首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
A capillary gas chromatographic–mass spectrometric method for the simultaneous determination of 6β-hydroxycortisol (6β-OHF, 6β,11β,17α,21-tetrahydroxypregn-4-ene-3,20-dione), 6α-hydroxycortisol (6α-OHF, 6α,11β,17α,21-tetrahydroxypregn-4-ene-3,20-dione) and 6β-hydroxycortisone (6β-OHE, 6β,17α,21-trihydroxypregn-4-ene-3,11,20-trione) in human urine is described. Deuterium-labelled compounds, 6β-[1,1,19,19,19-2H5]OHF (6β-OHF-d5), 6α-[1,1,19,19,19-2H5]OHF (6α-OHF-d5) and 6β-[1,1,19,19,19-2H5]OHE (6β-OHE-d5) were used as internal standards. Quantitation was carried out by selected-ion monitoring of the characteristic fragment ions ([M-31]+) of the methoxime–trimethylsilyl (MO–TMS) derivatives of 6β-OHF, 6α-OHF and 6β-OHE. The sensitivity, specificity, precision and accuracy of the method were demonstrated to be satisfactory for measuring 6β-OHF, 6α-OHF and 6β-OHE in human urine.  相似文献   

2.

Background

In the present study, we examined the inhibitory effects of a methanolic extract, dichloromethane fraction, water layer, and polyhydroxylated sterols (1–4) isolated from the Vietnamese starfish Protoreaster nodosus on pro-inflammatory cytokine (IL-12 p40, IL-6, and TNF-α) production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) using enzyme-linked immunosorbent assays (ELISA).

Results

The methanolic extract and dichloromethane fraction exerted potent inhibitory effects on the production of all three pro-inflammatory cytokines, with IC50 values ranging from 0.60 ± 0.01 to 26.19 ± 0.64 μg/mL. Four highly pure steroid derivatives (1–4) were isolated from the dichloromethane fraction and water layer of P. nodosus. Potent inhibitory activities were also observed for (25S) 5α-cholestane-3β,4β,6α,7α,8β,15α,16β,26-octol (3) on the production of IL-12 p40 and IL-6 (IC50s = 3.11 ± 0.08 and 1.35 ± 0.03 μM), and for (25S) 5α-cholestane-3β,6α,8β,15α,16β,26-hexol (1) and (25S) 5α-cholestane-3β,6α,7α,8β,15α,16β,26-heptol (2) on the production of IL-12 p40 (IC50s = 0.01 ± 0.00 and 1.02 ± 0.01 μM). Moreover, nodososide (4) exhibited moderate inhibitory effects on IL-12 p40 and IL-6 production.

Conclusion

This is the first report of the anti-inflammatory activity from the starfish P. nodosus. The main finding of this study is the identification oxygenated steroid derivatives from P. nodosus with potent anti-inflammatory activities that may be developed as therapeutic agents for inflammatory diseases.  相似文献   

3.
Norethindrone (17β-hydroxy-19-nor-17α-pregn-4-en-20-yn-3-one) and norethindrone acetate (17β-acetoxy-19-nor-17α-pregn-4-en-20-yn-3-one) interfered to a varying degree, by competitive inhibition, with the binding of progesterone and oestradiol to respective cytoplasmic receptors in the human uterus. Progesterone binding to 4S macromolecule was saturable and co-specific for progestins. Competitors like norgestrel (17β-hydroxy-18-methyl-19-nor-17α-pregn-4-en-20-yn-3-one), 19-norprogesterone, medroxyprogesterone acetate (17α-acetoxy-6α-methylpregn-4-ene-3,20-dione) and compound R5020 (17,21-dimethyl-19-norpregna-4,9-diene-3,20-dione) possessed higher binding affinities for the progestin receptor. The dissociation constant (Kd) for the progesterone–receptor interaction was 0.6–1.6nm and the receptor concentration ranged between 6600 and 8200 sites/cell. Norethindrone and norethindrone acetate competed for the progesterone receptor with inhibition constants (Ki) of 6.8 and 72nm respectively. Gradient displacement and competitive-receptor assays indicated that norethindrone acetate-binding affinity for progestin receptor was approximately one-tenth that of norethindrone and progesterone. The progestins also inhibited oestradiol binding to 4.6S oestrogenic receptor by 8–12%, involving interaction at the oestradiol-binding site with a calculated Ki value of 0.5–0.8μm. The competitive interaction of progestins with steroid receptors may be of putative importance in explaining the progestin action at the target site.  相似文献   

4.
Cytochrome P450 monooxygenases (P450s), which constitute a superfamily of heme-containing proteins, catalyze the direct oxidation of a variety of compounds in a regio- and stereospecific manner; therefore, they are promising catalysts for use in the oxyfunctionalization of chemicals. In the course of our comprehensive substrate screening for all 27 putative P450s encoded by the Streptomyces griseus genome, we found that Escherichia coli cells producing an S. griseus P450 (CYP154C3), which was fused C terminally with the P450 reductase domain (RED) of a self-sufficient P450 from Rhodococcus sp., could transform various steroids (testosterone, progesterone, Δ4-androstene-3,17-dione, adrenosterone, 1,4-androstadiene-3,17-dione, dehydroepiandrosterone, 4-pregnane-3,11,20-trione, and deoxycorticosterone) into their 16α-hydroxy derivatives as determined by nuclear magnetic resonance and high-resolution mass spectrometry analyses. The purified CYP154C3, which was not fused with RED, also catalyzed the regio- and stereospecific hydroxylation of these steroids at the same position with the aid of ferredoxin and ferredoxin reductase from spinach. The apparent equilibrium dissociation constant (Kd) values of the binding between CYP154C3 and these steroids were less than 8 μM as determined by the heme spectral change, indicating that CYP154C3 strongly binds to these steroids. Furthermore, kinetic parameters of the CYP154C3-catalyzed hydroxylation of Δ4-androstene-3,17-dione were determined (Km, 31.9 ± 9.1 μM; kcat, 181 ± 4.5 s−1). We concluded that CYP154C3 is a steroid D-ring 16α-specific hydroxylase which has considerable potential for industrial applications. This is the first detailed enzymatic characterization of a P450 enzyme that has a steroid D-ring 16α-specific hydroxylation activity.  相似文献   

5.
1. Four substances from the urine of a hypertensive newborn girl were partially characterized and shown to be 17α-hydroxy-5β-pregnane-1,3,20-trione, 3α,17α-dihydroxy-5β-pregnane-1,20-dione, 3α,17α,20α-trihydroxy-5β-pregnan-1-one and 5β-pregnane-1β,3α,17α,20α-tetrol. 2. The characterization rested mainly on RM analysis of the substances and their derivatives by glycol fission, providing evidence for position and degree of substitution and for steroidal character. Supporting evidence was provided by chemically specific location reactions. 3. Certain problems in the manipulation of these β-disubstituted steroids are discussed.  相似文献   

6.
Sodium caseinates prepared from bovine, sheep, goat, pig, buffalo or human milk were hydrolyzed by a partially purified proteinase of Lactobacillus helveticus PR4. Peptides in each hydrolysate were fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest angiotensin I-converting-enzyme (ACE)-inhibitory or antibacterial activity were sequenced by mass spectrum and Edman degradation analyses. Various ACE-inhibitory peptides were found in the hydrolysates: the bovine αS1-casein (αS1-CN) 24-47 fragment (f24-47), f169-193, and β-CN f58-76; ovine αS1-CN f1-6 and αS2-CN f182-185 and f186-188; caprine β-CN f58-65 and αS2-CN f182-187; buffalo β-CN f58-66; and a mixture of three tripeptides originating from human β-CN. A mixture of peptides with a C-terminal sequence, Pro-Gly-Pro, was found in the most active fraction of the pig sodium caseinate hydrolysate. The highest ACE-inhibitory activity of some peptides corresponded to the concentration of the ACE inhibitor (S)-N-(1-[ethoxycarbonyl]-3-phenylpropyl)-ala-pro maleate (enalapril) of 49.253 μg/ml (100 μmol/liter). Several of the above sequences had features in common with other ACE-inhibitory peptides reported in the literature. The 50% inhibitory concentration (IC50) of some of the crude peptide fractions was very low (16 to 100 μg/ml). Some identified peptides were chemically synthesized, and the ACE-inhibitory activity and IC50s were confirmed. An antibacterial peptide corresponding to β-CN f184-210 was identified in human sodium caseinate hydrolysate. It showed a very large spectrum of inhibition against gram-positive and -negative bacteria, including species of potential clinical interest, such as Enterococcus faecium, Bacillus megaterium, Escherichia coli, Listeria innocua, Salmonella spp., Yersinia enterocolitica, and Staphylococcus aureus. The MIC for E. coli F19 was ca. 50 μg/ml. Once generated, the bioactive peptides were resistant to further degradation by proteinase of L. helveticus PR4 or by trypsin and chymotrypsin.  相似文献   

7.
Enzymes AKR1C regulate the action of oestrogens, androgens, and progesterone at the pre-receptor level and are also associated with chemo-resistance. The activities of these oestrone halides were investigated on recombinant AKR1C enzymes. The oestrone halides with halogen atoms at both C-2 and C-4 positions (13β-, 13α-methyl-17-keto halogen derivatives) were the most potent inhibitors of AKR1C1. The lowest IC50 values were for the 13α-epimers 2_2I,4Br and 2_2I,4Cl (IC50, 0.7 μM, 0.8 μM, respectively), both of which selectively inhibited the AKR1C1 isoform. The 13α-methyl-17-keto halogen derivatives 2_2Br and 2_4Cl were the most potent inhibitors of AKR1C2 (IC50, 1.5 μM, 1.8 μM, respectively), with high selectivity for the AKR1C2 isoform. Compound 1_2Cl,4Cl showed the best AKR1C3 inhibition, and it also inhibited AKR1C1 (Ki: AKR1C1, 0.69 μM; AKR1C3, 1.43 μM). These data show that halogenated derivatives of oestrone represent a new class of potent and selective AKR1C inhibitors as lead compounds for further optimisations.  相似文献   

8.
Ginsenoside compound K (CK), a rare ginsenoside originating from Panax Ginseng, has been found to possess unique pharmacological activities specifically as anti-cancers. However, the role of cytochrome P450s (CYPs) in the metabolism of CK is unclear. In this study, we screened the CYPs for the metabolism of CK in vitro using human liver microsomes (HLMs) or human recombinant CYPs. The results showed that CK inhibited the enzyme activities of CYP2C9 and CYP3A4 in the HLMs. The Km and Vmax values of CK were 84.20±21.92 μM and 0.28±0.04 nmol/mg protein/min, respectively, for the HLMs; 34.63±10.48 μM and 0.45±0.05 nmol/nmol P450/min, respectively, for CYP2C9; and 27.03±5.04 μM and 0.68±0.04 nmol/nmol P450/min, respectively, for CYP3A4. The IC50 values were 16.00 μM and 9.83 μM, and Ki values were 14.92 μM and 11.42μM for CYP2C9 and CYP3A4, respectively. Other human CYP isoforms, including CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP2C19, showed minimal or no effect on CK metabolism. The results suggested that CK was a substrate and also inhibitors for both CYP2C9 and CYP3A4. Patients using CK in combination with therapeutic drugs that are substrates of CYP2C9 and CYP3A4 for different reasons should be careful, although the inhibiting potency of CK is much poorer than that of enzyme-specific inhibitors.  相似文献   

9.
In this paper, bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated for their inhibitory activity against α-glucosidase and α-amylase. All synthesised compounds showed potential α-glucosidase and α-amylase inhibitory activities. Compounds 5 g (IC50: 7.54 ± 1.10 μM), 5e (IC50: 9.00 ± 0.97 μM), and 5 h (IC50: 9.57 ± 0.62 μM) presented strongest inhibitory activities against α-glucosidase, that were ∼ 30 times stronger than acarbose. Compounds 5 g (IC50: 32.18 ± 1.66 µM), 5 h (IC50: 31.47 ± 1.42 µM), and 5 s (IC50: 30.91 ± 0.86 µM) showed strongest inhibitory activities towards α-amylase, ∼ 2.5 times stronger than acarbose. The mechanisms and docking simulation of the compounds were also studied. Compounds 5 g and 5 h exhibited bifunctional inhibitory activity against these two enzymes. Furthermore, compounds showed no toxicity against 3T3-L1 cells and HepG2 cells.

Highlights

  1. A series of bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated inhibitory activities against α-glucosidase and α-amylase.
  2. Compound 5g exhibited promising activity (IC50 = 7.54 ± 1.10 μM) against α-glucosidase.
  3. Compound 5s exhibited promising activity (IC50 = 30.91 ± 0.86 μM) against α-amylase.
  4. In silico studies were performed to confirm the binding interactions of synthetic compounds with the enzyme active site.
  相似文献   

10.

Background

Atriplex laciniata L. was investigated for phenolic, flavonoid contents, antioxidant, anticholinesterase activities, in an attempt to explore its effectiveness in Alzheimer’s and other neurological disorders. Plant crude methanolic extract (Al.MeF), subsequent fractions; n-hexane (Al.HxF), chloroform (Al.CfF), ethyl acetate (Al.EaF), aqueous (Al.WtF), Saponins (Al.SPF) and Flavonoids (Al.FLVF) were investigated for DPPH, ABTS and H2O2 free radical scavenging activities. Further these extracts were subjected to acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities using Ellman’s assay. Phenolic and Flavonoid contents were determined and expressed in mg Gallic acid GAE/g and Rutin RTE/g of samples respectively.

Results

In DPPH free radicals scavenging assay, Al.FLVF, Al.SPF and Al.MeF showed highest activity causing 89.41 ± 0.55, 83.37 ± 0.34 and 83.37 ± 0.34% inhibition of free radicals respectively at 1 mg/mL concentration. IC50 for these fractions were 33, 83 and 82 μg/mL respectively. Similarly, plant extracts showed high ABTS scavenging potential, i.e. Al.FLVF (90.34 ± 0.55), Al.CfF (83.42 ± 0.57), Al.MeF (81.49 ± 0.60) with IC50 of 30, 190 and 70 μg/ml respectively. further, H2O2 percent scavenging was highly appraised in Al.FLVF (91.29 ± 0.53, IC50 75), Al.SPF (85.35 ± 0.61, IC50 70) and Al.EaF (83.48 ± 0.67, IC50 270 μg/mL). All fractions exhibited concentration dependent AChE inhibitory activity as; Al.FLVF, 88.31 ± 0.57 (IC50 70 μg/mL), Al.SPF, 84.36 ± 0.64 (IC50 90 μg/mL), Al.MeF, 78.65 ± 0.70 (IC50 280 μg/mL), Al.EaF, 77.45 ± 0.46 (IC50 270 μg/mL) and Al.WtF 72.44 ± 0.58 (IC50 263 μg/mL) at 1 mg/mL. Likewise the percent BChE inhibitory activity was most obvious in Al.FLVF 85.46 ± 0.62 (IC50 100 μg/mL), Al.CfF 83.49 ± 0.46 (IC50 160 μg/mL), Al.MeF 82.68 ± 0.60 (IC50 220 μg/mL) and Al.SPF 80.37 ± 0.54 (IC50 120 μg/mL).

Conclusions

These results stipulate that A. laciniata is enriched with phenolic and flavonoid contents that possess significant antioxidant and anticholinestrase effects. This provide pharmacological basis for the presence of compounds that may be effective in Alzheimer’s and other neurological disorders.  相似文献   

11.
Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site.  相似文献   

12.
δ subunit-containing γ-aminobutyric acid, type A (GABAA)receptors are expressed extrasynaptically and mediate tonic inhibition. In cerebellar granule cells, they often form receptors together with α1 and/or α6 subunits. We were interested in determining the architecture of receptors containing both subunits. We predefined the subunit arrangement of several different GABAA receptor pentamers by concatenation. These receptors composed of α1, α6, β3, and δ subunits were expressed in Xenopus oocytes. Currents elicited in response to GABA were determined in the presence and absence of 3α,21-dihydroxy-5α-pregnan-20-one (THDOC) or ethanol, or currents were elicited by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP). Several subunit configurations formed active channels. We therefore conclude that δ can assume multiple positions in a receptor pentamer made up of α1, α6, β3, and δ subunits. The different receptors differ in their functional properties. Functional expression of one receptor type was only evident in the combined presence of the neurosteroid THDOC with the channel agonist GABA. Most, but not all, receptors active with GABA/THDOC responded to THIP. None of the receptors was modulated by ethanol concentrations up to 30 mm. Several observations point to a preferred position of δ subunits between two α subunits in α1α6β3δ receptors. This property is shared by α1β3δ and α6β3δ receptors, but there are differences in the additionally expressed isoforms.  相似文献   

13.
The NL4.3 T-cell-line-tropic human immunodeficiency virus type 1 strain is sensitive to the CXC chemokine stromal cell-derived factor 1α (SDF-1α), the natural ligand for CXC chemokine receptor 4 (CXCR4); the 50% inhibitory concentration (IC50) in MT-4 cells is 130 ng/ml. We generated resistant virus through passaging of the virus in the presence of increasing concentrations of SDF-1α. After 24 passages, the virus was no longer sensitive to SDF-1α (SDF-1αres virus) (IC50, >2 μg/ml) and became resistant to SDF-1β (IC50, >2 μg/ml) and to a specific CXCR4 monoclonal antibody (IC50, >20 μg/ml). The SDF-1αres virus was about 10-fold less sensitive than the wild-type virus to the bicyclam AMD3100, a specific CXCR4 antagonist. The SDF-1αres virus contained the following mutations in the gp120 molecule: N106K in the V1 loop; S134N and F145L in the V2 loop; F245I in the C2 loop; K269E, Q278H, I288V, and N293D in the V3 loop; a deletion of 5 amino acids (FNSTW) at positions 364 to 368 in the V4 loop; and R378T in the CD4 binding domain. Replication of the NL4.3 wild-type virus and the SDF-1αres virus was demonstrated in U87 cells that coexpressed CD4 and CXCR4 (U87.CD4.CXCR4) but not in U87.CD4.CCR5 cells. Thus, the resistant virus was not able to switch to the CC chemokine receptor 5 (CCR5) coreceptor (the main coreceptor for macrophage-tropic viruses). The SDF-1αres virus replicated in HOS.CD4 cells expressing CCR1, CCR2b, CCR3, CCR4, CCR5, and CXCR4 but also in HOS.CD4.pBABE cells. However, all HOS transfectant cells expressed a low level of CXCR4. Neither of the two virus strains was able to infect HOS.CXCR4 or HOS.CCR5 transfectants, demonstrating the necessity of the CD4 receptor. The T-cell-line-tropic SDF-1αres virus was thus able to overcome the inhibitory effect of SDF-1α through mutations in gp120 but still needed CXCR4 to enter the cells.  相似文献   

14.
New analogues of 3β-hydroxy-5α-cholest-8(14)-en-15-one (15-ketosterol) with modified 17-chains [(22S,23S,24S)- and (22R,23R,24S)-3β-hydroxy-24-methyl-22,23-oxido-5α -cholest-8(14)-en-15- ones and (22RS,23ξ,24S)-24-methyl-5α-cholesta-8(14)-ene-3β, 22,23-triol-15-one] were synthesized from (22E,24S)-3β-acetoxy-24-methyl-5α-cholesta-8(14), 22-dien-15-one. The chiralities of their 22 and 23 centers were determined by NMR spectroscopy. The isomeric 22,23-epoxides effectively inhibited cholesterol biosynthesis in hepatoma Hep G2 cells (IC50 0.9±0.2 and 0.7±0.2 μM, respectively), and their activities significantly exceeded those of 15-ketosterol (IC50 4.0±0.5 μM), (22E,24S)-3β-hydroxy-24-methyl-5α-cholesta-8(14),22- dien-15-one (IC50 3.1±0.4 μM), and the 3β,22,23-triol synthesized (IC50 6.0±1.0 μM).__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 312–319.Original Russian Text Copyright © 2005 by Flegentov, Piir, Medvedeva, Tkachev, Timofeev, Misharin.  相似文献   

15.
This work evaluated the angiotensin-converting-enzyme (ACE)-inhibitory activities of a bovine sodium caseinate fermentate generated using the proteolytic capabilities of the porcine small intestinal isolate Lactobacillus animalis DPC6134 (NCIMB deposit 41355). The crude 10-kDa L. animalis DPC6134 fermentate exhibited ACE-inhibitory activity of 85.51% (±15%) and had a 50% inhibitory concentration (IC50) of 0.8 mg protein/ml compared to captopril, which had an IC50 value of 0.005 mg/ml. Fractionation of the crude L. animalis DPC6134 fermentate by membrane filtration and reversed-phase high-performance liquid chromatography (HPLC) generated three bioactive fractions from a total of 72 fractions. Fractions 10, 19, and 43 displayed ACE-inhibitory activity percentages of 67.53 (±15), 83.71 (±19), and 42.36 (±11), respectively, where ACE inhibition was determined with 80 μl of the fractions with protein concentrations of 0.5 mg/ml. HPLC and mass spectrometry analysis identified 25 distinct peptide sequences derived from α-, β-, and κ-caseins. In silico predictions, based on the C-terminal tetrapeptide sequences, suggested that peptide NIPPLTQTPVVVPPFIQ, corresponding to β-casein f(73-89); peptide IGSENSEKTTMP, corresponding to αs1-casein f(201212); peptide SQSKVLPVPQ, corresponding to β-casein f(166-175); peptide MPFPKYPVEP, corresponding to β-casein f(124133); and peptide EPVLGPVRGPFP, corresponding to β-casein f(210-221), contained ACE-inhibitory activities. These peptides were chosen for chemical synthesis to confirm the ACE-inhibitory activity of the fractions. Chemically synthesized peptides displayed IC50 values in the range of 92 μM to 790 μM. Additionally, a simulated gastrointestinal digestion confirmed that the ACE-inhibitory 10-kDa L. animalis DPC6134 fermentation was resistant to a cocktail of digestive enzymes found in the gastrointestinal tract.  相似文献   

16.
Gleditsia triacanthos L. is a deciduous tree belonging to the family Fabaceae. It possesses important biological activities as anti-mutagenic, anticancer, cytotoxic and treating rheumatoid arthritis. The total ethanol extract (EtOHE) and successive extracts (petroleum ether, chloroform, ethyl acetate, and aqueous ethanol) were prepared from the leaves. Eight flavone glycosides and two flavone aglycones named vicenin-I (1), vitexin (2), isovitexin (3), orientin (4), isoorientin (5), luteolin-7-O-ß-glucopyranoside (6), luteolin-7-O-ß-galactopyranoside (7), apigenin-7-O-ß-glucopyranoside (8), luteolin (9) and apigenin (10) were isolated from the aqueous ethanol extract of G. triacanthos L. leaves. Potent cytotoxic activity of the EtOHE extract was observed against the liver (IC50 = 1.68 μg), breast (IC50 = 0.74 μg), cervix (IC50 = 1.28 μg), larynx (IC50 = 0.67 μg) and colon (IC50 = 2.50 μg) cancer cell lines. Cytotoxic activity of compounds 2, 4, 6 and 8 against, the liver, breast and colon cancer cell lines was also proved. Evaluation of the in-vivo antioxidant activity of the EtOHE and successive extracts revealed that the highest activity was exhibited by 100 mg of EtOHE (97.89% potency) as compared with vitamin E (100% potency). Compound 6 showed 91.8% free radical scavenging activity.  相似文献   

17.
Histone lysine specific demethylase 1 (LSD1) has emerged as an attractive molecule target for the discovery of potently anticancer drugs to treat leukaemia. In this study, a series of novel chalcone derivatives were designed, synthesised and evaluated for their inhibitory activities against LSD1 in vitro. Among all these compounds, D6 displayed the best LSD1 inhibitory activity with an IC50 value of 0.14 μM. In the cellular level, compound D6 can induce the accumulation of H3K9me1/2 and inhibit cell proliferation by inactivating LSD1. It exhibited the potent antiproliferative activity with IC50 values of 1.10 μM, 3.64 μM, 3.85 μM, 1.87 μM, 0.87 μM and 2.73 μM against HAL-01, KE-37, P30-OHK, SUP-B15, MOLT-4 and LC4-1 cells, respectively. Importantly, compound D6 significantly suppressed MOLT-4 xenograft tumour growth in vivo, indicating its great potential as an orally bioavailable candidate for leukaemia therapy.  相似文献   

18.
Biotransformation of chinensiolide B, 10α-hydroxy-1α,5α,15-H-3-oxoguaia-11(13)-en-6α,12-olide (1), yielded three selectively reduced products, 3β,10α-dihydroxy-1α,5α,15α-H-guaia-11(13)-en-6α,12-olide (2), 3α,10α-dihydroxy-1α,5α,15α-H-guaia-11(13)-en-6α,12-olide (3), and 3β,10α-dihydroxy-1α,5α,11β,15α-H-guaia-6α,12-olide (4) by the cell suspension cultures of Catharanthus roseus. 2 and 3 were also obtained from 1 incubated with cell cultures of a fungus Abisidia coerulea IFO 4011 and Platycodon grandiflorum, respectively. Among them, 2, 3 are two new compounds. The three products, 24, along with 1 were preliminarily evaluated for their in vitro cytotoxic activity against 3 cell lines (HepG2, WI-38 and VA-13) and all showed potent inhibitory effects on the cell proliferation. Of the four compounds, 3 was the most toxic to the three cell lines tested with IC50 values of 22.7, 0.33 and 3.30 μM, respectively.  相似文献   

19.
To discover novel scaffolds as leads against dementia, a series of δ-aryl-1,3-dienesulfonyl fluorides with α-halo, α-aryl and α-alkynyl were assayed for ChE inhibitory activity, in which compound A10 was identified as a selective BuChE inhibitor (IC50 = 0.021 μM for eqBChE, 3.62 μM for hBuChE). SAR of BuChE inhibition showed: (i) o- > m- > p-; –OCH3 > –CH3 > –Cl (–Br) for δ-aryl; (ii) α-Br > α-Cl, α-I. Compound A10 exhibited neuroprotective, BBB penetration, mixed competitive inhibitory effect on BuChE (Ki = 29 nM), and benign neural and hepatic safety. Treatment with A10 could almost entirely recover the Aβ1-42-induced cognitive dysfunction to the normal level, and the assessment of total amount of Aβ1-42 confirmed its anti-amyloidogenic profile. Therefore, the potential BuChE inhibitor A10 is a promising effective lead for the treatment of AD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号