non-peptidic antagonists for immunomodulation.  相似文献   

20.
B*2701 differs from all other HLA-B27 subtypes of known peptide specificity in that, among its natural peptide ligands, arginine is not the only allowed residue at peptide position 2. Indeed, B*2701 is unique in binding many peptides with Gln2 in vivo. However, the mutation (Asp74Tyr) responsible for altered selectivity is far away from the B pocket of the peptide binding site to which Gln/Arg2 binds. Here, we present a model that explains this effect. It is proposed that a new rotameric state of the conserved Lys70 is responsible for the unique B*2701 binding motif. This side chain should be either kept away from pocket B through its interaction with Asp74 in most HLA-B27 subtypes, or switched to this pocket if residue 74 is Tyr as in B*2701. Involvement of Lys70 in pocket B would thus allow binding of peptides with Gln2. Binding of Arg2-containing peptides to B*2701 is also possible because Lys70 could adopt another conformation, H-bonded to Asn97, which preserves the same binding mode of Arg2 as in B*2705. This model was experimentally validated by mutating Lys70 into Ala in B*2701. Edman sequencing of the B*2701(K70A) peptide pool showed only Arg2, characteristic of HLA-B27-bound peptides, and no evidence for Gln2. This supports the computational model and demonstrates that allowance of B*2701 for peptides with Gln2 is due to the long-range effect of the polymorphic residue 74 of HLA-B27, by inducing a conformational switch of the conserved Lys70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号