首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Honeybee alpha-glucosidase I was inactivated with diethylpyrocarbonate (DEPC). The inactivation followed pseudo-first-order kinetics. The rate of the loss of activity was decreased by the addition of a substrate, maltose. Since there was no spectral change in the tyrosine absorption region, it was recognized that DEPC did not react with this residue. The alpha-glucosidase had one free sulfhydryl group, which was not involved in the catalytic reaction, and was not modified by DEPC. On the other hand, the specific reaction of DEPC with a histidyl residue was spectrophotometrically confirmed by an increase in absorption near 240 nm, and the activity of the inactivated enzyme was restored by hydroxylamine. The modification rate of one histidyl residue by DEPC was almost equal to the rate of the activity loss. These results indicate that there is one histidyl residue at or near the catalytic site, and that honeybee alpha-glucosidase I has a single active site.  相似文献   

2.
Diethyl pyrocarbonate (DEPC) in conditions that favour carbethoxylation of histidyl residues strongly inactivated E-type ATPase activity of a rat lung membrane preparation, as well as ecto-ATPase activity of rat vessels and human Epstein-Barr virus-transformed B lymphocytes. Inactivation of the enzyme (up to 70%) achieved at concentrations of DEPC below 0.5 mM could be fully reversed by 200 mM hydroxylamine at pH 7.5, thus confirming histidine-selective modification. UTP effectively protected the enzyme activity from DEPC inactivation. This was taken to indicate that the conformation adopted by the enzyme molecule upon substrate binding was not compatible with DEPC reaching and/or modifying the relevant histidyl residue. Substrate activation curves were interpreted to show the enzyme molecule to be inactive, at all substrate concentrations tested, when the target histidyl residue had been modified by DEPC. Comparison of known sequences of CD39-like ecto-ATP(D)ases with the results on inactivation by DEPC revealed His-59 and His-251 (according to the human CD39 sequence) as equally possible targets of the inactivating DEPC modification. Potato apyrase lacks a homologue for the former residue, while the latter is preserved in the enzyme sequence. Therefore, this enzyme was exposed to DEPC, and since hydrolysis of ATP and ADP by potato apyrase was insensitive to modification with DEPC, it was concluded that His-59 is the essential residue in CD39 that is affected by DEPC modification in a way that causes inactivation of the enzyme.  相似文献   

3.
Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica. Utilizing coexpression with the bacterial selA, selB, and selC genes (encoding selenocysteine synthase, SelB, and tRNA(Sec), respectively) the yield of recombinant seleno-GST was about 2.9 mg/L bacterial culture, concomitant with formation of approximately 85% truncation product as a result of termination of translation at the selenocysteine-encoding UGA codon. The mutations inferred as a result of the introduction of a SECIS element did not affect the glutathione-binding capacity (Km = 53 microM for glutathione as compared to 63 microM for the wild-type enzyme) nor the GST activity (kcat = 14.3 s(-1) vs. 16.6 s(-1)), provided that the catalytic Tyr residue was intact. When this residue was changed to selenocysteine, however, the resulting seleno-GST lost the GST activity. It also failed to display any novel GPX activity towards three standard peroxide substrates (hydrogen peroxide, butyl hydroperoxide or cumene hydroperoxide). These results show that recombinant selenoproteins with internal selenocysteine residues may be heterologously produced in E. coli at sufficient amounts for purification. We also conclude that introduction of a selenocysteine residue into the catalytic site of a glutathione S-transferase is not sufficient to induce GPX activity in spite of a maintained glutathione-binding capacity.  相似文献   

4.
Horseradish peroxidase (HRP), when incubated with diethylpyrocarbonate (DEPC), shows a time-dependent loss of iodide oxidation activity. The inactivation follows pseudo-first order kinetics with a second order rate constant of 0.43 min-1 M-1 at 30 degrees C and is reversed by neutralized hydroxylamine. The difference absorption spectrum of the modified versus native enzyme shows a peak at 244 nm, characteristic of N-carbethoxyhistidine, which is diminished by treatment with hydroxylamine. Correlation between the stoichiometry of histidine modification and the extent of inactivation indicates that out of 2 histidine residues modified, one is responsible for inactivation. A plot of the log of the reciprocal half-time of inactivation against log DEPC concentration further suggests that only 1 histidine is involved in catalysis. The rate of inactivation shows a pH dependence with an inflection point at 6.2, indicating histidine derivatization by DEPC. Inactivation due to modification of tyrosine, lysine, or cysteine has been excluded. CD studies reveal no significant change in the protein or heme conformation following DEPC modification. We suggest that a unique histidine residue is required for maximal catalytic activity of HRP for iodide oxidation.  相似文献   

5.
Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (GA3PD) (EC. 1.2.1.12) was completely inactivated by diethyl pyrocarbonate (DEPC), a fairly specific reagent for histidine residues in the pH range of 6.0-7.5. The rate of inactivation was dependent on pH and followed pseudo-first order reaction kinetics. The difference spectrum of the inactivated and native enzymes showed an increase in the absorption maximum at 242 nm, indicating the modification of histidine residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of one essential histidine residue to be responsible for loss of the catalytic activity of EAC cell GA3PD. DEPC inactivation was protected by substrates, D-glyceraldehyde-3-phosphate and NAD, indicating the presence of essential histidine residue at the substrate-binding region of the active site. Double inhibition studies also provide evidence for the presence of histidine residue at the active site.  相似文献   

6.
The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAH 7-P) synthase (Phe) is inactivated by diethyl pyrocarbonate (DEPC). The inactivation is first order with respect to enzyme and DEPC concentrations with a pseudo-second order rate constant of inactivation by DEPC of 4.9 +/- 0.8 m(-1) s(-1) at pH 6.8 and 4 degrees C. The dependence of inactivation on pH and the spectral features of enzyme modified at specific pH values imply that both histidine and cysteine residues are modified, which is confirmed by site-directed mutagenesis. Analysis of the chemical modification data indicates that one histidine is essential for activity. DAH 7-P synthase (Phe) is protected against DEPC inactivation by phosphoenolpyruvate, whereas d-erythrose 4-phosphate offers only minimal protection. The conserved residues H-172, H-207, H-268, and H-304 were individually mutated to glycine. The H304G and H207G mutants retain some level of activity, whereas the H268G and H172G mutants are virtually inactive. A comparison of the circular dichroism spectra of wild-type enzyme and the various mutants demonstrates that H-172 may play a structural role. Comparison of the UV spectra of the H268G and wild-type enzymes saturated with Cu(2+) indicates that the metal-binding site of the H268G mutant resembles that of the wild-type enzyme. The residue H-268 may play a catalytic role based on the site-directed mutagenesis and spectroscopic studies. Cysteine 61 appears to influence the pK(a) of H-268 in the wild-type enzyme. The pK(a) of H-268 increases from 6.0 to 7.0 following mutation of C-61 to glycine.  相似文献   

7.
Arginase from the gills of the bivalveSemele solida was inactivated by diethyl pyrocarbonate (DEPC) in a pseudo-first-order reaction with a bimolecular rate constant of 160 M−1 min−1. The reaction order with respect to DEPC concentration was 1, the inactivation followed a titration curve for a residue with a pKa of 6.4 at 25°C and the enzymatic activity was restored by hydroxylamine. It is concluded that inactivation results from the modification of a single histidine residue. Borate, a noncompetitive inhibitor with respect to arginine, protected the enzyme from inactivation by DEPC.  相似文献   

8.
Glutathionyl S-[4-(succinimidyl)benzophenone] (GS-Succ-BP), an analogue of the product of glutathione and electrophilic substrate, acts as a photoaffinity label of dimeric rat liver glutathione S-transferase (GST), isoenzyme 1-1. A time-dependent loss of enzyme activity is observed upon irradiation of the enzyme with long wavelength UV light in the presence of the reagent. The initial rate of inactivation exhibits nonlinear dependence on the concentration of the reagent, characterized by an apparent dissociation constant of the enzyme-reagent complex (K(R)) of 99 +/- 2 microM and k(max) of 0.082 +/- 0.005 min(-1). Protection against this inactivation is provided by the electrophilic substrate (ethacrynic acid), electrophilic substrate analogue (dinitrophenol), and product analogues (S-hexylglutathione and p-nitrobenzylglutathione) but not by steroids (Delta(5)-androstene-3,17-dione and 17beta-estradiol-3, 17-disulfate). These results suggest that GS-Succ-BP binds and reacts with the enzyme within the xenobiotic substrate binding site, and this reaction site is distinct from the substrate and nonsubstrate steroid binding sites of the enzyme. About 1 mol of reagent is incorporated into 1 mol of enzyme dimer when the enzyme is completely inactivated. Met-208 is the only amino acid target of the reagent, and modification of this residue in one enzyme subunit of the GST 1-1 dimer completely abolishes the enzyme activity of both subunits. In order to evaluate the role of subunit interactions in the Alpha class glutathione S-transferases, inactive GS-Succ-BP-modified GST 1-1 was mixed with unlabeled, active GST 2-2. The enzyme subunits were dissociated in dilute trifluoroacetic acid and then renatured at pH 7.8 and separated by chromatofocusing into GST 1-1, 1-2, and 2-2. The specific activities of the heterodimer toward several substrates indicate that the loss of catalytic activity in the unmodified subunit of the modified GST 1-1 is the indirect result of the interaction between the two enzyme subunits and that this subunit interaction is absent in the heterodimer GST 1-2.  相似文献   

9.
Human glutathione transferase (GST) A1-1 efficiently catalyzes the isomerization of Delta(5)-androstene-3,17-dione (AD) into Delta(4)-androstene-3,17-dione. High activity requires glutathione, but enzymatic catalysis occurs also in the absence of this cofactor. Glutathione alone shows a limited catalytic effect. S-Alkylglutathione derivatives do not promote the reaction, and the pH dependence of the isomerization indicates that the glutathione thiolate serves as a base in the catalytic mechanism. Mutation of the active-site Tyr(9) into Phe significantly decreases the steady-state kinetic parameters, alters their pH dependence, and increases the pK(a) value of the enzyme-bound glutathione thiol. Thus, Tyr(9) promotes the reaction via its phenolic hydroxyl group in protonated form. GST A2-2 has a catalytic efficiency with AD 100-fold lower than the homologous GST A1-1. Another Alpha class enzyme, GST A4-4, is 1000-fold less active than GST A1-1. The Y9F mutant of GST A1-1 is more efficient than GST A2-2 and GST A4-4, both having a glutathione cofactor and an active-site Tyr(9) residue. The active sites of GST A2-2 and GST A1-1 differ by only four amino acid residues, suggesting that proper orientation of AD in relation to the thiolate of glutathione is crucial for high catalytic efficiency in the isomerization reaction. The GST A1-1-catalyzed steroid isomerization provides a complement to the previously described isomerase activity of 3beta-hydroxysteroid dehydrogenase.  相似文献   

10.
The ram2 and cal1 genes encode the alpha and beta subunits of yeast geranylgeranyl protein transferase type I (GGPT-I), respectively. Arginine 166 of the beta subunit was changed to isoleucine (betaR166I), histidine 216 to aspartic acid (betaH216D), and asparagine 282 to alanine (betaN282A) by sequential PCR using mutagenic primers. The mutants were expressed under the same conditions as the wild-type and were assayed for GGPT-I activity. Wild-type yeast GGPT-I, alphaH145D, alphaD140N, betaR166I, betaH216D and betaN282A mutant GGPT-Is were partially purified by ammonium sulfate fractionation followed by a Q-Sepharose column. Characterization studies were performed using the active fraction of the Q-Sepharose column. In the chemical modification reactions, the catalytic activity of purified enzyme decreased in proportion to the concentration of modifying reagents, such as phenylglyoxal and diethyl pyrocarbonate (DEPC). Geranylgeranyl pyrophosphate (GGPP) protected the enzyme activity from the modification with phenylglyoxal. The measurement of GGPP binding to wild-type and five mutant GGPT-Is was performed by a gel-filtration assay. The binding of GGPP to the betaR166I mutant was low and the Km value for GGPP in the betaR166I mutant increased about 29-fold. Therefore, the results suggest a role for this arginine residue that directly influences the GGPP binding. The activity of the DEPC-modified GGPT-I was inhibited by 80% at 5 mM DEPC. The differential absorption at 242 nm may suggest that at this concentration the modified histidine residues were 1.5 mol per GGPT-I. The protein substrate, glutathione S-transferase fused undecapeptide (GST-CAIL) protected the enzyme from inactivation by DEPC, and the Km value for GST-CAIL in the betaH216D mutant increased about 12-fold. The trypsin digestion of [14C]DEPC-modified enzyme yielded a single radioactive peptide. As a result of the sequence of this radioactive peptide, the histidine 216 residue was assumed to be an essential part of binding of peptide substrate.  相似文献   

11.
The ArsA ATPase is the catalytic subunit of the ArsAB oxyanion pump in Escherichia coli that is responsible for extruding arsenite or antimonite from inside the cell, thereby conferring resistance. Either antimonite or arsenite stimulates ArsA ATPase activity. In this study, the role of histidine residues in ArsA activity was investigated. Treatment of ArsA with diethyl pyrocarbonate (DEPC) resulted in complete loss of catalytic activity. The inactivation could be reversed upon subsequent incubation with hydroxylamine, suggesting specific modification of histidine residues. ATP and oxyanions afforded significant protection against DEPC inactivation, indicating that the histidines are located at the active site. ArsA has 13 histidine residues located at position 138, 148, 219, 327, 359, 368, 388, 397, 453, 465, 477, 520, and 558. Each histidine was individually altered to alanine by site-directed mutagenesis. Cells expressing the altered ArsA proteins were resistant to both arsenite and antimonite. The results indicate that no single histidine residue plays a direct role in catalysis, and the inhibition by DEPC may be caused by steric hindrance from the carbethoxy group.  相似文献   

12.
Towards understanding the catalytic mechanism of M.EcoP15I [EcoP15I MTase (DNA methyltransferase); an adenine methyltransferase], we investigated the role of histidine residues in catalysis. M.EcoP15I, when incubated with DEPC (diethyl pyrocarbonate), a histidine-specific reagent, shows a time- and concentration-dependent inactivation of methylation of DNA containing its recognition sequence of 5'-CAGCAG-3'. The loss of enzyme activity was accompanied by an increase in absorbance at 240 nm. A difference spectrum of modified versus native enzyme shows the formation of N-carbethoxyhistidine that is diminished by hydroxylamine. This, along with other experiments, strongly suggests that the inactivation of the enzyme by DEPC was specific for histidine residues. Substrate protection experiments show that pre-incubating the methylase with DNA was able to protect the enzyme from DEPC inactivation. Site-directed mutagenesis experiments in which the 15 histidine residues in the enzyme were replaced individually with alanine corroborated the chemical modification studies and established the importance of His-335 in the methylase activity. No gross structural differences were detected between the native and H335A mutant MTases, as evident from CD spectra, native PAGE pattern or on gel filtration chromatography. Replacement of histidine with alanine residue at position 335 results in a mutant enzyme that is catalytically inactive and binds to DNA more tightly than the wild-type enzyme. Thus we have shown in the present study, through a combination of chemical modification and site-directed mutagenesis experiments, that His-335 plays an essential role in DNA methylation catalysed by M.EcoP15I.  相似文献   

13.
Goodall JJ  Chen GJ  Page MG 《Biochemistry》2004,43(15):4583-4591
The peptidyl-tRNA hydrolase (Pth) enzyme plays an essential role in recycling tRNA from peptidyl-tRNA that has prematurely dissociated from the ribosome. In this study of Escherichia coli Pth, the critical role of histidine 20 was investigated by site-directed mutagenesis, stopped-flow kinetic measurements, and chemical modification. The histidine residue at position 20 is known to play an important role in the hydrolysis reaction, but stopped-flow fluorescence measurements showed that, although the His20Asn Pth mutant enzyme was unable to hydrolyze the substrate, the enzyme retained the ability to bind peptidyl-tRNA. Chemical modification of Pth with diethyl pyrocarbonate (DEPC) showed that a residue, with a pK(a) value of 6.3, was essential for substrate hydrolysis and that the stoichiometry of inhibition was 0.70 +/- 0.06 mol of DEPC/mol of enzyme, indicating that modification of only a single residue by DEPC was responsible for the loss of activity. Parallel chemical modification studies with the His20Asn and Asp93Asn mutant enzymes showed that this essential residue was His20. These studies indicate that histidine 20 acts as the catalytic base in the hydrolysis of peptidyl-tRNA by Pth.  相似文献   

14.
Modification of glucose/xylose isomerase from Streptomyces sp. NCIM 2730 by diethylpyrocarbonate (DEPC) or its photo-oxidation in presence of rose bengal or methylene blue caused rapid loss in its activity. The inactivation of the enzyme was accompanied by an increase in the absorbance at 240 nm and was reversed by hydroxylamine. Glucose and xylose but not Mg++ and Co++ afforded significant protection to the enzyme from inactivation by DEPC. Inactivation followed pseudo-first-order kinetics and modification of a single histidine residue per mole of enzyme was indicated.  相似文献   

15.
Reaction of the phosphofructokinase from Ascaris suum with the reagent, diethylpyrocarbonate (DEPC), results in the loss of enzymatic activity. Treatment of the inactivated enzyme with hydroxylamine brings about the recovery of almost 80% of the original activity suggesting that the modified residues are histidines. Further evidence for the modification of histidines is that concomitant with the loss of activity, there is a change in A242 nm that corresponds to the derivatization of 5-6 histidines per subunit. There is no change in A278 nm during the derivatization process, thereby ruling out the modification of tyrosines by DEPC. Analyses of the first order inactivation rate constant for DEPC derivatization at different pH values resulted in the determination of a pKa of 6.4 +/- 0.1 for the group on the enzyme that reacts with DEPC. Derivatization of the enzyme with DEPC in the presence of fructose 6-phosphate (Fru-6-P) protected the enzyme against inactivation by 80%. ATP or MgATP gave no protection against DEPC inactivation. When the Fru-6-P-protected enzyme was further reacted with DEPC in the absence of Fru-6-P, a total of 2 histidines were modified per subunit, and the derivatization of one of these could be correlated with activity loss. When the phosphofructokinase that had been derivatized by DEPC in the presence of Fru-6-P was assayed, it was found that it no longer exhibited allosteric properties and appeared to be desensitized to ATP inhibition. This loss of ATP inhibition could be correlated with the modification of 2 histidines per subunit by DEPC. The first order rate constant for desensitization was determined at different pH values and a pKa value of 7.0 +/- 0.2 was obtained for the group(s) responsible for the desensitization. Regulatory studies with the desensitized enzyme revealed that the enzyme was not stimulated by AMP, NH4+, K+, phosphate, sulfate, or hexose bisphosphates. It is concluded that histidine may be involved both in the active site and the ATP inhibitory site of the ascarid phosphofructokinase.  相似文献   

16.
Glutathione S-transferase from the digestive gland of the cold-adapted marine bivalve Icelandic scallop was purified to apparent homogeneity by single GSTrap chromatography. The enzyme appeared to be a homodimer with subunit M(r) 22,000 having an optimum catalytic activity at pH 6.5-7. Enzymatic analysis of scallop GST using the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione resulted in apparent values for K(m)(GST) and K(m)(CDNB) of 0.3 mM and 0.4 mM, respectively. The scallop GST lost activity faster than porcine GST when exposed to increased temperatures, but both enzymes needed 10 min incubation at 60 degrees C for complete inactivation. A partial coding sequence was identified in cDNA synthesised from digestive gland mRNA. Comparison to known sequences indicates that the gene product is a glutathione S-transferase, and the predicted Icelandic scallop GST protein scores 40% sequence identity and 60% sequence similarity to mu-class proteins.  相似文献   

17.
The crystal structures of wild-type human theta class glutathione-S-transferase (GST) T1-1 and its W234R mutant, where Trp234 was replaced by Arg, were solved both in the presence and absence of S-hexyl-glutathione. The W234R mutant was of interest due to its previously observed enhanced catalytic activity compared to the wild-type enzyme. GST T1-1 from rat and mouse naturally contain Arg in position 234, with correspondingly high catalytic efficiency. The overall structure of GST T1-1 is similar to that of GST T2-2, as expected from their 53% sequence identity at the protein level. Wild-type GST T1-1 has the side-chain of Trp234 occupying a significant portion of the active site. This bulky residue prevents efficient binding of both glutathione and hydrophobic substrates through steric hindrance. The wild-type GST T1-1 crystal structure, obtained from co-crystallization experiments with glutathione and its derivatives, showed no electron density for the glutathione ligand. However, the structure of GST T1-1 mutant W234R showed clear electron density for S-hexyl-glutathione after co-crystallization. In contrast to Trp234 in the wild-type structure, the side-chain of Arg234 in the mutant does not occupy any part of the substrate-binding site. Instead, Arg234 is pointing in a different direction and, in addition, interacts with the carboxylate group of glutathione. These findings explain our earlier observation that the W234R mutant has a markedly improved catalytic activity with most substrates tested to date compared to the wild-type enzyme. GST T1-1 catalyzes detoxication reactions as well as reactions that result in toxic products, and our findings therefore suggest that humans have gained an evolutionary advantage by a partially disabled active site.  相似文献   

18.
Ralat LA  Colman RF 《Biochemistry》2006,45(41):12491-12499
Alpha-tocopherol, the most abundant form of vitamin E present in humans, is a noncompetitive inhibitor of glutathione S-transferase pi (GST pi), but its binding site had not been located. Tocopherol iodoacetate (TIA), a reactive analogue, produces a time-dependent inactivation of GST pi to a limit of 25% residual activity. The rate constant for inactivation, k(obs), exhibits a nonlinear dependence on reagent concentration, with K(I) = 19 microM and k(max) = 0.158 min(-)(1). Complete protection against inactivation is provided by tocopherol and tocopherol acetate, whereas glutathione derivatives, electrophilic substrate analogues, buffers, or nonsubstrate hydrophobic ligands have little effect on k(obs). These results indicate that TIA reacts as an affinity label of a distinguishable tocopherol binding site. Loss of activity occurs concomitant with incorporation of about 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. Isolation of the labeled peptide from the tryptic digest shows that Tyr(79) is the only enzymic amino acid modified. The Y79F, Y79S, and Y79A mutant enzymes were generated, expressed, and purified. Changing Tyr(79) to Ser or Ala, but not Phe, renders the enzyme insensitive to inhibition by either tocopherol or tocopherol acetate as demonstrated by increases of at least 49-fold in K(I) values as compared to the wild-type enzyme. These results and examination of the crystal structure of GST pi suggest that tocopherols bind at a novel site, where an aromatic residue at position 79 is essential for binding.  相似文献   

19.
The Glu alpha-carboxylate of glutathione contributes to the catalytic function of the glutathione transferases. The catalytic efficiency of human glutathione transferase A1-1 (GST A1-1) in the conjugation reaction with 1-chloro-2,4-dinitrobenzene is reduced 15 000-fold if the decarboxylated analogue of glutathione, dGSH (GABA-Cys-Gly), is used as an alternative thiol substrate. The decrease is partially due to an inability of the enzyme to promote ionization of dGSH. The pK(a) value of the thiol group of the natural substrate glutathione decreases from 9.2 to 6.7 upon binding to GST A1-1. However, the lack of the Glu alpha-carboxylate in dGSH raised the pK(a) value of the thiol in the enzymatic reaction to that of the nonenzymatic reaction. Furthermore, K(M)(dGSH) was 100-fold higher than K(M)(GSH). The active-site residue Thr68 forms a hydrogen bond to the Glu alpha-carboxylate of glutathione. Introduction of a carboxylate into GST A1-1 by a T68E mutation increased the catalytic efficiency with dGSH 10-fold and reduced the pK(a) value of the active site bound dGSH by approximately 1 pH unit. The altered pK(a) value is consistent with a catalytic mechanism where the carboxylate contributes to ionization of the glutathione thiol group. With Delta(5)-androstene-3,17-dione as substrate the efficiency of the enzyme is decreased 24 000-fold while with 4-nitrocinnamaldehyde (NCA) the decrease is less than 150-fold. In the latter reaction NCA accepts a proton and, unlike the other reactions studied, may not be dependent on the Glu alpha-carboxylate for deprotonation of the thiol group. An additional function of the Glu alpha-carboxylate may be productive orientation of glutathione within the active site.  相似文献   

20.
Sheflyan GY  Duewel HS  Chen G  Woodard RW 《Biochemistry》1999,38(43):14320-14329
The enzyme 3-deoxy-D-manno-octulosonic acid 8-phosphate (KDO 8-P) synthase from Escherichia coli that catalyzes the aldol-type condensation of D-arabinose 5-phosphate (A 5-P) and phosphoenolpyruvate (PEP) to give KDO 8-P and inorganic phosphate (P(i)) is inactivated by diethyl pyrocarbonate (DEPC). The inactivation is first-order in enzyme and DEPC. A second-order rate constant of 340 M(-1) min(-1) is obtained at pH 7.6 and 4 degrees C. The rate of inactivation is dependent on pH and the pH-inactivation rate data imply the involvement of an amino acid residue with a pK(a) value of 7.3. KDO 8-P synthase activity is not restored to the DEPC-inactivated enzyme following treatment with hydroxylamine. Complete loss of KDO 8-P synthase activity correlates with the ethoxyformylation of three histidine residues by DEPC. KDO 8-P synthase is protected against DEPC inactivation by PEP and partially protected against inactivation by A 5-P. To provide further evidence for the involvement or role of the histidine residues in the aldol-type condensation catalyzed by KDO 8-P synthase, all six histidines were individually mutated to either glycine or alanine. The kinetic constants for the three mutants H40A, H67G, and H246G were unaffected as compared to the wild type enzyme. In contrast, H241G demonstrates a >10-fold increase in K(M) for both PEP and A 5-P and a 4-fold reduction in k(cat), while H97G demonstrates an increase in K(M) for only A 5-P and a 2-fold reduction in k(cat). The activity of the H202G mutant was too low to be measured accurately but the data obtained indicated an approximate 400-fold reduction in k(cat). Circular dichroism measurements of the wild-type and mutant enzymes indicate modest structural changes in only the fully active H67G and H246G mutants. The H241G mutant is protected against DEPC inactivation by PEP and A 5-P to the same extent as the wild-type enzyme, suggesting that the functionally important H241 may not be located in the vicinity of the substrate binding sites. The H97G mutant is protected by PEP against DEPC inactivation to the same degree as the wild-type enzyme but is no longer protected by A 5-P. In the case of the H202G mutant, both A 5-P and PEP protect the mutant against DEPC inactivation but to different extents from those observed for the wild-type enzyme. The catalytic activity of the H97G mutant is partially restored (20% --> 60% of wild-type activity) in the presence of imidazole, while a minor amount of activity is restored to the H202G mutant (<1% --> 4% of wild-type activity) in the presence of imidazole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号