首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
Elucidating the temporal order of silencing   总被引:1,自引:0,他引:1  
Izaurralde E 《EMBO reports》2012,13(8):662-663
  相似文献   

4.

Background

The pathogenesis of appendicitis is unclear. We evaluated whether exposure to air pollution was associated with an increased incidence of appendicitis.

Methods

We identified 5191 adults who had been admitted to hospital with appendicitis between Apr. 1, 1999, and Dec. 31, 2006. The air pollutants studied were ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, and suspended particulate matter of less than 10 μ and less than 2.5 μ in diameter. We estimated the odds of appendicitis relative to short-term increases in concentrations of selected pollutants, alone and in combination, after controlling for temperature and relative humidity as well as the effects of age, sex and season.

Results

An increase in the interquartile range of the 5-day average of ozone was associated with appendicitis (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.03–1.25). In summer (July–August), the effects were most pronounced for ozone (OR 1.32, 95% CI 1.10–1.57), sulfur dioxide (OR 1.30, 95% CI 1.03–1.63), nitrogen dioxide (OR 1.76, 95% CI 1.20–2.58), carbon monoxide (OR 1.35, 95% CI 1.01–1.80) and particulate matter less than 10 μ in diameter (OR 1.20, 95% CI 1.05–1.38). We observed a significant effect of the air pollutants in the summer months among men but not among women (e.g., OR for increase in the 5-day average of nitrogen dioxide 2.05, 95% CI 1.21–3.47, among men and 1.48, 95% CI 0.85–2.59, among women). The double-pollutant model of exposure to ozone and nitrogen dioxide in the summer months was associated with attenuation of the effects of ozone (OR 1.22, 95% CI 1.01–1.48) and nitrogen dioxide (OR 1.48, 95% CI 0.97–2.24).

Interpretation

Our findings suggest that some cases of appendicitis may be triggered by short-term exposure to air pollution. If these findings are confirmed, measures to improve air quality may help to decrease rates of appendicitis.Appendicitis was introduced into the medical vernacular in 1886.1 Since then, the prevailing theory of its pathogenesis implicated an obstruction of the appendiceal orifice by a fecalith or lymphoid hyperplasia.2 However, this notion does not completely account for variations in incidence observed by age,3,4 sex,3,4 ethnic background,3,4 family history,5 temporal–spatial clustering6 and seasonality,3,4 nor does it completely explain the trends in incidence of appendicitis in developed and developing nations.3,7,8The incidence of appendicitis increased dramatically in industrialized nations in the 19th century and in the early part of the 20th century.1 Without explanation, it decreased in the middle and latter part of the 20th century.3 The decrease coincided with legislation to improve air quality. For example, after the United States Clean Air Act was passed in 1970,9 the incidence of appendicitis decreased by 14.6% from 1970 to 1984.3 Likewise, a 36% drop in incidence was reported in the United Kingdom between 1975 and 199410 after legislation was passed in 1956 and 1968 to improve air quality and in the 1970s to control industrial sources of air pollution. Furthermore, appendicitis is less common in developing nations; however, as these countries become more industrialized, the incidence of appendicitis has been increasing.7Air pollution is known to be a risk factor for multiple conditions, to exacerbate disease states and to increase all-cause mortality.11 It has a direct effect on pulmonary diseases such as asthma11 and on nonpulmonary diseases including myocardial infarction, stroke and cancer.1113 Inflammation induced by exposure to air pollution contributes to some adverse health effects.1417 Similar to the effects of air pollution, a proinflammatory response has been associated with appendicitis.1820We conducted a case–crossover study involving a population-based cohort of patients admitted to hospital with appendicitis to determine whether short-term increases in concentrations of selected air pollutants were associated with hospital admission because of appendicitis.  相似文献   

5.

Background:

Polymyalgia rheumatica is one of the most common inflammatory rheumatologic conditions in older adults. Other inflammatory rheumatologic disorders are associated with an excess risk of vascular disease. We investigated whether polymyalgia rheumatica is associated with an increased risk of vascular events.

Methods:

We used the General Practice Research Database to identify patients with a diagnosis of incident polymyalgia rheumatica between Jan. 1, 1987, and Dec. 31, 1999. Patients were matched by age, sex and practice with up to 5 patients without polymyalgia rheumatica. Patients were followed until their first vascular event (cardiovascular, cerebrovascular, peripheral vascular) or the end of available records (May 2011). All participants were free of vascular disease before the diagnosis of polymyalgia rheumatica (or matched date). We used Cox regression models to compare time to first vascular event in patients with and without polymyalgia rheumatica.

Results:

A total of 3249 patients with polymyalgia rheumatica and 12 735 patients without were included in the final sample. Over a median follow-up period of 7.8 (interquartile range 3.3–12.4) years, the rate of vascular events was higher among patients with polymyalgia rheumatica than among those without (36.1 v. 12.2 per 1000 person-years; adjusted hazard ratio 2.6, 95% confidence interval 2.4–2.9). The increased risk of a vascular event was similar for each vascular disease end point. The magnitude of risk was higher in early disease and in patients younger than 60 years at diagnosis.

Interpretation:

Patients with polymyalgia rheumatica have an increased risk of vascular events. This risk is greatest in the youngest age groups. As with other forms of inflammatory arthritis, patients with polymyalgia rheumatica should have their vascular risk factors identified and actively managed to reduce this excess risk.Inflammatory rheumatologic disorders such as rheumatoid arthritis,1,2 systemic lupus erythematosus,2,3 gout,4 psoriatic arthritis2,5 and ankylosing spondylitis2,6 are associated with an increased risk of vascular disease, especially cardiovascular disease, leading to substantial morbidity and premature death.26 Recognition of this excess vascular risk has led to management guidelines advocating screening for and management of vascular risk factors.79Polymyalgia rheumatica is one of the most common inflammatory rheumatologic conditions in older adults,10 with a lifetime risk of 2.4% for women and 1.7% for men.11 To date, evidence regarding the risk of vascular disease in patients with polymyalgia rheumatica is unclear. There are a number of biologically plausible mechanisms between polymyalgia rheumatica and vascular disease. These include the inflammatory burden of the disease,12,13 the association of the disease with giant cell arteritis (causing an inflammatory vasculopathy, which may lead to subclinical arteritis, stenosis or aneurysms),14 and the adverse effects of long-term corticosteroid treatment (e.g., diabetes, hypertension and dyslipidemia).15,16 Paradoxically, however, use of corticosteroids in patients with polymyalgia rheumatica may actually decrease vascular risk by controlling inflammation.17 A recent systematic review concluded that although some evidence exists to support an association between vascular disease and polymyalgia rheumatica,18 the existing literature presents conflicting results, with some studies reporting an excess risk of vascular disease19,20 and vascular death,21,22 and others reporting no association.2326 Most current studies are limited by poor methodologic quality and small samples, and are based on secondary care cohorts, who may have more severe disease, yet most patients with polymyalgia rheumatica receive treatment exclusively in primary care.27The General Practice Research Database (GPRD), based in the United Kingdom, is a large electronic system for primary care records. It has been used as a data source for previous studies,28 including studies on the association of inflammatory conditions with vascular disease29 and on the epidemiology of polymyalgia rheumatica in the UK.30 The aim of the current study was to examine the association between polymyalgia rheumatica and vascular disease in a primary care population.  相似文献   

6.
7.
Background:Rates of imaging for low-back pain are high and are associated with increased health care costs and radiation exposure as well as potentially poorer patient outcomes. We conducted a systematic review to investigate the effectiveness of interventions aimed at reducing the use of imaging for low-back pain.Methods:We searched MEDLINE, Embase, CINAHL and the Cochrane Central Register of Controlled Trials from the earliest records to June 23, 2014. We included randomized controlled trials, controlled clinical trials and interrupted time series studies that assessed interventions designed to reduce the use of imaging in any clinical setting, including primary, emergency and specialist care. Two independent reviewers extracted data and assessed risk of bias. We used raw data on imaging rates to calculate summary statistics. Study heterogeneity prevented meta-analysis.Results:A total of 8500 records were identified through the literature search. Of the 54 potentially eligible studies reviewed in full, 7 were included in our review. Clinical decision support involving a modified referral form in a hospital setting reduced imaging by 36.8% (95% confidence interval [CI] 33.2% to 40.5%). Targeted reminders to primary care physicians of appropriate indications for imaging reduced referrals for imaging by 22.5% (95% CI 8.4% to 36.8%). Interventions that used practitioner audits and feedback, practitioner education or guideline dissemination did not significantly reduce imaging rates. Lack of power within some of the included studies resulted in lack of statistical significance despite potentially clinically important effects.Interpretation:Clinical decision support in a hospital setting and targeted reminders to primary care doctors were effective interventions in reducing the use of imaging for low-back pain. These are potentially low-cost interventions that would substantially decrease medical expenditures associated with the management of low-back pain.Current evidence-based clinical practice guidelines recommend against the routine use of imaging in patients presenting with low-back pain.13 Despite this, imaging rates remain high,4,5 which indicates poor concordance with these guidelines.6,7Unnecessary imaging for low-back pain has been associated with poorer patient outcomes, increased radiation exposure and higher health care costs.8 No short- or long-term clinical benefits have been shown with routine imaging of the low back, and the diagnostic value of incidental imaging findings remains uncertain.912 A 2008 systematic review found that imaging accounted for 7% of direct costs associated with low-back pain, which in 1998 translated to more than US$6 billion in the United States and £114 million in the United Kingdom.13 Current costs are likely to be substantially higher, with an estimated 65% increase in spine-related expenditures between 1997 and 2005.14Various interventions have been tried for reducing imaging rates among people with low-back pain. These include strategies targeted at the practitioner such as guideline dissemination,1517 education workshops,18,19 audit and feedback of imaging use,7,20,21 ongoing reminders7 and clinical decision support.2224 It is unclear which, if any, of these strategies are effective.25 We conducted a systematic review to investigate the effectiveness of interventions designed to reduce imaging rates for the management of low-back pain.  相似文献   

8.
The erythropoietin receptor (EpoR) was discovered and described in red blood cells (RBCs), stimulating its proliferation and survival. The target in humans for EpoR agonists drugs appears clear—to treat anemia. However, there is evidence of the pleitropic actions of erythropoietin (Epo). For that reason, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia). Unfortunately, the side effects of rhEpo are also evident. A new generation of nonhematopoietic EpoR agonists drugs (asialoEpo, Cepo and ARA 290) have been investigated and further developed. These EpoR agonists, without the erythropoietic activity of Epo, while preserving its tissue-protective properties, will provide better outcomes in ongoing clinical trials. Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.In principle, the erythropoietin receptor (EpoR) was discovered and described in red blood cell (RBC) progenitors, stimulating its proliferation and survival. Erythropoietin (Epo) is mainly synthesized in fetal liver and adult kidneys (13). Therefore, it was hypothesized that Epo act exclusively on erythroid progenitor cells. Accordingly, the target in humans for EpoR agonists drugs (such as recombinant erythropoietin [rhEpo], in general, called erythropoiesis-simulating agents) appears clear (that is, to treat anemia). However, evidence of a kaleidoscope of pleitropic actions of Epo has been provided (4,5). The Epo/EpoR axis research involved an initial journey from laboratory basic research to clinical therapeutics. However, as a consequence of clinical observations, basic research on Epo/EpoR comes back to expand its clinical therapeutic applicability.Although kidney and liver have long been considered the major sources of synthesis, Epo mRNA expression has also been detected in the brain (neurons and glial cells), lung, heart, bone marrow, spleen, hair follicles, reproductive tract and osteoblasts (617). Accordingly, EpoR was detected in other cells, such as neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells and cells of heart, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle (1827). Conversely, Sinclair et al.(28) reported data questioning the presence or function of EpoR on nonhematopoietic cells (endothelial, neuronal and cardiac cells), suggesting that further studies are needed to confirm the diversity of EpoR. Elliott et al.(29) also showed that EpoR is virtually undetectable in human renal cells and other tissues with no detectable EpoR on cell surfaces. These results have raised doubts about the preclinical basis for studies exploring pleiotropic actions of rhEpo (30).For the above-mentioned data, a return to basic research studies has become necessary, and many studies in animal models have been initiated or have already been performed. The effect of rhEpo administration on angiogenesis, myogenesis, shift in muscle fiber types and oxidative enzyme activities in skeletal muscle (4,31), cardiac muscle mitochondrial biogenesis (32), cognitive effects (31), antiapoptotic and antiinflammatory actions (3337) and plasma glucose concentrations (38) has been extensively studied. Neuro- and cardioprotection properties have been mainly described. Accordingly, rhEpo therapy was suggested as a reliable approach for treating a broad range of pathologies, including heart and cardiovascular diseases, neurodegenerative disorders (Parkinson’s and Alzheimer’s disease), spinal cord injury, stroke, diabetic retinopathy and rare diseases (Friedreich ataxia).Unfortunately, the side effects of rhEpo are also evident. Epo is involved in regulating tumor angiogenesis (39) and probably in the survival and growth of tumor cells (25,40,41). rhEpo administration also induces serious side effects such as hypertension, polycythemia, myocardial infarction, stroke and seizures, platelet activation and increased thromboembolic risk, and immunogenicity (4246), with the most common being hypertension (47,48). A new generation of nonhematopoietic EpoR agonists drugs have hence been investigated and further developed in animals models. These compounds, namely asialoerythropoietin (asialoEpo) and carbamylated Epo (Cepo), were developed for preserving tissue-protective properties but reducing the erythropoietic activity of native Epo (49,50). These drugs will provide better outcome in ongoing clinical trials. The advantage of using nonhematopoietic Epo analogs is to avoid the stimulation of hematopoiesis and thereby the prevention of an increased hematocrit with a subsequent procoagulant status or increased blood pressure. In this regard, a new study by van Rijt et al. has shed new light on this topic (51). A new nonhematopoietic EpoR agonist analog named ARA 290 has been developed, promising cytoprotective capacities to prevent renal ischemia/reperfusion injury (51). ARA 290 is a short peptide that has shown no safety concerns in preclinical and human studies. In addition, ARA 290 has proven efficacious in cardiac disorders (52,53), neuropathic pain (54) and sarcoidosis-induced chronic neuropathic pain (55). Thus, ARA 290 is a novel nonhematopoietic EpoR agonist with promising therapeutic options in treating a wide range of pathologies and without increased risks of cardiovascular events.Overall, this new generation of EpoR agonists without the erythropoietic activity of Epo while preserving tissue-protective properties of Epo will provide better outcomes in ongoing clinical trials (49,50). Nonhematopoietic EpoR agonists represent safer and more effective surrogates for the treatment of several diseases, such as brain and peripheral nerve injury, diabetic complications, renal ischemia, rare diseases, myocardial infarction, chronic heart disease and others.  相似文献   

9.
Mitochondrial dysfunction underlying changes in neurodegenerative diseases is often associated with apoptosis and a progressive loss of neurons, and damage to the mitochondrial genome is proposed to be involved in such pathologies. In the present study we designed a mouse model that allows us to specifically induce mitochondrial DNA toxicity in the forebrain neurons of adult mice. This is achieved by CaMKIIα-regulated inducible expression of a mutated version of the mitochondrial UNG DNA repair enzyme (mutUNG1). This enzyme is capable of removing thymine from the mitochondrial genome. We demonstrate that a continual generation of apyrimidinic sites causes apoptosis and neuronal death. These defects are associated with behavioral alterations characterized by increased locomotor activity, impaired cognitive abilities, and lack of anxietylike responses. In summary, whereas mitochondrial base substitution and deletions previously have been shown to correlate with premature and natural aging, respectively, we show that a high level of apyrimidinic sites lead to mitochondrial DNA cytotoxicity, which causes apoptosis, followed by neurodegeneration.A variety of both exogenous and endogenous reactive compounds present a constant threat to the integrity of DNA in living cells. DNA damage introduced by such compounds can lead to high and deleterious mutation rates as well as DNA cytotoxicity, both to the nuclear and the mitochondrial genome. This has triggered the evolution of several different DNA repair pathways (28). One is the base excision repair (BER) pathway, which repairs small base alterations that do not distort the DNA helix. Repair of such highly abundant lesions by BER is performed by a multistep process that is initiated by a damage-specific DNA glycosylase, which removes the damaged base. One of these glycosylases is uracil-DNA glycosylase (UDG), which acts to preserve the genome by removing mutagenic uracil residues from the DNA. This glycosylase, as well as the OGG1 glycosylase that is specialized for the removal of oxidized bases, exists in a nuclear and mitochondrial splice form (1, 11, 37, 45). Accordingly, BER of a variety of lesions has been observed in mitochondria (26, 31).Damage to the mitochondrial DNA (mtDNA) can cause respiratory chain deficiency and lead to disorders that have varied phenotypes (35, 41). Many involve neurological features that are often associated with cell loss within specific brain regions. These pathologies, along with the increasing evidence of a decline in mitochondrial function with aging, have raised speculation that key changes in mitochondrial DNA sequences and functions could have a vital role in age-related neurodegenerative diseases (41). This has also been studied in several model organisms. Mouse models with respiratory chain deficient dopamine neurons have demonstrated adult onset Parkinsonism phenotype (16), and cell death induced by mitochondrial toxicity is likely to underlie Alzheimer disease (32). Mitochondrial oxidative stress and accumulation of mtDNA damage are believed to be particularly devastating to postmitotic differentiated tissue, including neurons (30). The mtDNA contains genetic information for 13 polypeptides that are a part of the electron transport chain and for rRNAs and tRNAs that are necessary for mitochondrial protein synthesis. Thus, damage to the mtDNA genome will affect the energetic capacities of the mitochondria and also influence the level of reactive oxygen species (ROS) and ultimately the susceptibility to apoptosis (30, 35).Some recent influential studies have assessed the effect of mtDNA mutagenesis, including small base-pair substitutions and larger mtDNA deletions, on the life span of mice. It was concluded that a massive increase in the frequency of mtDNA base-pair substitutions are required for inducing premature aging, whereas the number of mtDNA deletions coincides better with natural aging (25, 47-49).In the present study, we have combined two novel transgenic mouse models, which allow the induction of a high number of apyrimidinic (AP) sites specifically to the mitochondrial genome in adults simply by the addition of doxycycline to the diet. Such AP sites are created by the expression of a mutated version of mitochondrion-targeted human UDG (abbreviated here as mutUNG1), whereby an amino acid substitution results in an enzyme that removes thymine, in addition to uracil, from DNA (23). The CaMKIIα promoter restricts expression of the mutUNG1 to forebrain neurons (34). We demonstrate that a continuous generation of AP sites leads to apoptosis, accelerated neurodegeneration, and impaired behavior.  相似文献   

10.
Background:Otitis media with effusion is a common problem that lacks an evidence-based nonsurgical treatment option. We assessed the clinical effectiveness of treatment with a nasal balloon device in a primary care setting.Methods:We conducted an open, pragmatic randomized controlled trial set in 43 family practices in the United Kingdom. Children aged 4–11 years with a recent history of ear symptoms and otitis media with effusion in 1 or both ears, confirmed by tympanometry, were allocated to receive either autoinflation 3 times daily for 1–3 months plus usual care or usual care alone. Clearance of middle-ear fluid at 1 and 3 months was assessed by experts masked to allocation.Results:Of 320 children enrolled, those receiving autoinflation were more likely than controls to have normal tympanograms at 1 month (47.3% [62/131] v. 35.6% [47/132]; adjusted relative risk [RR] 1.36, 95% confidence interval [CI] 0.99 to 1.88) and at 3 months (49.6% [62/125] v. 38.3% [46/120]; adjusted RR 1.37, 95% CI 1.03 to 1.83; number needed to treat = 9). Autoinflation produced greater improvements in ear-related quality of life (adjusted between-group difference in change from baseline in OMQ-14 [an ear-related measure of quality of life] score −0.42, 95% CI −0.63 to −0.22). Compliance was 89% at 1 month and 80% at 3 months. Adverse events were mild, infrequent and comparable between groups.Interpretation:Autoinflation in children aged 4–11 years with otitis media with effusion is feasible in primary care and effective both in clearing effusions and improving symptoms and ear-related child and parent quality of life. Trial registration: ISRCTN, No. 55208702.Otitis media with effusion, also known as glue ear, is an accumulation of fluid in the middle ear, without symptoms or signs of an acute ear infection. It is often associated with viral infection.13 The prevalence rises to 46% in children aged 4–5 years,4 when hearing difficulty, other ear-related symptoms and broader developmental concerns often bring the condition to medical attention.3,5,6 Middle-ear fluid is associated with conductive hearing losses of about 15–45 dB HL.7 Resolution is clinically unpredictable,810 with about a third of cases showing recurrence.11 In the United Kingdom, about 200 000 children with the condition are seen annually in primary care.12,13 Research suggests some children seen in primary care are as badly affected as those seen in hospital.7,9,14,15 In the United States, there were 2.2 million diagnosed episodes in 2004, costing an estimated $4.0 billion.16 Rates of ventilation tube surgery show variability between countries,1719 with a declining trend in the UK.20Initial clinical management consists of reasonable temporizing or delay before considering surgery.13 Unfortunately, all available medical treatments for otitis media with effusion such as antibiotics, antihistamines, decongestants and intranasal steroids are ineffective and have unwanted effects, and therefore cannot be recommended.2123 Not only are antibiotics ineffective, but resistance to them poses a major threat to public health.24,25 Although surgery is effective for a carefully selected minority,13,26,27 a simple low-cost, nonsurgical treatment option could benefit a much larger group of symptomatic children, with the purpose of addressing legitimate clinical concerns without incurring excessive delays.Autoinflation using a nasal balloon device is a low-cost intervention with the potential to be used more widely in primary care, but current evidence of its effectiveness is limited to several small hospital-based trials28 that found a higher rate of tympanometric resolution of ear fluid at 1 month.2931 Evidence of feasibility and effectiveness of autoinflation to inform wider clinical use is lacking.13,28 Thus we report here the findings of a large pragmatic trial of the clinical effectiveness of nasal balloon autoinflation in a spectrum of children with clinically confirmed otitis media with effusion identified from primary care.  相似文献   

11.
R Xu  Q Hu  Q Ma  C Liu  G Wang 《Cell death & disease》2014,5(8):e1373
Loss of the mitochondrial protease activity of Omi causes mitochondrial dysfunction, neurodegeneration with parkinsonian features and premature death in mnd2 (motor neuron degeneration 2) mice. However, the detailed mechanisms underlying this pathology remain largely unknown. Here, we report that Omi participates in the process of mitochondrial biogenesis, which has been linked to several neurodegenerative diseases. The mitochondrial biogenesis is deficit in mnd2 mice, evidenced by severe decreases of mitochondrial components, mitochondrial DNA and mitochondrial density. Omi cleaves glycogen synthase kinase 3β (GSK3β), a kinase promoting PPARγ coactivator-1α (PGC-1α) degradation, to regulate PGC-1α, a factor important for the mitochondrial biogenesis. In mnd2 mice, GSK3β abundance is increased and PGC-1α abundance is decreased significantly. Inhibition of GSK3β by SB216763 or overexpression of PGC-1α can restore mitochondrial biogenesis in mnd2 mice or Omi-knockdown N2a cells. Furthermore, there is a significant improvement of the movement ability of mnd2 mice after SB216763 treatment. Thus, our study identified Omi as a novel regulator of mitochondrial biogenesis, involving in Omi protease-deficient-induced neurodegeneration.Mitochondria have a vital role in neuronal death and survival.1 As critical cellular organelles, mitochondria have highly dynamic properties, including mitochondrial fission, fusion, transport, biogenesis and degradation. The changes of those properties affect mitochondrial functions, leading to the occurrence of diseases.2, 3 Growing lines of evidence suggest that the mitochondrial dysfunction is involved in aging and neurodegenerative diseases, such as Alzheimer''s disease (AD), Huntington''s disease (HD) and Parkinson''s disease (PD).4, 5 Similar to other neurodegenerative diseases, PD is a progressive neurological disorder, which is characterized by the development of cytoplasmic aggregates known as Lewy bodies and degeneration of dopaminergic (DA) neurons in the substantia nigra of midbrain and other brain regions.6 In PD, dysfunction of mitochondria has been documented to be associated with disease pathogenesis in PD brains and both genetic- and toxin-induced PD animal models. In PD brains, mutations in mitochondrial DNA (mtDNA) occur more frequently than those in age-matched control; and mutations in the nuclear-encoded mtDNA polymerase-γ gene, which impair mtDNA replication and result in multiple mtDNA deletions, cause PD-like symptoms.5 Meanwhile, several PD-associated gene products, including α-synuclein, parkin, DJ-1, PINK1 (PTEN-induced putative kinase 1), leucine-rich repeat kinase 2, ubiquitin carboxy-terminal hydrolase L1 and Omi, have been identified to be associated with PD, and lead to mitochondrial dysfunction with changes in mitochondrial morphology, biogenesis and mitophagy in vivo and in vitro.5, 7, 8, 9 Besides, mitochondrial toxins, such as MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and rotenone that inhibit complex I of the mitochondrial respiratory chain, cause clinically parkinsonian phenotype.10, 11The serine protease Omi (also known as HtrA2) belongs to the high-temperature requirement factor A (HtrA) family, and was originally identified as a mammalian homolog of the Escherichia coli heat-shock-induced serine protease HtrA/DegP and DegS.12 Omi is mainly localized in mitochondria, although a fraction of it is also found in nucleus.13 Omi is released from the mitochondria into the cytosol to mediate cell death by caspase-dependent or -independent pathways in response to apoptotic stimuli.14, 15 However, the notion that Omi is an apoptosis inducer in the central nervous system was challenged by studies of Omi-overexpressing or -deficient mice. Omi-overexpressing mice show normal development without any sign of apoptotic cell death.16 On the other hand, mnd2 (motor neuron degeneration 2) mice that harbor protease-deficient Omi S276C mutants, and Omi-knockout mice both suffer from progressive neurodegeneration, especially in striatum, and motor abnormalities similar to PD. Both mice fail to gain weight and die before postnatal day 40 due to neurodegeneration with progressive mitochondrial damage.17, 18, 19 Besides, mutations in the Omi gene have also been identified in PD patients.20, 21 Previous studies have shown that Omi has a vital role in the mitochondrial integrity, and the loss of protease activity leads to mitochondrial dysfunction, such as abnormal mitochondrial morphology and increased mtDNA mutation and deletions, increased susceptibility of mitochondrial membrane permeabilization, decreased mitochondrial membrane potential, and reduced mitochondrial density in mnd2 mice and Omi-knockout mice.17, 18, 22 Omi has been found to act downstream of PINK1, but parallel to parkin, in a mitochondrial stress sensing pathway to sense the different stresses, which may be defective in PD.23 These findings suggest that the primary function of Omi is involved in neuroprotection, especially in the maintenance of mitochondrial homeostasis.23, 24In this article, we identified that Omi cleaves glycogen synthase kinase 3β (GSK3β) to regulate PPARγ coactivator-1α (PGC-1α) abundance and to ensure mitochondrial biogenesis.  相似文献   

12.

Background:

The gut microbiota is essential to human health throughout life, yet the acquisition and development of this microbial community during infancy remains poorly understood. Meanwhile, there is increasing concern over rising rates of cesarean delivery and insufficient exclusive breastfeeding of infants in developed countries. In this article, we characterize the gut microbiota of healthy Canadian infants and describe the influence of cesarean delivery and formula feeding.

Methods:

We included a subset of 24 term infants from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. Mode of delivery was obtained from medical records, and mothers were asked to report on infant diet and medication use. Fecal samples were collected at 4 months of age, and we characterized the microbiota composition using high-throughput DNA sequencing.

Results:

We observed high variability in the profiles of fecal microbiota among the infants. The profiles were generally dominated by Actinobacteria (mainly the genus Bifidobacterium) and Firmicutes (with diverse representation from numerous genera). Compared with breastfed infants, formula-fed infants had increased richness of species, with overrepresentation of Clostridium difficile. Escherichia–Shigella and Bacteroides species were underrepresented in infants born by cesarean delivery. Infants born by elective cesarean delivery had particularly low bacterial richness and diversity.

Interpretation:

These findings advance our understanding of the gut microbiota in healthy infants. They also provide new evidence for the effects of delivery mode and infant diet as determinants of this essential microbial community in early life.The human body harbours trillions of microbes, known collectively as the “human microbiome.” By far the highest density of commensal bacteria is found in the digestive tract, where resident microbes outnumber host cells by at least 10 to 1. Gut bacteria play a fundamental role in human health by promoting intestinal homeostasis, stimulating development of the immune system, providing protection against pathogens, and contributing to the processing of nutrients and harvesting of energy.1,2 The disruption of the gut microbiota has been linked to an increasing number of diseases, including inflammatory bowel disease, necrotizing enterocolitis, diabetes, obesity, cancer, allergies and asthma.1 Despite this evidence and a growing appreciation for the integral role of the gut microbiota in lifelong health, relatively little is known about the acquisition and development of this complex microbial community during infancy.3Two of the best-studied determinants of the gut microbiota during infancy are mode of delivery and exposure to breast milk.4,5 Cesarean delivery perturbs normal colonization of the infant gut by preventing exposure to maternal microbes, whereas breastfeeding promotes a “healthy” gut microbiota by providing selective metabolic substrates for beneficial bacteria.3,5 Despite recommendations from the World Health Organization,6 the rate of cesarean delivery has continued to rise in developed countries and rates of breastfeeding decrease substantially within the first few months of life.7,8 In Canada, more than 1 in 4 newborns are born by cesarean delivery, and less than 15% of infants are exclusively breastfed for the recommended duration of 6 months.9,10 In some parts of the world, elective cesarean deliveries are performed by maternal request, often because of apprehension about pain during childbirth, and sometimes for patient–physician convenience.11The potential long-term consequences of decisions regarding mode of delivery and infant diet are not to be underestimated. Infants born by cesarean delivery are at increased risk of asthma, obesity and type 1 diabetes,12 whereas breastfeeding is variably protective against these and other disorders.13 These long-term health consequences may be partially attributable to disruption of the gut microbiota.12,14Historically, the gut microbiota has been studied with the use of culture-based methodologies to examine individual organisms. However, up to 80% of intestinal microbes cannot be grown in culture.3,15 New technology using culture-independent DNA sequencing enables comprehensive detection of intestinal microbes and permits simultaneous characterization of entire microbial communities. Multinational consortia have been established to characterize the “normal” adult microbiome using these exciting new methods;16 however, these methods have been underused in infant studies. Because early colonization may have long-lasting effects on health, infant studies are vital.3,4 Among the few studies of infant gut microbiota using DNA sequencing, most were conducted in restricted populations, such as infants delivered vaginally,17 infants born by cesarean delivery who were formula-fed18 or preterm infants with necrotizing enterocolitis.19Thus, the gut microbiota is essential to human health, yet the acquisition and development of this microbial community during infancy remains poorly understood.3 In the current study, we address this gap in knowledge using new sequencing technology and detailed exposure assessments20 of healthy Canadian infants selected from a national birth cohort to provide representative, comprehensive profiles of gut microbiota according to mode of delivery and infant diet.  相似文献   

13.

Background:

Persistent postoperative pain continues to be an underrecognized complication. We examined the prevalence of and risk factors for this type of pain after cardiac surgery.

Methods:

We enrolled patients scheduled for coronary artery bypass grafting or valve replacement, or both, from Feb. 8, 2005, to Sept. 1, 2009. Validated measures were used to assess (a) preoperative anxiety and depression, tendency to catastrophize in the face of pain, health-related quality of life and presence of persistent pain; (b) pain intensity and interference in the first postoperative week; and (c) presence and intensity of persistent postoperative pain at 3, 6, 12 and 24 months after surgery. The primary outcome was the presence of persistent postoperative pain during 24 months of follow-up.

Results:

A total of 1247 patients completed the preoperative assessment. Follow-up retention rates at 3 and 24 months were 84% and 78%, respectively. The prevalence of persistent postoperative pain decreased significantly over time, from 40.1% at 3 months to 22.1% at 6 months, 16.5% at 12 months and 9.5% at 24 months; the pain was rated as moderate to severe in 3.6% at 24 months. Acute postoperative pain predicted both the presence and severity of persistent postoperative pain. The more intense the pain during the first week after surgery and the more it interfered with functioning, the more likely the patients were to report persistent postoperative pain. Pre-existing persistent pain and increased preoperative anxiety also predicted the presence of persistent postoperative pain.

Interpretation:

Persistent postoperative pain of nonanginal origin after cardiac surgery affected a substantial proportion of the study population. Future research is needed to determine whether interventions to modify certain risk factors, such as preoperative anxiety and the severity of pain before and immediately after surgery, may help to minimize or prevent persistent postoperative pain.Postoperative pain that persists beyond the normal time for tissue healing (> 3 mo) is increasingly recognized as an important complication after various types of surgery and can have serious consequences on patients’ daily living.13 Cardiac surgeries, such as coronary artery bypass grafting (CABG) and valve replacement, rank among the most frequently performed interventions worldwide.4 They aim to improve survival and quality of life by reducing symptoms, including anginal pain. However, persistent postoperative pain of nonanginal origin has been reported in 7% to 60% of patients following these surgeries.523 Such variability is common in other types of major surgery and is due mainly to differences in the definition of persistent postoperative pain, study design, data collection methods and duration of follow-up.13,24Few prospective cohort studies have examined the exact time course of persistent postoperative pain after cardiac surgery, and follow-up has always been limited to a year or less.9,14,25 Factors that put patients at risk of this type of problem are poorly understood.26 Studies have reported inconsistent results regarding the contribution of age, sex, body mass index, preoperative angina, surgical technique, grafting site, postoperative complications or level of opioid consumption after surgery.57,9,13,14,1619,2123,25,27 Only 1 study investigated the role of chronic nonanginal pain before surgery as a contributing factor;21 5 others prospectively assessed the association between persistent postoperative pain and acute pain intensity in the first postoperative week but reported conflicting results.13,14,21,22,25 All of the above studies were carried out in a single hospital and included relatively small samples. None of the studies examined the contribution of psychological factors such as levels of anxiety and depression before cardiac surgery, although these factors have been shown to influence acute or persistent postoperative pain in other types of surgery.1,24,28,29We conducted a prospective multicentre cohort study (the CARD-PAIN study) to determine the prevalence of persistent postoperative pain of nonanginal origin up to 24 months after cardiac surgery and to identify risk factors for the presence and severity of the condition.  相似文献   

14.
15.
Transient exposure of β-cells to oxidative stress interrupts the transduction of signals normally coupling glucose metabolism to insulin secretion. We investigated putative persistence of effects induced by one transient oxidative stress (200 μm H2O2, 10 min) on insulin secreting cells following recovery periods of days and weeks. Three days after oxidative stress INS-1E cells and rat islets exhibited persistent dysfunction. In particular, the secretory response to 15 mm glucose was reduced by 40% in INS-1E cells stressed 3 days before compared with naïve cells. Compared with non-stressed INS-1E cells, we observed reduced oxygen consumption (−43%) and impaired glucose-induced ATP generation (−46%). These parameters correlated with increased mitochondrial reactive oxygen species formation (+60%) accompanied with down-regulation of subunits of the respiratory chain and decreased expression of genes responsible for mitochondrial biogenesis (TFAM, −24%; PGC-1α, −67%). Three weeks after single oxidative stress, both mitochondrial respiration and secretory responses were recovered. Moreover, such recovered INS-1E cells exhibited partial resistance to a second transient oxidative stress and up-regulation of UCP2 (+78%) compared with naïve cells. In conclusion, one acute oxidative stress induces β-cell dysfunction lasting over days, explained by persistent damages in mitochondrial components.Pancreatic β-cells are poised to sense blood glucose to regulate insulin exocytosis and thereby glucose homeostasis. The conversion from metabolic signals to secretory responses is mediated through mitochondrial metabolism (1). Failure of the insulin secreting β-cells, a common characteristic of both type 1 and type 2 diabetes, derives from various origins, among them mitochondrial impairment secondary to oxidative stress is a proposed mechanism (2).Oxidative stress is characterized by a persistent imbalance between excessive production of reactive oxygen species (ROS)3 and limited antioxidant defenses. Examples of ROS include superoxide (O2−̇), hydroxyl radical (OH), and hydrogen peroxide (H2O2). Superoxide can be converted to less reactive H2O2 by superoxide dismutase (SOD) and then to oxygen and water by catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin, which constitute antioxidant defenses. Increased oxidative stress and free radical damages have been proposed to participate in the diabetic state (3). In type 1 diabetes, ROS are implicated in β-cell dysfunction caused by autoimmune reactions and inflammatory cytokines (4). In the context of type 2 diabetes, excessive ROS could promote deficient insulin synthesis (5, 6) and apoptotic pathways in β-cells (5, 7). Of note, ROS fluctuations may also contribute to physiological control of cell functions (8), including the control of insulin secretion (9). It should also be stressed that metabolism of physiological nutrient increases ROS without causing deleterious effects on cell function. However, uncontrolled increase of oxidants, or reduction of their detoxification, leads to free radical-mediated chain reactions ultimately triggering pathogenic events. Pancreatic β-cells are relatively weak in expressing free radical-quenching enzymes SOD, CAT, and GPx (10, 11), rendering those cells particularly susceptible to oxidative attacks (12). Mitochondria are not only the main source of cellular oxidants, they are also the primary target of ROS (13, 14).Mitochondria are essential for pancreatic β-cell function, and damages to these organelles are well known to markedly alter glucose-stimulated insulin secretion (15). The mitochondrial genome constitutes one of the targets, encoding for 13 polypeptides essential for the integrity of electron transport chain (16). Damages to mitochondrial DNA (mtDNA) induce mutations that in turn may favor ROS generation, although the contribution of mtDNA mutations to ROS generation remains unclear. We previously reported that patient-derived mitochondrial A3243G mutation, causing mitochondrial inherited diabetes, is responsible for defective mitochondrial metabolism associated with elevated ROS levels and reduced antioxidant enzyme expression (17). On the other hand, mtDNA mutator mice exhibit accelerated aging without changes in superoxide levels in embryonic fibroblasts (18), showing that ROS generation can be dissociated from mtDNA mutations.In humans, mitochondrial defects typically appear with aging (19), accompanied by sustained ROS generation and progressive oxidant-induced damages (20). In support of this “mitochondrial theory of aging” (21), accumulating evidence shows that in older individuals mitochondria are altered, both morphologically and functionally (22). These age-related mitochondrial changes are foreseen to play a role in the late onset diabetes. In a rat model of intrauterine growth retardation, a vicious cycle between accumulation of mtDNA mutations and elevation of ROS production has been associated to β-cell abnormalities and the onset of type 2 diabetes in adulthood (23). Similarly, mitochondrion-derived ROS impair β-cell function in the Zucker diabetic fatty rat (24). Altogether, these observations point to ROS action as a triggering event inducing mitochondrial dysfunction and ultimately resulting in the loss of the secretory response in β-cells (14).In vitro, oxidative stress applied to β-cells rapidly interrupts the transduction of signals normally coupling glucose metabolism to insulin secretion (12, 25). Specifically, we reported that INS-1E β-cells and rat islets subjected to a 10-min H2O2 exposure exhibit impaired secretory response associated with mitochondrial dysfunction appearing already during the first minutes of oxidative stress (12). In the context of the mitochondrial theory of aging (21, 26), it is important to know whether transient exposure to H2O2 could possibly induce persistent modifications of mitochondrial function. Cells surviving an oxidative stress might carry defects leading to progressive loss of β-cell function. In the present study, we asked the simple but unanswered question if a short transient oxidative stress could induce durable alterations of the mitochondria and thereby chronically impair β-cell function. INS-1E β-cells and rat islets were transiently exposed to H2O2 for 10 min and analyzed after days and weeks of standard tissue culture.  相似文献   

16.
17.
18.
Schultz AS  Finegan B  Nykiforuk CI  Kvern MA 《CMAJ》2011,183(18):E1334-E1344

Background:

Many hospitals have adopted smoke-free policies on their property. We examined the consequences of such polices at two Canadian tertiary acute-care hospitals.

Methods:

We conducted a qualitative study using ethnographic techniques over a six-month period. Participants (n = 186) shared their perspectives on and experiences with tobacco dependence and managing the use of tobacco, as well as their impressions of the smoke-free policy. We interviewed inpatients individually from eight wards (n = 82), key policy-makers (n = 9) and support staff (n = 14) and held 16 focus groups with health care providers and ward staff (n = 81). We also reviewed ward documents relating to tobacco dependence and looked at smoking-related activities on hospital property.

Results:

Noncompliance with the policy and exposure to secondhand smoke were ongoing concerns. Peoples’ impressions of the use of tobacco varied, including divergent opinions as to whether such use was a bad habit or an addiction. Treatment for tobacco dependence and the management of symptoms of withdrawal were offered inconsistently. Participants voiced concerns over patient safety and leaving the ward to smoke.

Interpretation:

Policies mandating smoke-free hospital property have important consequences beyond noncompliance, including concerns over patient safety and disruptions to care. Without adequately available and accessible support for withdrawal from tobacco, patients will continue to face personal risk when they leave hospital property to smoke.Canadian cities and provinces have passed smoking bans with the goal of reducing people’s exposure to secondhand smoke in workplaces, public spaces and on the property adjacent to public buildings.1,2 In response, Canadian health authorities and hospitals began implementing policies mandating smoke-free hospital property, with the goals of reducing the exposure of workers, patients and visitors to tobacco smoke while delivering a public health message about the dangers of smoking.25 An additional anticipated outcome was the reduced use of tobacco among patients and staff. The impetuses for adopting smoke-free policies include public support for such legislation and the potential for litigation for exposure to second-hand smoke.2,4Tobacco use is a modifiable risk factor associated with a variety of cancers, cardiovascular diseases and respiratory conditions.611 Patients in hospital who use tobacco tend to have more surgical complications and exacerbations of acute and chronic health conditions than patients who do not use tobacco.611 Any policy aimed at reducing exposure to tobacco in hospitals is well supported by evidence, as is the integration of interventions targetting tobacco dependence.12 Unfortunately, most of the nearly five million Canadians who smoke will receive suboptimal treatment,13 as the routine provision of interventions for tobacco dependence in hospital settings is not a practice norm.1416 In smoke-free hospitals, two studies suggest minimal support is offered for withdrawal, 17,18 and one reports an increased use of nicotine-replacement therapy after the implementation of the smoke-free policy.19Assessments of the effectiveness of smoke-free policies for hospital property tend to focus on noncompliance and related issues of enforcement.17,20,21 Although evidence of noncompliance and litter on hospital property2,17,20 implies ongoing exposure to tobacco smoke, half of the participating hospital sites in one study reported less exposure to tobacco smoke within hospital buildings and on the property.18 In addition, there is evidence to suggest some decline in smoking among staff.18,19,21,22We sought to determine the consequences of policies mandating smoke-free hospital property in two Canadian acute-care hospitals by eliciting lived experiences of the people faced with enacting the policies: patients and health care providers. In addition, we elicited stories from hospital support staff and administrators regarding the policies.  相似文献   

19.

Background

Fractures have largely been assessed by their impact on quality of life or health care costs. We conducted this study to evaluate the relation between fractures and mortality.

Methods

A total of 7753 randomly selected people (2187 men and 5566 women) aged 50 years and older from across Canada participated in a 5-year observational cohort study. Incident fractures were identified on the basis of validated self-report and were classified by type (vertebral, pelvic, forearm or wrist, rib, hip and “other”). We subdivided fracture groups by the year in which the fracture occurred during follow-up; those occurring in the fourth and fifth years were grouped together. We examined the relation between the time of the incident fracture and death.

Results

Compared with participants who had no fracture during follow-up, those who had a vertebral fracture in the second year were at increased risk of death (adjusted hazard ratio [HR] 2.7, 95% confidence interval [CI] 1.1–6.6); also at risk were those who had a hip fracture during the first year (adjusted HR 3.2, 95% CI 1.4–7.4). Among women, the risk of death was increased for those with a vertebral fracture during the first year (adjusted HR 3.7, 95% CI 1.1–12.8) or the second year of follow-up (adjusted HR 3.2, 95% CI 1.2–8.1). The risk of death was also increased among women with hip fracture during the first year of follow-up (adjusted HR 3.0, 95% CI 1.0–8.7).

Interpretation

Vertebral and hip fractures are associated with an increased risk of death. Interventions that reduce the incidence of these fractures need to be implemented to improve survival.Osteoporosis-related fractures are a major health concern, affecting a growing number of individuals worldwide. The burden of fracture has largely been assessed by the impact on health-related quality of life and health care costs.1,2 Fractures can also be associated with death. However, trials that have examined the relation between fractures and mortality have had limitations that may influence their results and the generalizability of the studies, including small samples,3,4 the examination of only 1 type of fracture,410 the inclusion of only women,8,11 the enrolment of participants from specific areas (i.e., hospitals or certain geographic regions),3,4,7,8,10,12 the nonrandom selection of participants311 and the lack of statistical adjustment for confounding factors that may influence mortality.3,57,12We evaluated the relation between incident fractures and mortality over a 5-year period in a cohort of men and women 50 years of age and older. In addition, we examined whether other characteristics of participants were risk factors for death.  相似文献   

20.

Background:

Little evidence exists on the effect of an energy-unrestricted healthy diet on metabolic syndrome. We evaluated the long-term effect of Mediterranean diets ad libitum on the incidence or reversion of metabolic syndrome.

Methods:

We performed a secondary analysis of the PREDIMED trial — a multicentre, randomized trial done between October 2003 and December 2010 that involved men and women (age 55–80 yr) at high risk for cardiovascular disease. Participants were randomly assigned to 1 of 3 dietary interventions: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with nuts or advice on following a low-fat diet (the control group). The interventions did not include increased physical activity or weight loss as a goal. We analyzed available data from 5801 participants. We determined the effect of diet on incidence and reversion of metabolic syndrome using Cox regression analysis to calculate hazard ratios (HRs) and 95% confidence intervals (CIs).

Results:

Over 4.8 years of follow-up, metabolic syndrome developed in 960 (50.0%) of the 1919 participants who did not have the condition at baseline. The risk of developing metabolic syndrome did not differ between participants assigned to the control diet and those assigned to either of the Mediterranean diets (control v. olive oil HR 1.10, 95% CI 0.94–1.30, p = 0.231; control v. nuts HR 1.08, 95% CI 0.92–1.27, p = 0.3). Reversion occurred in 958 (28.2%) of the 3392 participants who had metabolic syndrome at baseline. Compared with the control group, participants on either Mediterranean diet were more likely to undergo reversion (control v. olive oil HR 1.35, 95% CI 1.15–1.58, p < 0.001; control v. nuts HR 1.28, 95% CI 1.08–1.51, p < 0.001). Participants in the group receiving olive oil supplementation showed significant decreases in both central obesity and high fasting glucose (p = 0.02); participants in the group supplemented with nuts showed a significant decrease in central obesity.

Interpretation:

A Mediterranean diet supplemented with either extra virgin olive oil or nuts is not associated with the onset of metabolic syndrome, but such diets are more likely to cause reversion of the condition. An energy-unrestricted Mediterranean diet may be useful in reducing the risks of central obesity and hyperglycemia in people at high risk of cardiovascular disease. Trial registration: ClinicalTrials.gov, no. ISRCTN35739639.Metabolic syndrome is a cluster of 3 or more related cardiometabolic risk factors: central obesity (determined by waist circumference), hypertension, hypertriglyceridemia, low plasma high-density lipoprotein (HDL) cholesterol levels and hyperglycemia. Having the syndrome increases a person’s risk for type 2 diabetes and cardiovascular disease.1,2 In addition, the condition is associated with increased morbidity and all-cause mortality.1,35 The worldwide prevalence of metabolic syndrome in adults approaches 25%68 and increases with age,7 especially among women,8,9 making it an important public health issue.Several studies have shown that lifestyle modifications,10 such as increased physical activity,11 adherence to a healthy diet12,13 or weight loss,1416 are associated with reversion of the metabolic syndrome and its components. However, little information exists as to whether changes in the overall dietary pattern without weight loss might also be effective in preventing and managing the condition.The Mediterranean diet is recognized as one of the healthiest dietary patterns. It has shown benefits in patients with cardiovascular disease17,18 and in the prevention and treatment of related conditions, such as diabetes,1921 hypertension22,23 and metabolic syndrome.24Several cross-sectional2529 and prospective3032 epidemiologic studies have suggested an inverse association between adherence to the Mediterranean diet and the prevalence or incidence of metabolic syndrome. Evidence from clinical trials has shown that an energy-restricted Mediterranean diet33 or adopting a Mediterranean diet after weight loss34 has a beneficial effect on metabolic syndrome. However, these studies did not determine whether the effect could be attributed to the weight loss or to the diets themselves.Seminal data from the PREDIMED (PREvención con DIeta MEDiterránea) study suggested that adherence to a Mediterranean diet supplemented with nuts reversed metabolic syndrome more so than advice to follow a low-fat diet.35 However, the report was based on data from only 1224 participants followed for 1 year. We have analyzed the data from the final PREDIMED cohort after a median follow-up of 4.8 years to determine the long-term effects of a Mediterranean diet on metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号