首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake and efflux of Rb+ by membrane vesicles isolated fromshoots of the halophyte Suaeda maritima have been investigated.Uptake came to an apparent equilibrium after 1 h and the initialrate of uptake was considerably slower than that reported forbacterial membrane vesicles Additions of ATP reduced both Rb+uptake and the half-time for loss in efflux experiments, althoughthis effect was not specific for ATP and probably was not associatedwith energy transfer The permeability coefficient for Rb+ wascalculated to be between 0 1 and 0 3 x 10–2 cm s–1.The value of membrane vesicles in ion transport studies in plantsis discussed. Suaeda maritima, seablite, halophyte, membrane vesicles, ion transport, rubidium  相似文献   

2.
Endogenous abscisic acid contents were measured by gas-liquidchromatography in shoots of Suaeda maritima growing both inthe steady state over a range of salinities and over a time-coursefollowing an increase in the culture solution salinity of betweenapproximately 100 and 400 mol m–3 NaCl. In steady-stateplants, the ABA content was maximal in the absence of salt at41 ng g–1 fr. wt., declining to a minimum at 200 mol m–3NaCl of 24 ng g–1 fr. wt. Increase of culture solutionsalinity resulted in a marked increase in shoot ABA which wasmaximal after 6 h or 24 h in plants previously growing at 200mol m–3 NaCl and in the absence of salt, respectively.Additionally, culture solution water potentials were loweredby 1.0 MPa (equivalent to raising the salt concentration byaround 200 mol m–3); this resulted in a similar increasein endogenous ABA content to that brought about by an iso-osmoticsalt increase. Results are discussed in relation to the possiblerole of ABA in halophyte salt tolerance mechanisms. Key words: Suaeda, halophyte, abscisic acid, salt tolerance  相似文献   

3.
The ion relations of the halophytc Suaeda maritima are described.When plants grew in 340 mol m–3 sodium chloride (—1•76MPa) leaf solute potentials decreased, and were sustained around—2•5 MPa Inorganic ion concentration (mostly of sodiumchloride) accounted for this. Comparable shoot ion concentrationsof potassium, nitrate and sulphate occurred when plants grewon different salinity types characterized by these ions. Netsodium transport and shoot sodium concentration increased dramaticallywith increases in external sodium chloride concentration upto 85 mol m–3; thereafter, further increases in externalsodium chloride concentration had relatively little effect uponeither shoot sodium concentration or upon net transport of sodiumto the shoot. The net transport of sodium plus potassium onlydoubled when the external concentration of sodium plus potassiumincreased from 24 to 687 mol m–3 Shoot ion concentrationswere remarkably constant with time, external concentration andsalinity type. The membrane flux rates and symplasmic ion concentrations neededto sustain the observed net transport of sodium (of some 10mmol g–1 dry wt. of roots d–1) are calculated fromanatomical and stereological data for the root system of thisspecies. The minimum net sodium chloride flux to load the symplasmwould be 260 nmol m–2s–1 if the whole cortical andepidermal plasmalemmal surface area were used uniformly, butthe flux rate required would be 3000 nmol m–2s–1if uptake took place only at the root surface. A flux rate ofat least 1000 nmol m–2s–1 is needed between symplasmand xylem. The symplasmic concentration of NaCl would be atleast 80 mol m–3. It is argued (1), that both symplasmicand xylem loading are likely to be passive processes mediatedby ion channels rather than active carriers, (2), that net iontransport at 340 mol m–3 sodium chloride is close to themaximum which is physiologically sustainable and (3), that growthof this halophyte is limited by NaCl supply from the root. Key words: Suaeda maritima, halophyte, salinity, roots, radial ion transport  相似文献   

4.
Malic enzyme and phosphenol pyruvate carboxylase activitieshave been isolated and characterized from the shoots of Suaedamaritima plants grown in culture solution (with and withoutNaCl) or in tap water. The enzymes isolated from the lattershowed increases in both specific activity and Km values incomparison with plants grown in culture solution: however, theaddition of NaCl to the culture solution had no significanteffect on either enzyme. Malate levels were high in plants grownin tap water, reduced by an ordeT of magnitude by the additionof culture solution and then halved by the addition of NaCl. Both enzymes were inhibited in vitro by NaCl, although the additionof high concentrations of betaine and proline to the assay mediumdid not further inhibit enzyme activity. The significance ofthese results is discussed in relation to the proposed roleof betaine and proline as cytoplasmic osmoregulators. Suaeda maritima, halophyte, salt tolerance, malic enzyme, PEP carboxylase  相似文献   

5.
The effect of sodium, chloride on the growth of a halophyte,Suaeda maritima (L.) Dum., was compared with its effect on Pisumsativum L. cv. Alaska under controlled environmental conditions.The salt stimulated the growth of Suaeda maximally at concentrationsof 170 to 340 mM while the growth of Pisum was inhibited evenby 100 mM. Both species accumulated ions in the tops and themaximum concentrations of Na+ and Cl rose in Suaeda to860 mM (based on the water content) and 730 mM and in Pisumto 170 mM and 300 mM respectively. Respiration in both specieswas inhibited as the NaCl level in the culture solution wasraised. Four supernatant enzymes (malic dehydrogenase, glucose-6-phosphatedehydrogenase, peroxidase, and acid phosphatase) prepared fromPisum and from Suaeda (grown either in the absence of addedNaCl or in the presence of 340 mM NaCl) were assayed in variouslevels of sodium chloride. The dehydrogenases were markedlyinhibited by increasing salt concentrations while there wasa smaller effect on the peroxidase and acid phosphatase. Therewas no difference in the effect of salt on the enzymes preparedfrom the two species although one is halophilic and the otherhalophobic.  相似文献   

6.
The time-course of exchange of sodium and potassium ions fromroot and leaf material of the halophyte Suaeda maritima hasbeen followed and the data analysed according to the phenomenologyof efflux, or compartmental, analysis. Sodium ions were exchangedmuch more slowly (c. 4 times) from the vacuoles of leaf cellsof plants grown in sodium chloride than were potassium ionsfrom the vacuoles of leaf cells of plants grown either in similarconcentrations of potassium chloride or in low concentrationsof potassium. In plants grown in sodium chloride, sodium ionswere exchanged 9 times more slowly from the vacuoles of leafcells than from the vacuoles of root cells. The concentration of sodium ions in the cytoplasm of leaf cellsof plants growing in 340 mol m–3 sodium chloride was estimatedto be 165 mol m–3 when the average concentration in theleaf tissue was about 600 mol m–3. As measured by movement from mature to developing leaves inintact plants; there was less in vivo retranslocation of 22Naand 36CI in plants growing in sodium chloride than there wasof 86Rb in plants growing either in potassium chloride or innon-saline conditions. The results are discussed in terms of the concept and energeticsof compartmentation of ions in the cells of halophytes.  相似文献   

7.
8.
Clipson, N. J. W. 1987. Salt tolerance in the halophyte Suaedamaritima L. Dum. Growth, ion and water relations and gas exchangein response to altered salinity.—J. exp. Bot. 38: 1996–2004. Shoot and root fresh and dry weights and shoot sodium, chlorideand potassium contents were measured and shoot relative growthrates calculated in seedlings of Suaeda maritima over a periodof 11 d following a raising of culture solution salinity from0 to 200 mol m3– NaCl. Growth, growth rates and sodiumand chloride contents, as compared to plants growing in theabsence of salt were increased whilst potassium contents declined.Shoot sodium accumulation rate and the rate of transport ofsodium from root to shoot, osmotic potential, and rates of photosynthesisand transpiration were also measured for up to 72 h after transferof plants originally growing at 0 and 200 mol3– NaCl to200 and 400 mol m3– NaCl respectively. Ion uptake andtransport rates were maximal 6-12 h after transfer and thendeclined to new steady-state levels within 48 h; osmotic potentialswere lowered over a 72 h period on average by approximately1·0 MPa; and after 9 h photosynthetic and transpirationrates were reduced by about 20percnt; and 30% respectively.Results are discussed in terms of the ability of halophytesto adjust to fluctuating salinity and to salt tolerance mechanismsin general. Key words: Suaeda maritima, salinity, gas exchange, growth, ion and water relations  相似文献   

9.
The halophyte Suaeda maritima grows optimally in high concentrations(40–60% seawater) of salt. In these conditions the concentrationof salt in the apoplast of the leaves is at least 500 mM, aconcentration which severely inhibits the activity of cytoplasmicenzymes of both glycophytes and halophytes. The in vitro salttolerance of a number of cell wall enzymes was assayed in thepresence of a range of concentrations of NaCl. There was nosignificant inhibition of the activity of galactosidase, glucosidase,peroxidase or xyloglucan endo-transglycosylase extracted fromSuaeda maritima by in vitro concentrations of NaCl up to atleast 1 M. In vitro salt tolerance of cell wall enzymes wasnot restricted to the halophyte, similar enzymes from the non-halophilicrelative Kochia tricophylla, and from the glycophytes Vignaradiata and Cicer arietinum, were inhibited little, or not atall, by the same concentrations of salt. Pectin esterase wassomewhat less tolerant, but activity at 500 mM NaCl was stillgreater than at 0 mM NaCl in both Suaeda and Vigna. It is concludedthat these enzymes of the cell wall compartment are much moresalt-tolerant than cytoplasmic enzymes of higher plants. Theresults are discussed in relation to conditions thought to pertainin the apoplast. Key words: Apoplast, cell wall enzymes, halophyte, salt tolerance, Suaeda maritima  相似文献   

10.
Zinc-induced Vacuolation in Root Meristematic Cells of Cereals   总被引:1,自引:0,他引:1  
In the absence of Zn, vacuolar volume fractions of root meristematiccells of Secale cereale L. cv. K2, Triticum aestivum L. cv.Chinese Spring and Oryza sativa L. cv. IR34 were 5.64 x 10–2,2.17 x 10–2 and 1.63 x 10–2 µm3 vacuole µm–3tissue, respectively. A 4-d exposure to a subtoxic concentrationof zine (0.2 µg Zn cm–3) induced a 2.93-fold anda 6.78-fold increase in the total vacuolar volume fraction inOryza and Triticum, respectively, whereas no significant increasewas observed for Secale. It is proposed that this Zn-inducedvacuolation represents a compartmentalization mechanism. Theinitial total vacuolar volume fraction in Secale was greaterthan that for Oryza and Triticum and this may enable compartmentalizationof the metal soon after the onset of treatment so reducing itscytotoxic effects. These findings are similar to those observedin contrasting cultivars of Festuca rubra L. Triticum aestivum L, Secale cereale L, Oryza sativa L, zinc, root meristem, vacuolation  相似文献   

11.
Ammonia excreted by mixed zooplankton populations over an annual(1972–1973) cycle in Narragansett Bay varied from 0.04to 3.21 µg at NH3-N dry wt–1 day–1, exclusiveof two exceptional rates measured one year apart: 11.74 and18.39 µg at NH3-N mg dry wt–1 day–1. Grossphytoplankton production integrated over the year (1972–1973)averaged 151 mg C m–3 day–1 for an 8 m water column;peaks of 332 and 905 mg C m–3 day–1 occurred duringthe winter-spring and summer blooms, respectively. Excretedammonia, integrated seasonally and annually, contributed only0.2% and 4.9% of the nitrogen required for observed gross productionduring the winter-spring and summer blooms, respectively, and4.4% annually. However, excreted ammonia may be an importantsource of the nitrogen required by Skeletonema costatum, thedominant diatom in Narragansett Bay, during the post-bloom periodwhen 186% of the nitrogen required for its net production wasmet by ammonia excretion. A combination of zooplankton ammoniaexcretion and benthic ammonia flux contributed 22% of the nitrogenrequired for the annual gross production (440 g C m–2)while 51% of the nitrogen required for the net production ofSkeletonema was accounted for by regenerated nitrogen. 1This research was supported by NSF grant GA 31319X awardedto Dr.T.J.Smayda.  相似文献   

12.
Salicylic Acid Levels in Thermogenic and Non-Thermogenic Plants   总被引:7,自引:0,他引:7  
The natural trigger for heat production in the thermogenic inflorescencesof Sauromatum guttatum Schott (voodoo lily) was recently identifiedas salicylic acid (SA), which induced heat production at levelsas low as 13 ng g f. wt–1. Since then the levels of SAwere determined in other thermogenic and non-thermogenic plantspecies. In thermogenic inflorescences of five aroid species,and in male cones of at least four thermogenic cycads SA levelsduring heat production exceeded 1 µg g f. wt–1.SA was not detected in the thermogenic flowers of a water lily,Victoria regia Lindl. (Nymphaeaceae), and Bactris major Jacq.(Palmae). Levels of salicylic acid varied substantially in thefloral parts of seven non-thermogenic species and in the leavesof 27 non-thermogenic species. Amorphophallus campanulatus Blume ex Decne, Arum italicum Mill., Arum dioscoridis Sibth. & Son., Philodendron selloum Koch, Monstera deliciosa Liebm., Encephalartosferox Bertol. f., Encephalartos hildebrandtii A. Br. & Bouché, Encephalartos gratus Prain, Dioon edule Lindl. cv. edule, Dioon edule Lindl. cv angustifolium, Sauromatum guttatum Schott, voodoo lily, Victoria regia Lindl., Bactris major Jack, salicylic acid, thermogenicity, heat production  相似文献   

13.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

14.
Growth Response to Salinity at High Levels of Carbon Dioxide   总被引:6,自引:0,他引:6  
Plants of the C3 species Phaseolus vulgaris and Xanthium strumariumand of the C4 salt-sensitive Zea mays and the C4 halophyte Atriplexhalimus were grown with and without NaCl salt-stress at normal(340 µl I–1) and at high (2500 µl I–1)ambient CO2. In all four species growth (dry weight increment)was enhanced by CO2 supplementation. The relative response wasgreater in the salinized than in the control plants. Plant topsresponded more to CO, than the roots. CO2 supplementation appearsto increase plant tolerance of low levels of salinity. Key words: Salinity, CO2, Growth  相似文献   

15.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

16.
Phytoplankton biomass, primary production rates and inorganicnutrients were measured in the uppermost layer of the ice-edgeregion and in open water and compared with environmental factorsduring a three-week cruise in September – October 1979.Biomass and production values were low (maximum 2.2 µgchl a l–1, 2.5 mg C m–3 h–1). A post-bloomcommunity of diatoms, consisting mainly of representatives ofChaetoceros, Leptocylindrus, Nitzschia and Thalassiosira, waspredominant. Concentrations of phosphate were quite low (maximum0.55 µM I–1). Nitrate and silicate ranged from nomeasurable quantities to 5.7 µM l–1 and 3.8 µMl–1, respectively. The possibility of light and nutrientlimitation on phytoplankton growth is discussed.  相似文献   

17.
Effects of light flux density (LFD) during growth and uptakeassay on induction of transport system and kinetics of transport were studied using the Azolla pinnata-Anabaena azollae association (Azolla). Theinduction and uptake kinetics of the transport system were determined using an automated system that measuredthe NO3 concentration in the growth medium as a function oftime, using an on-line high performance liquid chromatograph(HPLC) with a UV-VIS detector. Full induction of the transport system required about 1.5 to 2.0 h and occurred without any apparent lag phase,regardless of the LFD provided. The level of induction of transport of Azolla grown at 600 µmol m–2s–1 LFD was higher than for that grown at 100 µmolm–2 s–1. Similarly, 600 µmol m–1 s–1LFD during the assay resulted in a higher level of inductionthan did 100 umol m–2 s–1. An increase in the LFDeither during the growth or the assay period increased the uptake rate; however, an increase in LFD duringthe latter period had greater effect. Azolla grown and assayedat 600 umol m–2 s–1 had the highest uptake rate. The uptake rate at 50 cm3 m–3ambient CO2 concentration was initially higher than at 305 cm3m–3, but the uptake rate decreased rapidly with time andeventually dropped below that at 305 cm3 m–3 CO2. Thesedata suggest that the energy required for transport in Azolla may bypass the photosynthetic CO2 fixationand carbon-cycling. Key words: carbon dioxide, concentration dependence, light flux density, uptake  相似文献   

18.
Grazing and ingestion rates of laboratory-born Thalia democraticaaggregates and Dolioletta gegenbauri gonozooids, phorozooidsand oozooids were determined while fed Isochrysis galbana (4–5µm diameter) alone or in combination with Peridinium trochoideum(16–18 µm diameter) at concentrations of 0.15–0.70mm3 x 1–1. Grazing rates (ml x zooid–1 x 24 h –1)ranged from 10 to 355, and at zooid weights greater than 5 µgcarbon were in order oozooid > gonozooid > aggregate.Grazing rates increased exponentially with increasing zooidweight. Weight-specific grazing rates (ml x µgC–1x 24 h–1) were independent of the four-fold initial foodconcentration. Mean weight-specific grazing rates increasedlinearly with increasing zooid weight for the aggregates andoozooids, but gonozooid mean rates were independent of zooidweight. Aggregate and gonozooid ingestion rates (106 µm3x zooid–1 x 24 h–1) ranged from 4 to 134 while oozooidrates ranged from 3 to 67. All ingestion rates were independentof the initial food concentration but increased linearly withincreasing zooid weight at similar rates. All mean weight-specificingestion rates (ml x µgC–1 x 24 h–1) wereindependent of zooid weight. The mean aggregate daily ration(µgC ingested x µg body C–1) was 59% and themean doliolid ration was 132%. Field studies indicate that normalconcentrations of D. gegenbauri in the Georgia Bight clear theirresident water volume (1 m3) in about 4 months, but that highlyconcentrated, swarm populations which occur along thermohalinefronts clear their resident water volume in less than 1 day. 1Current address: MacLaren Plansearch Ltd., P.O.Box 13250, sta.A.,St.John's, Nfld. A1B 4A5  相似文献   

19.
Maize plants were grown in nutrient solution without phosphate,or in which inorganic phosphate (Pi) was maintained at nearlyconstant concentrations of 1 µM, 10µM or 0·5mM. In vivo 31P-NMR measurements showed that there was no discernibledifference in the cytoplasmic Pi content (µmol cm–3root volume) of the mature roots of plants exposed to 1 µM,10µM or 0·5 mM external phosphate for up to 12d. However, the vacuolar Pi content of the mature roots variedabout 10-fold between these three groups. The cytoplasmic Pi content of roots receiving no external phosphatedecreased significantly after about 7 d total growth, and atabout this time the vacuolar pool of Pi became too small foraccurate measurement. The presence of 1 µM Pi in the nutrientsolution completely prevented this decline in cytoplasmic Pi,and there was some evidence that it also raised the Pi contentof the root vacuoles above the almost undetectable level foundin the totally P-starved roots. During the first 7–9 d of growth, the nucleoside triphosphatecontent of the mature roots was unaffected by the concentrationof phosphate in the nutrient solution. The results highlight the close control of cytoplasmic concentrationsof certain important phosphorus metabolites in roots growingin soil of normal agricultural fertility. Key words: Vacuole, cytoplasm, intracellular compartmentation, NTP, P-nutrition  相似文献   

20.
The carbon and nitrogen content of Noctiluca scintillans cellsfrom the Seto Inland Sea, Japan was investigated in order toestimate its biomass in natural samples. The carbon contentof N.scintillans ranged from 123 to 627 ng C cell–1 witha mean value of 353 ng C cell–1, or 1.12 to 2.67 fg Cµm–3 with a mean value of 1.98 fg C µm–3.The nitrogen content ranged from 36.0 to 232 ng N cell–1with a mean value of 131 ng N cell–1, or 0.499 to 0.910fg N µm–3 with a mean value of 0.694 fg N µm–3.Total cell carbon and nitrogen increased but the carbon andnitrogen per cell volume decreased with increasing cell volume.The C/N ratio of the cells ranged from 2.3 to 4.4, which wasrelatively low compared with the Redfield ratio. The carbonand nitrogen content was extremely low (91.2 ng C cell–1,41.8 ng N cell–1) for starved cells, whereas it was extremelyhigh (528 ng C cell–1, 205 ng N cell–1) for cellswhich had ingested the large diatom, Coscinodiscus wailesii.Our results suggest that the carbon and nitrogen content ofN.scintillans varies depending on its physiological conditionand the type of food that it has recently consumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号