首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Position 45 represents a highly polymorphic residue within HLA class I alleles, which contacts the p2 position of bound peptides in 85% of the peptide–HLA structures analyzed, while the neighboring residues 41 and 46 are not involved in peptide binding. To investigate the influence of residue 45 at the functional level, we sequenced peptides eluted from recombinant HLA-B*44:0841Ala/45Met/46Ala molecules and compared their features with known peptides from B*44:0241Thr/45Lys/46Glu. While HLA-B*44:02 has an anchor motif of E at the p2 anchor position, HLA-B*44:08 exhibits Q and L as anchor motif. The 45Met/Lys polymorphism contributes to the alteration in the peptide-binding motif and provides further evidence that mismatches at position 45 should be considered as nonpermissive in a transplantation setting.  相似文献   

2.
There have been several attempts over the years to identify positions in the peptide-binding region (PBR) of human leukocyte antigens (HLA) that influence the specificity of bound amino acids (AAs) at each position in the peptide. Originally, six pockets (A-F) were defined by calculating the surface area of the PBR on the crystal structure of HLA-A2 molecules. More recent crystallographic analyses of a variety of HLA alleles have led to broader pocket definitions. In this study, we examined the peptide-binding specificity of HLA-B*41 alleles and compared our results with the available pocket definitions. By generating recombinant HLA-B molecules and studying the eluted peptides by mass spectrometry and pool sequencing, we detected two different POmega peptide motifs within the B*41 group: Leu vs Val/Pro. Specificity was dependent on the presence of Leu (B*4102, B*4103, and B*4104) vs Trp (B*4101, B*4105, and B*4106) at AA position 95 in the HLA molecule, whose impact on POmega has been a subject of controversy in current pocket definitions. In contrast, the Arg97Ser mutation did not affect pocket F binding specificity in B*41 subtypes although residue 97 was previously identified as a modulator of peptide binding for several HLA class I alleles. According to most pocket definitions, this study shows that the Asn80Lys substitution in B*4105 impels the peptide's POmega anchor toward more promiscuity. Our sequencing results of peptides eluted from HLA-B*41 variants demonstrate the limitations of current pocket definitions and underline the need for an extended peptide motif database for improved understanding of peptide-major histocompatibility complex interactions.  相似文献   

3.
HLA-B*4006 is the most common allele amongst Indians. It belongs to the 'HLA-B44 supertype' family of alleles that constitute an important component of the peptide binding repertoire in populations world over. Its peptide binding characteristics remain poorly examined. The amino acid sequence and structural considerations suggest a small, poorly hydrophobic 'F' pocket for this allele that may adversely affect the interaction with the C terminal residue of the antigenic peptide. Contribution of auxiliary anchor residues (P3) of the peptide has also been indicated. To examine these aspects by in silico analysis, HLA-B*4001, 4002, and 4006 alleles were modeled using HLA-B*4402 as a template. Eleven peptides, known to bind alleles of this family, were used for docking and molecular dynamics studies. Interaction between the amino group (main-chain) of P3 residue and Tyr99 of the alleles was seen in majority of peptide-complexes. Hydrophobic interactions between Tyr7 and Tyr159 with N terminal residues of the peptide were also seen in all the complexes. Replacement of Trp95 by leucine in HLA-B*4006 resulted in reduction of binding free energy in 8 out of 9 complexes. In summary, the analysis of the modeled structures and HLA-peptide complexes strongly supports the adverse effect of Trp95 at pocket F and the possible role of the third residue of the antigenic peptide as an auxiliary anchor in HLA-B*4006 peptide complexes. In the light of suggested promiscuous peptide binding pattern and association with risk for tuberculosis/HIV for this allele, the ascertainment of the predicted effects of Trp95 and role of P3 residue as an auxiliary anchor by this preliminary in silico analysis thus helps define direction of the further studies.  相似文献   

4.
In contrast to HLA-B*2705, B*2709 is weakly or not associated to ankylosing spondylitis. Both allotypes differ by a single D116H change. We compared the B*2705- and B*2709-bound peptide repertoires by mass spectrometry to quantify the effect of B*2709 polymorphism on peptide specificity. In addition, shared and differentially bound ligands were sequenced to define the structural features of the various peptide subsets. B*2705 shared 79% of its peptide repertoire with B*2709. Shared ligands accounted for 88% of the B*2709-bound repertoire. All B*2705 ligands not bound to B*2709 had C-terminal basic or Tyr residues. Most B*2709-bound peptides had C-terminal aliphatic and Phe residues, but two showed C-terminal Arg or Tyr. The B*2709-bound repertoire included 12% of peptides not found in B*2705. These had aliphatic C-terminal residues, which are also favored in B*2705. However, these peptides bound weakly B*2705 in vitro, indicating distinct contribution of secondary anchor residues in both subtypes. Differences in peptide binding did not affect the ratio of native to beta2-microglobulin-free HLA-B27 heavy chain at the cell surface. Our results suggest that weaker association of B*2709 with ankylosing spondylitis is based on differential binding of a limited subset of natural ligands by this allotype.  相似文献   

5.
HLA-B*2704 is strongly associated with ankylosing spondylitis. B*2706, which differs from B*2704 by two amino acid changes, is not associated with this disease. A systematic comparison of the B*2704- and B*2706-bound peptide repertoires was carried out to elucidate their overlap and differential features and to correlate them with disease susceptibility. Both subtypes shared about 90% of their peptide repertoires, consisting of peptides with Arg(2) and C-terminal aliphatic or Phe residues. B*2706 polymorphism influenced specificity at three anchor positions: it favored basic residues at P3 and POmega-2 and impaired binding of Tyr and Arg at POmega. Thus, the main structural feature of peptides differentially bound to B*2704 was the presence of C-terminal Tyr or Arg, together with a strong preference for aliphatic/aromatic P3 residues. This is the only known feature of B*2704 and B*2706 that correlates to their differential association with spondyloarthropathy. The concomitant presence of basic P3 and POmega-2 residues was observed only among peptides differentially bound to B*2706, suggesting that it impairs binding to B*2704. Similarity between peptide overlap and the degree of cross-reaction with alloreactive T lymphocytes suggested that the majority of shared ligands maintain unaltered antigenic features in the context of both subtypes.  相似文献   

6.
Although most autoimmune diseases are connected to major histocompatibility complex (MHC) class II alleles, a small number of these disorders exhibit a variable degree of association with selected MHC class I genes, like certain human HLA-A and HLA-B alleles. The basis for these associations, however, has so far remained elusive. An understanding might be obtained by comparing functional, biochemical, and biophysical properties of alleles that are minimally distinct from each other, but are nevertheless differentially associated to a given disease, like the HLA-B*27:05 and HLA-B*27:09 antigens, which differ only by a single amino acid residue (Asp116His) that is deeply buried within the binding groove. We have employed a number of approaches, including X-ray crystallography and isotope-edited infrared spectroscopy, to investigate biophysical characteristics of the two HLA-B27 subtypes complexed with up to ten different peptides. Our findings demonstrate that the binding of these peptides as well as the conformational flexibility of the subtypes is greatly influenced by interactions of the C-terminal peptide residue. In particular, a basic C-terminal peptide residue is favoured by the disease-associated subtype HLA-B*27:05, but not by HLA-B*27:09. This property appears also as the only common denominator of distinct HLA class I alleles, among them HLA-B*27:05, HLA-A*03:01 or HLA-A*11:01, that are associated with diseases suspected to have an autoimmune etiology. We postulate here that the products of these alleles, due to their unusual ability to bind with high affinity to a particular peptide set during positive T cell selection in the thymus, are involved in shaping an abnormal T cell repertoire which predisposes to the acquisition of autoimmune diseases.  相似文献   

7.
The majority of >2000 HLA class I molecules can be clustered according to overlapping peptide binding specificities or motifs recognized by CD8(+) T cells. HLA class I motifs are classified based on the specificity of residues located in the P2 and the C-terminal positions of the peptide. However, it has been suggested that other positions might be relevant for peptide binding to HLA class I molecules and therefore be used for further characterization of HLA class I motifs. In this study we performed large-scale sequencing of endogenous peptides eluted from K562 cells (HLA class I null) made to express a single HLA molecule from HLA-B*3501, -B*3502, -B*3503, -B*3504, -B*3506, or -B*3508. Using sequence data from >1,000 peptides, we characterized novel peptide motifs that include dominant anchor residues extending to all positions in the peptide. The length distribution of HLA-B35-bound peptides included peptides of up to 15 residues. Remarkably, we determined that some peptides longer than 11 residues represented N-terminal-extended peptides containing an appropriate HLA-B35 peptide motif. These results provide evidence for the occurrence of endogenous N-terminal-extended peptide-HLA class I configurations. In addition, these results expand the knowledge about the identity of anchor positions in HLA class I-associated peptides that can be used for characterization of HLA class I motifs.  相似文献   

8.
The crystal structures of the human MHC class I allele HLA-B*5101 in complex with 8-mer, TAFTIPSI, and 9-mer, LPPVVAKEI, immunodominant peptide epitopes from HIV-1 have been determined by x-ray crystallography. In both complexes, the hydrogen-bonding network in the N-terminal anchor (P1) pocket is rearranged as a result of the replacement of the standard tyrosine with histidine at position 171. This results in a nonstandard positioning of the peptide N terminus, which is recognized by B*5101-restricted T cell clones. Unexpectedly, the P5 peptide residues appear to act as anchors, drawing the peptides unusually deeply into the peptide-binding groove of B51. The unique characteristics of P1 and P5 are likely to be responsible for the zig-zag conformation of the 9-mer peptide and the slow assembly of B*5101. A comparison of the surface characteristics in the alpha1-helix C-terminal region for B51 and other MHC class I alleles highlights mainly electrostatic differences that may be important in determining the specificity of human killer cell Ig-like receptor binding.  相似文献   

9.
Human major histocompatibility complex class I (MHC I) – or human leukocyte antigen (HLA) – proteins present intracellularly processed peptides to cytotoxic T lymphocytes in the adaptive immune response to pathogens. A high level of polymorphism in human MHC I proteins defines the peptide-binding specificity of thousands of different MHC alleles. However, polymorphism as well as the peptide ligand can also affect the global dynamics of the complex. In this study, we conducted classical molecular dynamics simulations of two HLA alleles, the ankylosing spondylitis (AS) associated/tapasin-dependent HLA-B*27:05 and nondisease-associated/tapasin-independent HLA-B*27:09, both in peptide-free forms as well as complex with four different peptides ligands. Our results indicate that in peptide-free form, the single amino acid substitution distinguishing the two alleles (D116H), leads to a weaker dynamic coupling of residues in the tapasin-dependent HLA-B*27:05. In peptide-bound form, several residues of the binding-groove, mostly in A and B pockets, show hinge-like behavior in the global motion of the MHC. Moreover, allele-dependent changes are shown in residue interactions, affecting the B-pocket as well as the beta-2-microglobulin (β2m)-facing residues of the HLA chain.  相似文献   

10.
The MHC class I molecule Mamu-B*17 has been associated with elite control of SIV infection in rhesus macaques, akin to the protective effects described for HLA-B*57 in HIV-infected individuals. In this study, we determined the crystal structures of Mamu-B*17 in complex with eight different peptides corresponding to immunodominant SIV(mac)239-derived CD8(+) T cell epitopes: HW8 (HLEVQGYW), GW10 (GSHLEVQGYW), MW9 (MHPAQTSQW), QW9 (QTSQWDDPW), FW9 (FQWMGYELW), MF8 (MRHVLEPF), IW9 (IRYPKTFGW), and IW11 (IRYPKTFGWLW). The structures reveal that not only P2, but also P1 and P3, can be used as N-terminal anchor residues by Mamu-B*17-restricted peptides. Moreover, the N-terminal anchor residues exhibit a broad chemical specificity, encompassing basic (H and R), bulky polar aliphatic (Q), and small (T) residues. In contrast, Mamu-B*17 exhibits a very narrow preference for aromatic residues (W and F) at the C terminus, similar to that displayed by HLA-B*57. Flexibility within the whole peptide-binding groove contributes to the accommodation of these diverse peptides, which adopt distinct conformations. Furthermore, the unusually large pocket D enables compensation from other peptide residues if P3 is occupied by an amino acid with a small side chain. In addition, residues located at likely TCR contact regions present highly flexible conformations, which may impact TCR repertoire profiles. These findings provide novel insights into the structural basis of diverse peptide accommodation by Mamu-B*17 and highlight unique atomic features that might contribute to the protective effect of this MHC I molecule in SIV-infected rhesus macaques.  相似文献   

11.
As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I phospholigands is challenging as the molecular determinants of the presentation of such post-translationally modified peptides are not fully understood. Here, we employed a peptidomic workflow to identify 256 unique phosphorylated ligands associated with HLA-B*40, -B*27, -B*39, or -B*07. Remarkably, these phosphopeptides showed similar molecular features. Besides the specific anchor motifs imposed by the binding groove of each allotype, the predominance of phosphorylation at peptide position 4 (P4) became strikingly evident, as was the enrichment of basic residues at P1. To determine the structural basis of this observation, we carried out a series of peptide binding assays and solved the crystal structures of HLA-B*40 in complex with a phosphorylated ligand or its nonphosphorylated counterpart. Overall, our data provide a clear explanation to the common motif found in the phosphopeptidomes associated to different HLA-B molecules. The high prevalence of phosphorylation at P4 is dictated by the presence of the conserved residue Arg62 in the heavy chain, a structural feature shared by most HLA-B alleles. In contrast, the preference for basic residues at P1 is allotype-dependent and might be linked to the structure of the A pocket. This molecular understanding of the presentation of phosphopeptides by HLA-B molecules provides a base for the improved prediction and identification of phosphorylated neo-antigens, as potentially used for cancer immunotherapy.  相似文献   

12.
HLA-B15 peptide ligands are preferentially anchored at their C termini.   总被引:1,自引:0,他引:1  
Therapies to elicit protective CTL require the selection of pathogen- and tumor-derived peptide ligands for presentation by MHC class I molecules. Edman sequencing of class I peptide pools generates "motifs" that indicate that nonameric ligands bearing conserved position 2 (P2) and P9 anchors provide the optimal search parameters for selecting immunogenic epitopes. To determine how well a motif represents its individual constituents, we used a hollow-fiber peptide production scheme followed by the mapping of endogenously processed class I peptide ligands through reverse-phase HPLC and mass spectrometry. Systematically mapping and characterizing ligands from B*1508, B*1501, B*1503, and B*1510 demonstrate that the peptides bound by these B15 allotypes i) vary in length from 7 to 12 residues, and ii) are more conserved at their C termini than their N-proximal P2 anchors. Comparative peptide mapping of these B15 allotypes further pinpoints endogenously processed ligands that bind to the allotypes B*1508, B*1501, and B*1503, but not B*1510. Overlapping peptide ligands are successful in binding to B*1501, B*1503, and B*1508 because these B15 allotypes share identical C-terminal anchoring pockets whereas B*1510 is divergent in the C-terminal pocket. Therefore, endogenous peptide loading into the B15 allotypes requires that a conserved C terminus be anchored in the appropriate specificity pocket while N-proximal anchors are more flexible in their location and sequence. Queries for overlapping and allele-specific peptide ligands may thus be contingent on a conserved C-terminal anchor.  相似文献   

13.
B*2701 differs from all other HLA-B27 subtypes of known peptide specificity in that, among its natural peptide ligands, arginine is not the only allowed residue at peptide position 2. Indeed, B*2701 is unique in binding many peptides with Gln2 in vivo. However, the mutation (Asp74Tyr) responsible for altered selectivity is far away from the B pocket of the peptide binding site to which Gln/Arg2 binds. Here, we present a model that explains this effect. It is proposed that a new rotameric state of the conserved Lys70 is responsible for the unique B*2701 binding motif. This side chain should be either kept away from pocket B through its interaction with Asp74 in most HLA-B27 subtypes, or switched to this pocket if residue 74 is Tyr as in B*2701. Involvement of Lys70 in pocket B would thus allow binding of peptides with Gln2. Binding of Arg2-containing peptides to B*2701 is also possible because Lys70 could adopt another conformation, H-bonded to Asn97, which preserves the same binding mode of Arg2 as in B*2705. This model was experimentally validated by mutating Lys70 into Ala in B*2701. Edman sequencing of the B*2701(K70A) peptide pool showed only Arg2, characteristic of HLA-B27-bound peptides, and no evidence for Gln2. This supports the computational model and demonstrates that allowance of B*2701 for peptides with Gln2 is due to the long-range effect of the polymorphic residue 74 of HLA-B27, by inducing a conformational switch of the conserved Lys70.  相似文献   

14.
Selected HLA-B27 subtypes are associated with spondyloarthropathies, but the underlying mechanism is not understood. To explain this association in molecular terms, a comparison of peptide-dependent dynamic and structural properties of the differentially disease-associated subtypes HLA-B*2705 and HLA-B*2709 was carried out. These molecules differ only by a single amino acid at the floor of the peptide binding groove. The thermostabilities of a series of HLA-B27 molecules complexed with nonameric and decameric peptides were determined and revealed substantial differences depending on the subtype as well as the residues at the termini of the peptides. In addition we present the crystal structure of the B*2709 subtype complexed with a decameric peptide. This structure provides an explanation for the preference of HLA-B27 for a peptide with an N-terminal arginine as secondary anchor and the lack of preference for tyrosine as peptide C terminus in B*2709. The data show that differences in thermodynamic properties between peptide-complexed HLA-B27 subtypes are correlated with a variety of structural properties.  相似文献   

15.
The human MHC class I gene, HLA-B27, is a strong risk factor for susceptibility to a group of disorders termed spondyloarthropathies (SpAs). HLA-B27-transgenic rodents develop SpAs, implicating HLA-B27 in the etiology of these disorders. Several nonhuman primates, including gorillas, develop signs of SpAs indistinguishable from clinical signs of humans with SpAs. To determine whether SpAs in gorillas have a similar HLA-B27-related etiology, we analyzed the MHC class I molecules expressed in four affected gorillas. Gogo-B01, isolated from three of the animals, has only limited similarity to HLA-B27 at the end of the alpha1 domain. It differs by several residues in the B pocket, including differences at positions 45 and 67. However, the molecular model of Gogo-B*0101 is consistent with a requirement for positively charged residues at the second amino acid of peptides bound by the MHC class I molecule. Indeed, the peptide binding motif and sequence of individual ligands eluted from Gogo-B*0101 demonstrate that, like HLA-B27, this gorilla MHC class I molecule binds peptides with arginine at the second amino acid position of peptides bound by the MHC class I molecule. Furthermore, live cell binding assays show that Gogo-B*0101 can bind HLA-B27 ligands. Therefore, although most gorillas that develop SpAs express an MHC class I molecule with striking differences to HLA-B27, this molecule binds peptides similar to those bound by HLA-B27.  相似文献   

16.
We investigated T-cell-defined HLA-B7 subtypes using cDNA sequencing, analysis of bound peptides, and reactivity with a panel of alloreactive cytotoxic T-lymphocyte (CTL) clones. Three subtypes (HLA-B*0702, HLA-B*0703, and HLA-B*0705) differ in nucleotide and predicted amino acid sequence. CTL reactivity and pooled peptide sequencing show that these three HLA-B7 subtypes bind distinct but overlapping sets of peptides. In particular B*0702 expresses D pocket residue Asp 114 and binds peptides with P3 Arg, whereas B*0705 expresses D pocket residue Asn 114 and binds peptides with P3 Ala, Leu, and Met. Consistent with different peptide-binding specificities, three alloreactive CTL differentiate between cells expressing B*0702, B*0703, and B*0705 by detecting specific peptide/HLA-B7 complexes. In contrast, three other T-cell-defined HLA-B7 subtypes are identical to HLA-B*0702. The B*0702-expressing cell lines are differentiated by two of ten CTL clones. One CTL clone differentiates B*0702-expressing cells by their ability to present peptide antigen. Thus differences in peptide presentation can explain differential CTL recognition of cell lines expressing structurally identical and variant HLA-B7.  相似文献   

17.
KIR3DL1 is a polymorphic, inhibitory NK cell receptor specific for the Bw4 epitope carried by subsets of HLA-A and HLA-B allotypes. The Bw4 epitope of HLA-B*5101 and HLA-B*1513 is determined by the NIALR sequence motif at positions 77, 80, 81, 82, and 83 in the alpha(1) helix. Mutation of these positions to the residues present in the alternative and nonfunctional Bw6 motif showed that the functional activity of the Bw4 epitopes of B*5101 and B*1513 is retained after substitution at positions 77, 80, and 81, but lost after substitution of position 83. Mutation of leucine to arginine at position 82 led to loss of function for B*5101 but not for B*1513. Further mutagenesis, in which B*1513 residues were replaced by their B*5101 counterparts, showed that polymorphisms in all three extracellular domains contribute to this functional difference. Prominent were positions 67 in the alpha(1) domain, 116 in the alpha(2) domain, and 194 in the alpha(3) domain. Lesser contributions were made by additional positions in the alpha(2) domain. These positions are not part of the Bw4 epitope and include residues shaping the B and F pockets that determine the sequence and conformation of the peptides bound by HLA class I molecules. This analysis shows how polymorphism at sites throughout the HLA class I molecule can influence the interaction of the Bw4 epitope with KIR3DL1. This influence is likely mediated by changes in the peptides bound, which alter the conformation of the Bw4 epitope.  相似文献   

18.
HLA-B*2702, B*2704, and B*2705 are strongly associated with spondyloarthritis, whereas B*2706 is not. Subtypes differ among each other by a few amino acid changes and bind overlapping peptide repertoires. In this study we asked whether differential subtype association with disease is related to differentially bound peptides or to altered antigenicity of shared ligands. Alloreactive CTL raised against B*2704 were analyzed for cross-reaction with B*2705, B*2702, B*2706, and mutants mimicking subtype changes. These CTL are directed against many alloantigen-bound peptides and can be used to analyze the antigenicity of HLA-B27 ligands on different subtypes. Cross-reaction of anti-B*2704 CTL with B*2705 and B*2702 correlated with overlap of their peptidic anchor motifs, suggesting that many shared ligands have similar antigenic features on these three subtypes. Moreover, the percent of anti-B*2704 CTL cross-reacting with B*2706 was only slightly lower than the overlap between the corresponding peptide repertoires, suggesting that most shared ligands have similar antigenic features on these two subtypes. Cross-reaction with B*2705 or mutants mimicking changes between B*2704 and B*2705 was donor-dependent. In contrast, cross-reaction with B*2702 or B*2706 was less variable among individuals. Conservation of antigenic properties among subtypes has implications for allorecognition, as it suggests that shared peptides may determine cross-reaction across exposed amino acid differences in the MHC molecules and that the antigenic distinctness of closely related allotypes may differ among donors. Our results also suggest that differential association of HLA-B27 subtypes with spondyloarthritis is more likely related to differentially bound peptides than to altered antigenicity of shared ligands.  相似文献   

19.
A self-derived-peptide with the same amino acid sequence (N-RRYLENGKETLQR-C) as residues 169–181 of the human leukocyte antigen (HLA) B27 heavy chain is known to bind to MHC Class I complexes containing the HLA-B27 heavy chain. This observation has been invoked previously in at least two different (but related) molecular explanations for the disease-association of the HLA-B27 allele. Here, we use a combination of fluorescence polarization, competitive inhibition and gel filtration chromatographic studies to show that a fluorescently-labeled peptide of the above sequence binds to two disease-associated subtypes of HLA-B27 (namely HLA-B*27:04 and HLA-B*27:05) but not to non-disease-associated subtypes (HLA-B*27:06 or HLA-B*27:09). This differential binding behavior is seen both in (a) peptide binding to complexes of heavy chain (HLA-B27) and light chain (β2 microglobulin), and in (b) peptide binding to β2 microglobulin-free heavy chains in the aggregated state. Such subtype-specific differences are not seen with two other control peptides known to bind to HLA-B27. Our results support the likelihood of differential peptide binding holding at least one of the keys to HLA-B27’s disease association.  相似文献   

20.
Cys-67 of HLA-B27 is located in the B pocket, which determines peptide-binding specificity. We analyzed effects of the Cys-67 --> Ser mutation on cell surface expression, peptide specificity, and T-cell recognition of HLA-B*2705. Surface expression was assessed with antibodies recognizing either native or unfolded HLA proteins. Whereas native B*2705 molecules predominated over unfolded ones, this ratio was reversed in the mutant, suggesting lower stability. Comparison of B*2705- and Cys-67 --> Ser-bound peptides revealed that the mutant failed to bind approximately 15% of the B*2705 ligands, while binding as many novel ones. Two peptides with Gln-2 found in both B*2705 and Cys-67 --> Ser are the first demonstration of natural B*2705 ligands lacking Arg-2. Other effects of the mutation on peptide specificity were: 1) average molecular mass of natural ligands higher than for B*2705, 2) bias against small residues at peptide position (P) 1, and 3) increased P2 permissiveness. The results suggest that the Cys-67 --> Ser mutation weakens B pocket interactions, leading to decreased stability of the mutant-peptide complexes. This may be partially compensated by interactions involving bulky P1 residues. The effect of the mutation on allorecognition was consistent with that on peptide specificity. Our results may aid understanding of the pathogenetic role of HLA-B27 in spondyloarthropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号