首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugated linoleic acid (CLA), a mixture of positional and geometric isomers of linoleic acid, has attracted considerable attention because of its potentially beneficial biologic effects both in vitro and in vivo. Our results clearly show the specific action of the 10trans,12cis-CLA isomer against hyperlipidemia and obesity in obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. After 2 weeks of feeding with 10t,12c-CLA, but not 9cis,11trans-CLA, abdominal adipose tissue weight and serum and hepatic lipid levels in OLETF rats were lower than those in linoleic acid-fed rats. These effects were attributable to suppressed fatty acid synthesis and enhanced fatty acid beta oxidation in the liver on a 10t,12c-CLA diet. Additionally, we showed that mRNA expression of fatty acid synthase, carnitine palmitoyltransferase, leptin, and sterol regulatory element binding protein-1 was also regulated by 10t,12c-CLA. We suppose that 10t,12c-CLA reveals hypolipidemic and anti-obese activity through the alteration of mRNA expressions in the liver and white adipose tissue.  相似文献   

2.
3.
1. Measurements have been made of the activities of acyl-CoA dehydrogenase, enoyl-CoA hydratase, beta-hydroxyacyl-CoA dehydrogenase and ketothiolase in the livers of rats treated for either 12hr. or 3 days with pituitary growth hormone. 2. There was a significant increase in the activity of acyl-CoA dehydrogenase in rats treated with the hormone for 3 days. 3. Measurements were also made of the lipogenic enzymes acetyl-CoA carboxylase and palmitate synthase in the livers of similarly treated animals. 4. There was a depression of the activity of both enzymes after 12hr. treatment and a further decline after 3 days. 5. The results are discussed in relation to the known increase in the rate of fatty acid oxidation and inhibition of fatty acid synthesis in rats treated with growth hormone.  相似文献   

4.
When fasted rats were refed for 4 days with a carbohydrate and protein diet, a carbohydrate diet (without protein) or a protein diet (without carbohydrate), the effects of dietary nutrients on the fatty acid synthesis from injected tritiated water, the substrate and effector levels of lipogenic enzymes and the enzyme activities were compared in the livers. In the carbohydrate diet group, although acetyl-CoA carboxylase was much induced and citrate was much increased, the activity of acetyl-CoA carboxylase extracted with phosphatase inhibitor and activated with 0.5 mM citrate was low in comparison to the carbohydrate and protein diet group. The physiological activity of acetyl-CoA carboxylase seems to be low. In the protein diet group, the concentrations of glucose 6-phosphate, acetyl-CoA and malonyl-CoA were markedly higher than in the carbohydrate and protein group, whereas the concentrations of oxaloacetate and citrate were lower. The levels of hepatic cAMP and plasma glucagon were high. The activities of acetyl-CoA carboxylase and also fatty acid synthetase were low in the protein group. By feeding fat, the citrate level was not decreased as much as the lipogenic enzyme inductions. Comparing the substrate and effector levels with the Km and Ka values, the activities of acetyl-CoA carboxylase and fatty acid synthetase could be limited by the levels. The fatty acid synthesis from tritiated water corresponded more closely to the acetyl-CoA carboxylase activity (activated 0.5 mM citrate) than to other lipogenic enzyme activities. On the other hand, neither the activities of glucose-6-phosphate dehydrogenase and malic enzyme (even though markedly lowered by diet) nor the levels of their substrates appeared to limit fatty acid synthesis of any of the dietary groups. Thus, it is suggested that under the dietary nutrient manipulation, acetyl-CoA carboxylase activity would be the first candidate of the rate-limiting factor for fatty acid synthesis with the regulations of the enzyme quantity, the substrate and effector levels and the enzyme modification.  相似文献   

5.
High carbohydrate (65% glucose) diets containing cis-12-octadecenoic acid (12c-18:1) or trans-9,trans-12-octadecadienoic acid (9t,12t-18:2) were fed to weanling mice to investigate the influence of fatty acid structure on six hepatic enzyme activities involved in lipid metabolism. Results with these diets were compared to those with diets containing no fatty acids, saturated fatty acids; cis-9-octadecenoic acid (9c-18:1) and cis-9,cis-12-octadecadienoic acid (9c,12c-18:2). These comparisons show saturated fatty acids, 9c-18:1, 12c-18:1, and 9t,12t-18:2, had little or no influence on the activity levels of fatty acid synthetase, malic enzyme (EC 1.1.1.40)citrate cleavage enzyme (EC 4.1.3.8), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44) and acetyl-CoA carboxylase (EC 6.4.1.2). Neither 12c-18:1 nor 9t,12t-18:2 produced the dramatic enzyme-lowering effect exhibited by the diet containing 9c,12c-18:2 when compared to the diet devoid of fat. Thus, both the 9 and 12 bonds must be present in the same molecule. Also, at least one and probably both bonds must be in the cis configuration to depress liver enzyme activities. Capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were both used for analysis of the methyl esters derived from the hepatic lipids. The GC and GC-MS data provided (a) direct evidence for incorporation of both isomers into hepatic lipids and (b) indirect evidence that 9t,12t-18:2 lowered liver delta 9-desaturase activity. In addition, since these products were found in the complex liver lipids, there is no doubt that the various enzymes concerned with activation and acylation utilize both of these isomeric fatty acids as substrates.  相似文献   

6.
We have previously shown that bolus intravenous administration of tumor necrosis factor (TNF) to normal rats results in a rapid (within 90 min) stimulation of hepatic fatty acid synthesis, which is sustained for 17 hr. We now demonstrate that TNF stimulates fatty acid synthesis by several mechanisms. Fatty acid synthetase and acetyl-CoA carboxylase (measured after maximal stimulation by citrate) were not higher in livers from animals that had been treated with TNF 90 min before study compared to controls. In contrast, 16 hr after treatment with TNF, fatty acid synthetase was slightly elevated (35%) while acetyl-CoA carboxylase was increased by 58%. To explain the early rise in the hepatic synthesis of fatty acids, we examined the regulation of acetyl-CoA carboxylase. The acute increase in fatty acid synthesis was not due to activation of acetyl-CoA carboxylase by change in its phosphorylation state (as calculated by the ratio of activity in the absence and presence of 2 mM citrate). However, hepatic levels of citrate, an allosteric activator of acetyl-CoA carboxylase, were significantly elevated (51%) within 90 min of TNF treatment. TNF also induces an acute increase (within 90 min) in the plasma levels of free fatty acids. However, hepatic levels of fatty acyl-CoA, which can inhibit acetyl-CoA carboxylase, did not rise 90 min following TNF treatment and were 35% lower than in control livers by 16 hr after TNF. These data suggest that TNF acutely regulates hepatic fatty acid synthesis in vivo by raising hepatic levels of citrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The trans10,cis12 (t10c12) isomer of conjugated linoleic acid (CLA) has been shown to inhibit heparin-releasable lipoprotein lipase activity, reduce lipid stores in cultured 3T3-L1 adipocytes, and, when fed to mice, reduce body fat gain. We now report that t10c12 CLA significantly reduced leptin secretion from cultured 3T3-L1 adipocytes, and reduced leptin mRNA levels within the cells. Similar effects were produced by conjugated nonadecadienoic acid (a 19-carbon CLA cognate that is more effective than CLA in reducing body fat gain in mice), the lipoxygenase inhibitor nordihydroguaiaretic acid (which is synergistic with CLA in reducing body fat gain in mice), and ciglitazone (TZD, a PPARgamma agonist). Feeding mice diet supplemented with 0.5% t10c12 CLA for 4 weeks significantly reduced body fat gain, serum leptin levels and adipocyte leptin mRNA expression, without affecting feed intake or body weight. These data provide new insights into apparent mechanistic similarities among t10c12 CLA, CNA, NDGA, and TZD.  相似文献   

8.
Consumption of industrial trans fat raises the risk of cardiovascular disease, but it is unclear whether cis9,trans11-conjugated linoleic acid (CLA)--a trans fatty acid in dairy products--modulates disease development. We investigated the effects of complete diets providing 7% of energy as industrial trans fat or cis9, trans11 CLA, compared with oleic acid, on regulation of plasma proteins in 12 healthy men. Diets were provided for 3 wk each, in random order. Plasma was collected at the end of each 3 wk intervention period, depleted of its 12 most abundant proteins and analyzed by 2-DE. Principal component analysis of protein spot intensity values revealed that the nature of the dietary intervention did not significantly affect the plasma proteome. The intervention provided in the 1st period produced a significant treatment effect compared with the interventions provided in the other two periods, and there was a significant subject effect. In conclusion, the nature of an extreme dietary intervention, i.e. 7% of energy provided by industrial trans fat or cis9,trans11 CLA, did not markedly affect the plasma proteome. Thus plasma proteomics using 2-DE appears, by and large, an unsuitable approach to detect regulation of plasma proteins due to changes in the diet.  相似文献   

9.
Eicosapentaenoic acid (EPA) is a member of the family of n-3 polyunsaturated fatty acids (PUFAs) that are clinically used to treat hypertriglyceridemia. The triglyceride (TG) lowering effect is likely due to an alteration in lipid metabolism in the liver, but details have not been fully elucidated. To assess the effects of EPA on hepatic TG metabolism, mice were fed a high-fat and high-sucrose diet (HFHSD) for 2 weeks and were given highly purified EPA ethyl ester (EPA-E) daily by gavage. The HFHSD diet increased the hepatic TG content and the composition of monounsaturated fatty acids (MUFAs). EPA significantly suppressed the hepatic TG content that was increased by the HFHSD diet. EPA also altered the composition of fatty acids by lowering the MUFAs C16:1 and C18:1 and increasing n-3 PUFAs, including EPA and docosahexaenoic acid (DHA). Linear regression analysis revealed that hepatic TG content was significantly correlated with the ratios of C16:1/C16:0, C18:1/C18:0, and MUFA/n-3 PUFA, but was not correlated with the n-6/n-3 PUFA ratio. EPA also decreased the hepatic mRNA expression and nuclear protein level of sterol regulatory element binding protein-1c (SREBP-1c). This was reflected in the levels of lipogenic genes, such as acetyl-CoA carboxylase α (ACCα), fatty acid synthase, stearoyl-CoA desaturase 1 (SCD1), and glycerol-3-phosphate acyltransferase (GPAT), which are regulated by SREBP-1c. In conclusion, oral administration of EPA-E ameliorates hepatic fat accumulation by suppressing TG synthesis enzymes regulated by SREBP-1 and decreases hepatic MUFAs accumulation by SCD1.  相似文献   

10.
The trans-10,cis-12 isomer of conjugated linoleic acid (CLA) reduces body fat gain in animals and inhibits stearoyl-CoA desaturase (SCD) activity in 3T3-L1 adipocytes. To test whether CLA's body fat reduction is mediated by SCD1, wild-type and SCD1-null mice were fed diet supplemented with 0.2% trans-10,cis-12 (t10c12) CLA for 4 weeks. The t10c12 CLA-supplemented diet significantly reduced body fat mass in both wild type and SCD1-null mice. Similarly, t10c12 CLA diet decreased blood triglyceride and free fatty acid levels regardless of SCD1 genotypes. Mice fed t10c12 CLA exhibited increased mRNA expression of fatty acid synthase and uncoupling protein 2 in both genotypes. Taken together, the effects of t10c12 CLA on reduction of body fat gain, blood parameters, and mRNA expression in both SCD1-null mice and wild-type mice were similar, indicating that the anti-obesity effect of t10c12 CLA may be independent of the effects of this CLA isomer on SCD1 gene expression and enzyme activity.  相似文献   

11.
A group of polyunsaturated fatty acids called conjugated linoleic acids (CLAs) are found in ruminant products, where the most common isomers are cis9, trans11 (c 9,t11) and trans10, cis12 (t10,c12) CLA. A crude mixture of these isomers has been shown in animal studies to alter body composition by a reduction in body fat mass as well as an increase in lean body mass, with the t10,c12 isomer having the most pronounced effect. The objective of this study was to establish the molecular mechanisms by which t10,c12 CLA affects lipid accumulation in adipocytes. We have shown that t10,c12 CLA prevents lipid accumulation in human and mouse adipocytes at concentrations as low as 5 microM and 25 microM, respectively. t10,c12 CLA fails to activate peroxisome proliferator-activated receptor gamma (PPARgamma) but selectively inhibits thiazolidinedione-induced PPARgamma activation in 3T3-L1 adipocytes. Treatment of mature adipocytes with t10,c12 CLA alone or in combination with Darglitazone down-regulates the mRNA expression of PPARgamma as well as its target genes, fatty acid binding protein (aP2) and liver X receptor alpha (LXRalpha). Taken together, our results suggest that the trans10, cis12 CLA isomer prevents lipid accumulation in adipocytes by acting as a PPARgamma modulator.  相似文献   

12.
Although endogenous synthesis of conjugated linoleic acid (CLA) in the mammary gland of lactating cows has been already well documented, no study has determined so far as to which tissue and/or organ is involved in CLA synthesis in the growing ruminant except one study showing that CLA synthesis does not occur in ruminant liver. In this context, adipose tissue appears to be a good candidate for endogenous synthesis of CLA in the growing ruminant. The aim of this study was to compare the respective metabolisms of 11trans 18:1 (vaccenic acid, VA) and 9cis,11trans 18:2 (rumenic acid) to that of stearic acid (the preferential substrate of Δ9 desaturase) in adipose tissues (subcutaneous, SC and intermuscular, IM) of six Charolais steers by using the in vitromethod of incubated tissue slices. Samples of SC and IM adipose tissues were incubated at 37°C for 16 h under an atmosphere of 95% O2/5% CO2 in a medium supplemented with 0.75 mM of fatty acid (FA) mixture (representative of circulating non-esterified FA) and 186 μM [1-14C]-18:0 or 58.6 μM [1-14C]-VA or 56 μM [1-14C]-9cis,11trans CLA. Viability of explants was verified by measuring metabolic functions (glucose uptake and glucose-6-phosphate dehydrogenase activity). After 16 h of incubation, FA uptake was similar for all FA (18:0, VA and 9cis,11trans 18:2) in both SC and IM adipose tissues (around 40%). Once in adipose tissue, all FA were preferentially esterified (>80% of cell FA) favouring neutral lipid synthesis (around 90% of esterified FA). Stearic acid was highly (27%) desaturated into oleic acid in SC adipose tissue whereas this desaturation was much lower (6.8%) in IM adipose tissue (P < 0.0001). VA was desaturated into 9cis,11trans CLA at a low extent of about 2.5% to 4.4% in both adipose tissues probably because of a limited affinity of Δ9 desaturase for VA. 9cis,11trans CLA was itself converted by desaturation into 6cis, 9cis,11trans 18:3 at the intensity of 10.8% and 14.5% of cell 9cis,11trans CLA in SC and IM adipose tissues, respectively. In conclusion, bovine adipose tissues of the growing ruminant were especially involved in the endogenous synthesis of CLA from VA and in its desaturation into conjugated derivative, mainly 6cis, 9cis,11trans 18:3, of which biological properties need to be elucidated.  相似文献   

13.
14.
Conjugated linoleic acids (CLAs), tetradecylthioacetic acid (TTA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are all shown to differently affect lipid homeostasis. Additionally, previous studies have shown that introducing a methyl group in the molecule potentiates the hypolipidemic effect of EPA. The objective of this study was to determine how cis9,trans11 CLA, trans10,cis12 CLA, TTA, EPA and DHA affect lipid accumulation in 3T3-L1 adipocytes and in cultured primary rat hepatocytes, and to what extent changes in cis/trans configuration or introducing a methyl group in the molecules influence their way of affecting lipid accumulation in these cells. Our results show that trans10,cis12 CLA is highly specific in preventing lipid accumulation in adipocytes, and that small structural changes in the molecule (changing to trans/trans or introducing an alpha-methyl group) totally abolish this effect and up-regulate the expression levels of adipogenic marker genes towards control levels. Furthermore, all the fatty acids increased hepatic lipid accumulation, whereas the lipid content was normalized after adding an alpha-methyl group into the molecules. Taken together, our data demonstrate that the various fatty acids are highly specialized molecules, and that small structural changes markedly alter their way of affecting lipid accumulation in adipocytes and hepatocytes.  相似文献   

15.
The present study explored the short-term effects of dietary conjugated-linoleic acid (CLA) on liver lipid metabolism in starved/refed Otsuka Long Evans Tokushima Fatty (OLETF) rats. Male OLETF rats (12 weeks old) were starved for 24 hours, then refed for 48 hours with either a CLA diet [7.5% CLA and 7.5% Safflower oil (SAF)] or a SAF control diet (15% SAF). The results demonstrated a 30% reduction of hepatic triglyceride (TG) concentration in the CLA group when compared to the control group. Liver cholesterol concentration was also 26% lower in the CLA fed rats. The activity of mitochondrial carnitine palmitoyltransferase, the rate-limiting enzyme of fatty acid oxidation, was moderately elevated by 1.2-fold in the livers of the CLA group when compared to the control. In contrast, phosphatidate phosphohydrolase, the rate-limiting enzyme for TG synthesis, was found to be 20% lower in the livers of the CLA-fed rats. Therefore, dietary CLA evidently lowers liver lipid concentrations through a reduced TG synthesis and enhanced fatty acid oxidation in starved/refed OLETF rats.  相似文献   

16.
We have reported previously that randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule (MLCT) resulted in significantly lower body fat accumulation and higher hepatic fatty acid oxidation than from long-chain triacylglycerol (LCT) in rats. To understand the metabolic changes occurring in white adipose tissue, the fatty acid oxidation and synthesis, and the adipocytokine level were measured in rats fed with MLCT or LCT for 2 weeks. In comparison with LCT, MLCT lowered not only the fatty acid synthase and glycerol-3-phosphate dehydrogenase activities in perirenal adipose tissue, but also the serum insulin and leptin levels, in addition to significantly reducing the body fat accumulation. In contrast, fatty acid oxidation measured as the carnitine palmitoyltransferase activity in the tissue was significantly higher in the MLCT-fed rats than in the LCT-fed rats. It seems that the altered fatty acid metabolism in adipose tissue per se was also responsible for the lower adiposity by dietary MLCT.  相似文献   

17.
The effects of dietary conjugated linoleic acid (CLA) on the activity and mRNA levels of hepatic enzymes involved in fatty acid synthesis and oxidation were examined in mice. In the first experiment, male ICR and C57BL/6J mice were fed diets containing either a 1.5% fatty acid preparation rich in CLA or a preparation rich in linoleic acid. In the second experiment, male ICR mice were fed diets containing either 1.5% linoleic acid, palmitic acid or the CLA preparation. After 21 days, CLA relative to linoleic acid greatly decreased white adipose tissue mass but caused hepatomegaly accompanying an approximate 10-fold increase in the tissue triacylglycerol content irrespective of mouse strain. CLA compared to linoleic acid greatly increased the activity and mRNA levels of various lipogenic enzymes in both experiments. Moreover, CLA increased the mRNA expression of Delta6- and Delta5-desaturases, and sterol regulatory element binding protein-1 (SREBP-1). The mitochondrial and peroxisomal palmitoyl-CoA oxidation rate was about 2.5-fold higher in mice fed CLA than in those fed linoleic acid in both experiments. The increase was associated with the up-regulation of the activity and mRNA expression of various fatty acid oxidation enzymes. The palmitic acid diet compared to the linoleic acid diet was rather ineffective in modulating the hepatic lipid levels or activity and mRNA levels of enzymes in fatty acid metabolism. It is apparent that dietary CLA concomitantly increases the activity and mRNA levels of enzymes involved in fatty acid synthesis and oxidation, and desaturation of polyunsaturated fatty acid in the mouse liver. Both the activation of peroxisomal proliferator alpha and up-regulation of SREBP-1 may be responsible for this.  相似文献   

18.
We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.  相似文献   

19.
Plasma insulin concentrations in fed rats were altered acutely by administration of glucose or anti-insulin serum. Rates of fatty acid synthesis in adipose tissue and liver were estimated from the incorporation of 3H from 3H2O. In the adipose tissue dehydrogenase and acetyl-CoA carboxylase were evident. In liver, although changes in rates of fatty acid synthesis were found, the initial activity of pyruvate dehydrogenase did not alter, but small parallel changes in acetyl-CoA carboxylase activity were observed.  相似文献   

20.
The activities of lipogenic enzymes, such as acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase, and glycerolipid synthesis increased significantly in mammary explants of 11-day-pseudopregnant rabbits in response to prolactin, in the presence of near-physiological concentrations of insulin and corticosterone in culture. Increasing the concentration of progesterone in culture resulted in suppression of glycerolipid synthesis and activities of acetyl-CoA carboxylase and fatty acid synthetase, but not the pentose phosphate dehydrogenases. However, at near-physiological concentration of progesterone, only acetyl-CoA carboxylase activity was decreased. Injection of prolactin intraductally into 11-day-pseudopregnant rabbits stimulated glycerolipid synthesis, fatty acid synthesis and enzymes involved in fatty acid synthesis, after 3 days. Intraductal injection of progesterone separately or together with prolactin had no significant effect on basal or stimulated lipogenesis in mammary glands. Intramuscular injection of progesterone at 10 mg/day did not suppress fatty acid synthesis stimulated when prolactin was injected intraductally, but a significant inhibition was observed at a higher dose (80 mg/day).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号