首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The mechanisms by which ethanol consumption causes accumulation of hepatic triacylglycerols are complex. AMP-activated protein kinase (AMPK) plays a central role in the regulation of lipid metabolism. Therefore, in the present study we investigated whether AMPK may have a role in the development of ethanol-induced fatty liver. Hepatocytes isolated from rats fed with an ethanol-containing liquid diet showed higher rates of fatty acid and triacylglycerol syntheses, but a decreased rate of fatty acid oxidation, concomitant to a lower activity of carnitine palmitoyltransferase I. Hepatocytes from both ethanol-fed and pair-fed control rats were incubated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator in intact cells. In both hepatocyte preparations AICAR strongly inhibited the activity of acetyl-CoA carboxylase in parallel to fatty acid synthesis, but cells from ethanol-fed rats showed significantly lower sensitivity to inhibition by AICAR. Moreover, AICAR strongly decreased triacylglycerol synthesis and increased fatty acid oxidation in control hepatocytes, but these effects were markedly attenuated in hepatocytes from ethanol-fed rats. In parallel, AMPK in liver of ethanol-fed rats showed a decreased specific activity and a lower sensitivity to changes in the AMP/ATP ratio, compared to the enzyme of control rats. These effects are consistent with the impairment of AMPK-mediated regulation of fatty acid metabolism after ethanol consumption, that will facilitate triacylglycerol accumulation. Taken together, these findings suggest that a decreased AMPK activity may have an important role in the development of alcoholic fatty liver.  相似文献   

2.
Effects of ethanol feeding on hepatic lipid synthesis   总被引:3,自引:0,他引:3  
Rats were fed a high-fat, liquid diet containing either 36% of total calories as ethanol or an isocaloric amount of sucrose, for a period up to 35 days. At different time intervals we measured the effects of ethanol administration on the activities of a number of key enzymes involved in hepatic lipid synthesis. At the start of the experimental period the activities of acetyl-CoA carboxylase and fatty acid synthase, measured in liver homogenates, increased in the control as well as in the ethanol-fed group. After 35 days these enzyme activities were still elevated but there were no significant differences between the two groups. In hepatocytes isolated from controls as well as from ethanol-fed rats, short-term incubations with ethanol induced an increase in the rate of fatty acid synthesis and in the activities of acetyl-CoA carboxylase and fatty acid synthase. However, no alterations in the regulation of these enzymes by short-term modulators of lipogenesis were apparent in hepatocytes isolated from alcohol-treated animals. The results do not indicate a major role for the enzymes of de novo fatty acid synthesis in the development of the alcoholic fatty liver. The amount of liver triacylglycerols increased in ethanol-fed rats during the entire treatment period, whereas the hepatic levels of phosphatidylcholine and phosphatidylethanolamine were not affected by ethanol ingestion. Ethanol administration for less than 2 weeks increased the activities of phosphatidate phosphohydrolase, diacylglycerol acyltransferase, and microsomal phosphocholine cytidylyltransferase, whereas the cytosolic activity of phosphocholine cytidylyltransferase was slightly decreased. Upon prolonged ethanol administration the activities of these enzymes were slowly restored to control values after 35 days, suggesting development of some kind of adaptation. It is interesting that, although the activities of phosphatidate phosphohydrolase and diacylglycerol acyltransferase were restored to the levels found in the control rats, this effect was not accompanied by a stabilization or decrease of the concentration of hepatic triacylglycerols.  相似文献   

3.
The effects of different types of dietary fat on the activities of hepatic enzymes related to fatty acid synthesis {glucose-6-phosphate dehydrogenase (G6PDH) and acetyl-CoA carboxylase ACC)}, oxidation {acyl-CoA synthetase (AST), carnitine palmitoyl transferase (CPT), and peroxisomal β-oxidation (P βOX)}, and lipogenesis {phosphatidate phosphohydrolase (PAP), diacylglycerol acyltransferase (DGAT), and phosphocholine diacylglycerol transferase (PCDGT)}, and plasma and liver lipid levels were investigated in male Wistar rats. The animals were 6 weeks old and about 120 g of body weight, and were fed on test diets containing 20% of a mixture of tripalmitin, tristearin and corn oil (SFA), olive oil (OLI), sunflower oil (SUN), linseed oil (LIS), and sardine oil (SAR) for 2 weeks. The concentrations of plasma total cholesterol (T-CHOL), high-density lipoprotein-cholesterol (HDL-CHOL), triacylglycerol (TG) and phospholipid (PL) were generally higher in the rats fed on SEA and OLI than in those given SUN, LIS and SAR. The rats fed on OLI had a higher level of liver T-CHOL than those fed on the other fats. The liver TG content was nearly higher from the intake of SFA and OLI than from SUN, LIS and SAR, although the liver PL level was not affected by the type of dietary fat. The SFA and OLI groups had the highest activities of hepatic G6PDH and ACC, and the SAR group, the lowest activities. The activities of AST and CPT, and peroxisomal P βOX in the liver were higher in the rats fed on the LIS and SAR diets than in those given the other diets. The hepatic PAP activity was higher from the intake of OLI and SUN, and tended to be higher from SFA than from LIS and SAR. The activity of liver DGAT was higher from SFA and inclined to be higher from OLI, SUN, and LIS than from SAR, while the PCDGT activity in the liver was not effected by the type of dietary fat. The concentrations of plasma and liver TG were generally positively correlated with the activities of liver enzymes related to the synthesis of fatty acids and lipids, and negatively with those involved in fatty acid oxidation. Based on these results, it is suggested that the levels of plasma and liver TG were controlled by different types of dietary fat through changes in the hepatic enzyme activities related to fatty acid synthesis, lipogenesis, and fatty acid oxidation.  相似文献   

4.
The effects of different types of dietary fat on the activities of hepatic enzymes related to fatty acid synthesis [glucose-6-phosphate dehydrogenase (G6PDH) and acetyl-CoA carboxylase (ACC)], oxidation [acyl-CoA synthetase (AST), carnitine palmitoyl transferase (CPT), and peroxisomal beta-oxidation (PbetaOX)], and lipogenesis [phosphatidate phosphohydrolase (PAP), diacylglycerol acyltransferase (DGAT), and phosphocholine diacylglycerol transferase (PCDGT)], and plasma and liver lipid levels were investigated in male Wistar rats. The animals were 6 weeks old and about 120 g of body weight, and were fed on test diets containing 20% of a mixture of tripalmitin, tristearin and corn oil (SFA), olive oil (OLI), sunflower oil (SUN), linseed oil (LIS), and sardine oil (SAR) for 2 weeks. The concentrations of plasma total cholesterol (T-CHOL), high-density lipoprotein-cholesterol (HDL-CHOL), triacylglycerol (TG) and phospholipid (PL) were generally higher in the rats fed on SFA and OLI than in those given SUN, LIS and SAR. The rats fed on OLI had a higher level of liver T-CHOL than those fed on the other fats. The liver TG content was nearly higher from the intake of SFA and OLI than from SUN, LIS and SAR, although the liver PL level was not affected by the type of dietary fat. The SFA and OLI groups had the highest activities of hepatic G6PDH and ACC, and the SAR group, the lowest activities. The activities of AST and CPT, and peroxisomal PbetaOX in the liver were higher in the rats fed on the LIS and SAR diets than in those given the other diets. The hepatic PAP activity was higher from the intake of OLI and SUN, and tended to be higher from SFA than from LIS and SAR. The activity of liver DGAT was higher from SFA and inclined to be higher from OLI, SUN, and LIS than from SAR, while the PCDGT activity in the liver was not effected by the type of dietary fat. The concentrations of plasma and liver TG were generally positively correlated with the activities of liver enzymes related to the synthesis of fatty acids and lipids, and negatively with those involved in fatty acid oxidation. Based on these results, it is suggested that the levels of plasma and liver TG were controlled by different types of dietary fat through changes in the hepatic enzyme activities related to fatty acid synthesis, lipogenesis, and fatty acid oxidation.  相似文献   

5.
The mechanisms by which ethanol causes accumulation of hepatic triacylglycerols are complex. It has been proposed that nitric oxide/cyclic GMP signaling pathway may be involved in regulation of fatty acid metabolism in the liver. Here, we investigated if this mechanism may have a role in adaptation to ethanol consumption. Hepatocytes were isolated from rats fed with an ethanol-containing liquid diet and pair-fed control rats, and incubated with a range of concentrations of 8-bromo-cyclic GMP. In both types of cells, this cyclic GMP analog inhibited in parallel fatty acid synthesis de novo and acetyl-CoA carboxylase activity. Addition of 8-bromo-cyclic GMP also decreased the rate of palmitate esterification to triacylglycerols and phospholipids, whereas palmitate oxidation was increased. However, in all these metabolic effects, hepatocytes from ethanol-fed rats were significantly less sensitive to the addition of 8-bromo-cyclic GMP. In order to know if this may be a more general mechanism of adaptation to ethanol, we also studied the effects on glucose metabolism. Similarly, hepatocytes from ethanol-fed rats showed a decreased sensitivity in the inhibition by 8-bromo-cyclic GMP of glycogen synthesis, fatty acid synthesis and the synthesis of glycerol backbone of hepatic triacylglycerols. These data suggest that ethanol consumption induces a desensitization of the regulatory effects mediated by cyclic GMP in fatty acid metabolism, contributing to triacylglycerol accumulation in the liver.  相似文献   

6.
This study was performed to determine the effects of dietary perilla oil, a n-3 alpha-linolenic acid (ALA) source, on hepatic lipogenesis as a possible mechanism of lowering triacylglycerol (TG) levels. Male Sprague-Dawley rats were trained for a 3-hour feeding protocol and fed one of five semipurified diets as follows: 1% (w/w) corn oil control diet, or one of four diets supplemented with 10% each of beef tallow, corn oil, perilla oil, and fish oil. Two separate experiments were performed to compare the effects of feeding periods, 4 weeks and 4 days. Hepatic and plasma TG levels were decreased in rats fed perilla oil and fish oil diets, compared with corn oil and beef tallow diets. The activities of hepatic lipogenic enzymes such as fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase, and malic enzyme were suppressed in the fish oil, perilla oil, and corn oil-fed groups, and the effect was the most significant in the fish oil-fed group. Also, the activities of glycolytic enzymes, glucokinase, and L-pyruvate kinase showed the similar trend as that of lipogenic enzymes. The activity of FAS, the key regulatory enzyme in lipogenesis, was positively correlated with hepatic and plasma TG levels and reduced significantly in the perilla oil-fed group compared with corn oil-fed group. In addition, the FAS activity was negatively correlated with the hepatic microsomal content of EPA and DHA. In conclusion, suppression of FAS plays a significant role in the hypolipidemic effects observed in rats fed ALA rich perilla oil and these effects were associated with the increase of hepatic microsomal EPA and DHA contents.  相似文献   

7.
A number of metabolic factors and the activity of a number of enzymes were determined in meal-fed (animals fed a single daily 2 hr meal) and nibbling (ad libitum-fed) rats. The dependency of the observed adaptive changes on the ingestion of carbohydrate was studied by feeding diets high in carbohydrate or fat. Glucose-6-phosphate dehydrogenase and NADP-malic dehydrogenase were more active in adipose tissue from high carbohydrate meal-fed rats than in tissue from ad libitum-fed rats. The activity in adipose tissue of isocitric dehydrogenase, 6-phosphogluconate dehydrogenase, and NAD-malic dehydrogenase did not increase significantly in response to meal-feeding the high carbohydrate diet. No increase in lipogenesis or enzyme activity could be demonstrated in adipose tissue from rats meal-fed a high fat diet. Lipase activity of adipose tissue was increased by high carbohydrate meal-feeding and decreased by feeding a high fat diet. The in vitro uptake of palmitate-1-(14)C by adipose tissue was depressed by a high fat diet and enhanced in rats meal-fed a high carbohydrate diet. Diaphragm or slices of liver from high fat-fed rats oxidized palmitate-1-(14)C more rapidly than did tissue from ad libitum-fed animals. Evidence is presented for the quantitative importance of citrate as a source of extramitochondrial acetyl CoA in adipose tissue of meal-eating and ad libitum-fed rats. The relationship of extramitochondrially formed citrate to the NAD-malic dehydrogenase-malic enzyme system in adipose tissue is discussed.  相似文献   

8.
The physiological activity of fish oil, and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affecting hepatic fatty acid oxidation was compared in rats. Five groups of rats were fed various experimental diets for 15 days. A group fed a diet containing 9.4% palm oil almost devoid of n-3 fatty acids served as a control. The test diets contained 4% n-3 fatty acids mainly as EPA and DHA in the form of triacylglycerol (9.4% fish oil) or ethyl esters (diets containing 4% EPA ethyl ester, 4% DHA ethyl ester, and 1% EPA plus 3% DHA ethyl esters). The lipid content of diets containing EPA and DHA ethyl esters was adjusted to 9.4% by adding palm oil. The fish oil diet and ethyl ester diets, compared to the control diet containing 9.4% palm oil, increased activity and mRNA levels of hepatic mitochondrial and peroxisomal fatty acid oxidation enzymes, though not 3-hydroxyacyl-CoA dehydrogenase activity. The extent of the increase was, however, much greater with the fish oil than with EPA and DHA ethyl esters. EPA and DHA ethyl esters, compared to the control diet, increased 3-hydroxyacyl-CoA dehydrogenase activity, but fish oil strongly reduced it. It is apparent that EPA and DHA in the form of ethyl esters cannot mimic the physiological activity of fish oil at least in affecting hepatic fatty acid oxidation in rat.  相似文献   

9.
Fatty acid synthesis in adipose tissue normally proceeds at a high rate when fasted animals are refed a diet containing carbohydrate, protein, and low levels of fat. This study investigated the effect of omitting protein from the refeeding diet. Rats were fasted for 48 hr and refed either a protein-free diet or a balanced diet, and the rate of fatty acid synthesis from glucose, pyruvate, lactate, and aspartate was measured. Refeeding the animals a diet devoid of protein resulted in a low rate of fatty acid synthesis from each of these substrates as well as a reduction in carbon flow over the citrate cleavage pathway. The activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP-malate dehydrogenase, and ATP-citrate lyase were also reduced in epididymal fat pads from these rats. On the other hand, adipose tissue phosphoenolpyruvate carboxykinase activity was five times as great as that in tissue from animals refed a balanced diet. This difference could be eliminated if actinomycin D was injected coincident with refeeding. Refeeding rats diets high in carbohydrate is not, therefore, capable of inducing high rates of fatty acid synthesis in adipose tissue in the absence of dietary proteins. Thus, liver and adipose tissue respond differently to dietary protein.  相似文献   

10.
Small changes in lipogenic enzyme activity induced by dietary fats of different composition may, over the long term, have significant impact on the development of obesity. We have investigated the effect of high fat diets (45% of calories as fat) on abundance of mRNA encoding fatty acid synthetase (FAS) and glycerophosphate dehydrogenase (GPDH) in male Sprague-Dawley rats. When caloric intake was equal, the relative amount of hepatic FAS mRNA was greater in rats fed a saturated compared to a polyunsaturated fat diet. This difference could not be attributed to diet-induced changes in plasma insulin concentration. However, both fat diets suppressed hepatic FAS mRNA compared to a sucrose diet. Close correlation between FAS specific activity and the relative amount of mRNA suggested that regulation was mainly at a pre-translational level. Adipose tissue FAS mRNA was suppressed by the two fat diets equally while GPDH mRNA was unaffected by dietary composition. Retroperitoneal fat pads were significantly larger in rats fed saturated compared to those fed polyunsaturated fat for 26 weeks. We concluded that dietary saturated fats fail to suppress hepatic de novo lipogenesis as effectively as polyunsaturated fats, which may have implications for the prevention of obesity in humans.  相似文献   

11.
The effect of dietary fat on body composition, whole body lipogenesis, and enzyme activity was measured in rats over the first 16 weeks post-weaning. Rats were fed either a low fat (5% w/w fat) or high fat (20% w/w fat) diet for the first 4 weeks. After this time all rats were fed the low fat diet. The results showed no significant effect of diet on the rate of fat synthesis over the first 8 weeks of the experiment. However, the activities of the enzymes of fatty acid synthesis [glucose 6-phosphate dehydrogenase, malic enzyme, adenosine triphosphate-citrate lyase, acetyl-coenzyme A carboxylase (ACCX), fatty acid synthetase] were dependent on the age and dietary status of the animals. The exact pattern depended on the specific enzyme and the tissue source. No significant differences in pyruvate dehydrogenase (PDH) activity were observed. Mathematical analysis of the enzyme activities suggested that ACCX and PDH were the most likely sites of fat synthesis regulation. In addition, an examination of body composition and overall weight retention showed that the "weight increasing" effect of a high fat diet could be completely reversed by subsequent feeding of a low fat diet. However, the reversal required an additional 12 weeks. Interestingly, at this time the rats switched from a high fat to a low fat diet had a lower body weight and lower body fat content than rats fed a low fat diet throughout the course of the experiment.  相似文献   

12.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

13.
E B Reed  H Tarver 《Life sciences》1975,17(12):1785-1797
ATP citrate lyase, acetyl-CoA synthetase, malic enzyme and hexose monophosphate dehydrogenase activities and rates of denovo synthesis of long chain fatty acids from labeled acetate and citrate were measured in cell-free fractions of liver from rats fed various diets, with and without D- or L- thyroxine. Diets containign sucrose (vs. isocaloric glucose) or lard (vs. isocaloric corn oil) stimulated hepatic lipogenesis both in control and in thyroxine-treated rats. The lipogenic response to thyroxine was greatly modified by diet, except for an invariable rise in malic enzyme activity. With diets providing less than 6% of calories as linoleic acid, thyroxine increased fatty acid synthesis, depleted liver glycogen and retarded growth; when linoleic acid was increased to 16% of calories, thyroxine had no effect on fatty acid synthesis or growth and liver glycogen depletion was significantly attenuated. This response to dietary linoleic acid suggests that these phenomena may be largely secondary to the increased requirement for essential fatty acid in thyrotoxicosis. Further study should reveal the extent to which observed effects of excess thyroid hormone are amenable to control by dietary polyunsaturated fat.  相似文献   

14.
Feeding mice conjugated linoleic acid (9 cis,11 trans/9 trans,11 cis-and 10 trans,12 cis-CLA in equal amounts) resulted in triacylglycerol accumulation in the liver. The objective of this study was to examine whether this steatosis is associated with changes in hepatic fatty acid synthesis and oxidation. Therefore, we measured the activities of key enzymes of fatty acid synthesis, i.e., acetyl-CoA carboxylase and fatty acid synthase and of fatty acid oxidation, i.e., 3-hydroxy-acyl-CoA dehydrogenase and citrate synthase in livers of mice fed a diet with 0.5% (w/w) CLA. CLA (a 1:1 mixture of the 10 trans, 12 cis and 9 cis, 11 trans isomers of octadecadenoic acid) was administered for 3 and 12 weeks with high-oleic sunflower oil fed as control. The proportion of body fat was significantly lower on the CLA than on the control diet and this effect was already significant after 3 weeks. The specific activites of 3-hydroxy-acyl-CoA dehydrogenase and citrate synthase were unaffected by CLA both after 3 and 12 weeks. The specific activity of fatty acid synthase was nonsignificantly raised (by 12%) after 3 weeks on the CLA diet but had increased significantly (by 34%) after 12 weeks of feeding. The specific activity of acetyl-CoA carboxylase had also increased both after 3 weeks (by 53%) and 12 weeks (by 23%) on the CLA diet, but this effect did not reach statistical significance. Due to CLA-induced hepatomegaly, the overall capacity for both fatty acid oxidation and synthesis-as evidenced by the total hepatic activities of 3-hydroxy-acyl-CoA dehydrogenase, citrate synthase, acetyl-CoA carboxylase, and fatty acid synthase-was significantly greater in the CLA-fed group after 12 weeks, although the overall capacity for fatty acid synthesis had increased more than that for fatty acid oxidation. Thus, this study indicates that prolonged, but not short-term, feeding mice with CLA increased hepatic fatty acid synthesis relative to oxidation, despite the decrease in body fat and the increase in liver weight seen earlier. It is concluded that the observed CLA-induced changes in hepatic fatty acid synthesis and oxidation are the result, rather than the cause, of the lowering of body fat.  相似文献   

15.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

16.
The aim of this study was to compare the effects of dietary oxidized cholesterol and pure cholesterol on plasma and very low density lipoprotein (VLDL) lipids and on some parameters of VLDL assembly and secretion in rats fed two different dietary fats. Four groups of male growing Sprague-Dawley rats were fed diets containing pure or oxidized cholesterol (5 g/kg diet) with either coconut oil or salmon oil as dietary fat (100 g/kg diet) for 35 days. Rats fed oxidized cholesterol supplemented diets had significantly lower concentrations of triglycerides and cholesterol in plasma and VLDL than rats fed pure cholesterol supplemented diets irrespective of the type of fat. In addition, rats fed oxidized cholesterol supplemented diets had significantly lower relative concentrations of microsomal triglyceride transfer protein messenger ribonucleic acid (mRNA) than rats fed pure cholesterol supplemented diets. In contrast, hepatic lipid concentrations and the relative concentration of apolipoprotein B mRNA were not influenced by the dietary factors investigated. Parameters of hepatic lipogenesis (relative mRNA concentration of sterol regulatory element binding protein-1c and activity of glucose-6-phosphat dehydrogenase) were significantly reduced by feeding fish oil compared to coconut oil, but were not affected by the type of cholesterol. In conclusion, the data of this study suggest, that dietary oxidized cholesterol affects VLDL assembly and/or secretion by reducing the synthesis of MTP but not by impairing hepatic lipogenesis or synthesis of apolipoprotein B.  相似文献   

17.
《Cellular signalling》2014,26(2):295-305
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.  相似文献   

18.
The level of circulating triacylglycerols is determined by the balance between their delivery into the plasma and their removal from it. Plasma triacylglycerols are derived either from dietary fat as chylomicrons or from endogenous hepatic synthesis as very low density lipoproteins. Their removal occurs through the action of lipoprotein lipase after which the fatty acids are either stored in adipose tissue or oxidized, primarily in skeletal muscle and heart. The composition of the diet has been shown to influence many of these processes. Hepatic fatty acid synthesis and triacylglycerol secretion are affected by the quantity and composition of dietary fat, carbohydrate, and protein. Polyunsaturated but not saturated fats reduce hepatic fatty acid synthesis by decreasing the amount of the lipogenic enzymes needed for de novo fatty acid synthesis. Dietary fish oils are particularly effective at reducing both fatty acid synthesis and triacylglycerol secretion and as a result are hypotriacylglycerolemic, particularly in hypertriacylglycerolemic individuals. In addition, dietary fish oils can increase the oxidation of fatty acids and lead to increased activity of lipoprotein lipase in skeletal muscle and heart. It appears that the hypotriacylglycerolemic effect of dietary fish oils is mediated by effects on both synthesis and removal of circulating triacylglycerols.  相似文献   

19.
Alcohol-induced fatty liver, a major cause of morbidity, has been attributed to enhanced hepatic lipogenesis and decreased fat clearance of unknown mechanism. Here we report that the steatosis induced in mice by a low-fat, liquid ethanol diet is attenuated by concurrent blockade of cannabinoid CB1 receptors. Global or hepatocyte-specific CB1 knockout mice are resistant to ethanol-induced steatosis and increases in lipogenic gene expression and have increased carnitine palmitoyltransferase 1 activity, which, unlike in controls, is not reduced by ethanol treatment. Ethanol feeding increases the hepatic expression of CB1 receptors and upregulates the endocannabinoid 2-arachidonoylglycerol (2-AG) and its biosynthetic enzyme diacylglycerol lipase beta selectively in hepatic stellate cells. In control but not CB1 receptor-deficient hepatocytes, coculture with stellate cells from ethanol-fed mice results in upregulation of CB1 receptors and lipogenic gene expression. We conclude that paracrine activation of hepatic CB1 receptors by stellate cell-derived 2-AG mediates ethanol-induced steatosis through increasing lipogenesis and decreasing fatty acid oxidation.  相似文献   

20.
We have reported previously that randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule (MLCT) resulted in significantly lower body fat accumulation and higher hepatic fatty acid oxidation than from long-chain triacylglycerol (LCT) in rats. To understand the metabolic changes occurring in white adipose tissue, the fatty acid oxidation and synthesis, and the adipocytokine level were measured in rats fed with MLCT or LCT for 2 weeks. In comparison with LCT, MLCT lowered not only the fatty acid synthase and glycerol-3-phosphate dehydrogenase activities in perirenal adipose tissue, but also the serum insulin and leptin levels, in addition to significantly reducing the body fat accumulation. In contrast, fatty acid oxidation measured as the carnitine palmitoyltransferase activity in the tissue was significantly higher in the MLCT-fed rats than in the LCT-fed rats. It seems that the altered fatty acid metabolism in adipose tissue per se was also responsible for the lower adiposity by dietary MLCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号