首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Rhizobium tropici CIAT899 is a broad-host-range strain that, in addition to Phaseolus, nodulates other plant legumes such as Leucaena and Macroptilium. The narrow-host-range of Rhizobium leguminosarum biovars phaseoli (strain CE3) and trifolii (strain RS1051) can be extended to Leucaena esculents and Phaseolus vulgaris plants, respectively, by the introduction of a DNA fragment 521 bp long, which carries 128 amino acids of the amino-terminal region of a nodD gene from R. tropici, as well as a putative nod-box-like sequence, divergently oriented. The 521 bp fragment, in the presence of L. esculenta or P. vulgaris root exudates, induced a R. leguminosarum bv. viciae nodA-lacZ fusion in either a CE3 or RS1051 background, respectively.  相似文献   

2.
Rhizobium etli strain TAL182 and R. leguminosarum bv phaseoli strain 8002, both of which produce melanin pigment, were tested for their nodulation competitiveness on beans by paired inoculation with two strains which do not produce melanin: R. tropici strain CIAT899 and Rhizobium sp. strain TAL1145. An assay was developed to distinguish nodules formed by the melanin-producing and non-producing strains. Strain TAL182 had discrete competitive superiority over CIAT899 and TAL1145 for nodulation of beans. Nodulation competitiveness was not correlated with the ability to produce melanin pigment or the host range of the Rhizobium strains tested.The authors are with the Department of Plant Molecular Physiology, University of Hawaii, 3050 Maile Way, Gillmore 402, Honolulu, HI 96822, USA  相似文献   

3.
The effect of soil pH on the competitive abilities of twoRhizobium leuminosarum bv.phaseoli type I and one type II strains was examined in a nonsterile soil system.Phaseolus vulgaris seedlings, grown in unlimed (pH 5.2) or limed (pH 7.6) soil, were inoculated with a single-strain inoculum containing 1 × 106 cells mL–1 of one of the three test strains or with a mixed inoculum (1:1, type I vs. type II) containing the type II strain CIAT 899 plus one type I strain (TAL 182 or CIAT 895). At harvest, nodule occupants were determined. In a separate experiment, a mixed suspension (1:1, type I vs. type II) of CIAT 899 paired with either TAL 182 or CIAT 895 was used to inoculateP. vulgaris seedlings grown in sterile, limed or unlimed soil. The numbers of each strain in the rhizosphere were monitored for 10 days following inoculation. The majority of nodules (> 60%) formed on plants grown in acidic soil were occupied by CIAT 899, the type II strain. This pattern of nodule occupancy changed in limed soil. When CIAT 899 was paired with TAL 182, the type I strain formed 78% of the nodules. The number of nodules formed by CIAT 899 and CIAT 895 (56% and 44%, respectively) were not significantly different. The observed patterns of nodule occupancy were not related to the relative numbers or specific growth rates of competing strains in the host rhizosphere prior to nodulation. The results indicate that soil pH can influence which symbiotype ofR. leguminosarum bv.phaseoli will competitively nodulateP. vulgaris.  相似文献   

4.
Lithgow  J.K.  Danino  V. E.  Jones  J.  Downie  J.A. 《Plant and Soil》2001,232(1-2):3-12
Strains of Rhizobium leguminosarum use a cell density-dependent gene regulatory system to assess their population density. This is achieved by the accumulation of N-acyl-homoserine lactones (AHLs) in the environment during growth of the bacteria and these AHLs stimulate the induction of various bacterial genes that are up-regulated in the late-exponential and stationary phases of growth. A genetically well-characterised strain of R. leguminosarum biovar viciae was found to have four genes, whose products synthesise different AHLs. We have analysed AHL production by four genetically distinct isolates of R. leguminosarum, three of bv. viciae and one of bv. phaseoli. Distinct differences were seen in the pattern of AHLs produced by the bv. viciae strains compared with bv. phaseoli and the increased levels and diversity of AHLs found in bv. viciae strains can be attributed to the rhiI gene, which is located on the symbiotic (Sym) plasmid and is up-regulated when the bacteria are grown in the rhizosphere. Additional complexity to the profile of AHLs is found to be associated with highly transmissible plasmid pRL1JI of R. leguminosarum bv. viciae, but this is not observed with some other strains, including those carrying different transmissible plasmids. In addition to AHLs produced by the products of genes on the symbiotic plasmid, there is clear evidence for the presence of other AHL production loci. Expression levels and patterns of AHLs can change markedly in different growth media. These results indicate that there is a network of quorum-sensing loci in different strains of R. leguminosarum and these loci may play a role in adapting to rhizosphere growth and plasmid transfer.  相似文献   

5.
The survival of Rhizobium leguminosarum biovar phaseoli on seeds of bean was tested, using the cultivar Carioca. The seeds were treated seven days before inoculation with Benlate, Vitavax, Banrot, Difolatan or Ridomil fungicides. The rhizobial strains used were: CIAT 899, CPAC 1135 and CIAT 652. Strain CIAT 899 showed greater survival on the seed with fungicide than the other strains. Two hours after the contact with fungicides strains CIAT 652 and CPAC 1135 had significantly lower numbers of rhizobia than the treatment without fungicide. The Benlate and Banrot fungicides had the greatest effect on survival of rhizobial strains. There was a drastic mortality of the two strains, CIAT 652 and CPAC 1135, on seeds treated with Benlate and Ridomil. Under field conditions, granular inoculation produced fewer nodules, but a similar total nodule weight as seed inoculation. Serological tests (ELISA) showed that seed treatment with Benlate in connection with seed inoculation reduced drastically the occurrence of inoculated strains in nodules, while the same fungicide treatment and inoculation applied in the seed furrow did not affect the survival of the inoculated strain.  相似文献   

6.
Summary Clones from aFrankia At4 gene bank were pooled into groups and mass conjugated into anodD mutant ofRhizobium leguminosarum bv.viciae by triparental matings. When peas were inoculated with the pooled transconjugants, nodulation was observed. A plasmid, pAt2GX containingFrankia DNA, was isolated from bacteria recovered from these nodules. This plasmid was shown to complement anodD mutant ofR. leguminosarum bv.viciae. Thus pAt2GX contains aFrankia gene that is functionally equivalent tonodD ofR. leguminosarum bv.viciae.  相似文献   

7.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.  相似文献   

8.
A collection of 160 isolates of rhizobia nodulating Phaseolus vulgaris in three geographical regions in Tunisia was characterized by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-amplified 16S rDNA, nifH and nodC genes. Nine groups of rhizobia were delineated: Rhizobium gallicum biovar (bv.) gallicum, Rhizobium leguminosarum bv. phaseoli and bv. viciae, Rhizobium etli bv. phaseoli, Rhizobium giardinii bv. giardinii, and four groups related to species of the genus Sinorhizobium, Sinorhizobium meliloti, Sinorhizobium medicae and Sinorhizobium fredii. The most abundant rhizobial species were R. gallicum, R. etli, and R. leguminosarum encompassing 29–20% of the isolates each. Among the isolates assigned to R. leguminosarum, two-thirds were ineffective in nitrogen fixation with P. vulgaris and harbored a symbiotic gene typical of the biovar viciae. The S. fredii-like isolates did not nodulate soybean plants but formed numerous effective nodules on P. vulgaris. Comparison of nodC gene sequences showed that their symbiotic genotype was not related to that of S. fredii, but to that of the S. fredii-like reference strain GR-06, which was isolated from a bean plant grown in a Spanish soil. An additional genotype including 16% of isolates was found to be closely related to species of the genus Agrobacterium. However, when re-examined, these isolates did not nodulate their original host.  相似文献   

9.
Summary Three nodulation-deficient (nod) mutants of Rhizobium leguminosarum were isolated following insertion of the transposon Tn5 into pRL1JI, the R. leguminosarum plasmid known to carry the nodulation genes. DNA adjacent to the nod: Tn5 alleles was subcloned and used to probe a cosmid clone bank containing DNA from a Rhizobium strain carrying pRL1JI. Two cosmid clones which showed homology with the probe contained about 10 kb of DNA in common. The R. leguminosarum host-range determinants were found to be present within this 10 kb common region since either of the cosmid clones could enable a cured R. phaseoli strain to nodulate peas instead of Phaseolus beans, its normal host. Electron microscopy of nodules induced by Rhizobium strains cured of their normal symbiotic plasmid but containing either of the two cosmid clones showed bacteroid-forms surrounded by a peri-bacteroid membrane, indicating that normal infection had occurred. Thus it is clear that this 10 kb region of nodDNA carries the genes that determine host range and that relatively few bacterial genes may be involved in nodule and bacteroid development.  相似文献   

10.
The effect of co-inoculating beans and soybeans with rhizobia and Chryseobacterium, a plant growth promoting bacteria (PGPR), was studied under conditions of mild saline stress. Chryseobacterium balustinum Aur9 was used with Rhizobium tropici CIAT899 or R. etli ISP42 to inoculate common bean (Phaseolus vulgaris L.), or jointly with Ensifer (Sinorhizobium) fredii SMH12 and HH103 to inoculate soybean (Glycine max (L.) Merrill). The effect of co-inoculation was studied by following nodule primordia initiation, nodulation kinetics and symbiotic performance in plants grown under moderate saline conditions (25 mM NaCl). In common bean, co-inoculation improved nodule primordia formation when compared with single inoculation (R. tropici CIAT899). However, co-inoculation did not provide benefits in the development of nodule primordia in soybean with E. fredii SMH12. The kinetic of nodulation in bean was also favored by double inocula resulting in a higher number of nodules. Long-term effects of co-inoculation on beans and soybeans depended on the rhizobial species used. In both, control and saline conditions, co-inoculation of R. tropici CIAT899 and C. balustinum Aur9 improved bean growth when compared with the single inoculation (CIAT899). However, the positive effect of double inocula on plant growth did not occur when using R. etli ISP42. Soybean plants receiving double inoculation (E. fredii SMH12 and C. balustinum Aur9) showed better symbiotic performance, mostly under saline stress, than with a single inoculation. The results indicate that co-inoculation with C. balustinum and rhizobia under mild saline conditions partially relieves the salt-stress effects, although do not always result advantageous for symbiotic N2 fixation in legume plants.  相似文献   

11.
The fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512 were identified by DNA hybridization of a genomic library with an internal fragment of the Rhizobium meliloti fixJ gene. The nucleotide sequence was determined and the corresponding amino acid sequence was aligned with the amino acid sequences of the FixL proteins of R. meliloti, Bradyrhizobium japonicum and Azorhizobium caulinodans. While the FixJ protein and the carboxy-terminal part of the FixL protein are highly homologous to the other FixL and FixJ proteins, the homology in the central heme-binding, oxygen-sensing domain and in the amino-terminal domain of FixL is very low. The R. leguminosarum bv. phaseoli FixL protein does not contain the heme-binding motif defined for the previously described FixL proteins. R. leguminosarum bv. phaseoli fixLJ and fixJ mutants were constructed. These mutants can still fix nitrogen, albeit at a reduced level. Expression analysis of nifA-gusA and nifH-gusA fusions in the constructed mutants revealed that the R. leguminosarum bv. phaseoli fixLJ genes are involved in microaerobic nifH expression but not in nifA expression.The nucleotide sequence data reported will appear in the EMBL, Genbank and DDBJ Nucleotide Sequence Databases under the accession number U27314  相似文献   

12.
Two cultivars of Phaseolus vulgaris L., one responsive (Mexico 309) and one less-responsive (Rio Tibagi) to nodulation with Rhizobium were grown in Leonard jars in a greenhouse. Bean plants were either inoculated with a strain of Rhizobium leguminosarum bv. phaseoli (UMR-1899), a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus etunicatum) or were left non-inoculated (controls). At two harvests (21 and 28 days post-emergence), extracts containing soluble proteins and free amino acids were prepared from leaves, roots and nodules of field beans. Nodulated plants contained a significantly higher concentration of protein and amino acids in all plant parts. Nitrogen-fixing beans invested a significantly greater proportion of total N as protein-N and amino acid-N as compared to VAM or control beans. Abundant nodule-specific proteins (nodulins) were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), identified and quantified using scanning densitometry. Rio Tibagi nodules contained a significantly lower concentration of glutamine synthetase (GS) subunits than did Mexico 309 nodules. Glutamate synthase (GOGAT) and GS activities were low relative to other legumes. The transferase/synthetase ratio for GS was also low indicating that the synthetase activity was caturated and was operating at maximal level in these young N2-fixing associations. Specific nodule activity (SNA) and the level of GS were correlated (r=0.90, p<0.05) for both cultivars at both harvests. GS activity was only 8 or 24% higher than SNA in nodules of Mexico 309 or Rio Tibagi cultivars, respectively, under conditions where substrate was not limiting. This suggests that early in the functioning of this symbiosis N assimilation by GS is the rate-limiting step in N2 fixation by these two bean cultivars, each with a different symbiotic efficiency. Phaseolus breeding programs that attempt to improve N2 fixation in beans should identify germplasm that expresses elevated levels of nodule-specific GS or GOGAT, and this material should be used along with effective R. leguminosarum bv. phaseoli strains that have already been selected, to determine superior host-microsymciont associations.  相似文献   

13.
Populations of Rhizobium leguminosarum biovar viciae were sampled from two bulk soils, rhizosphere, and nodules of host legumes, fava bean (Vicia faba) and pea (Pisum sativum) grown in the same soils. Additional populations nodulating peas, fava beans, and vetches (Vicia sativa) grown in other soils and fava bean-nodulating strains from various geographic sites were also analyzed. The rhizobia were characterized by repetitive extragenomic palindromic-PCR fingerprinting and/or PCR-restriction fragment length polymorphism (RFLP) of 16S-23S ribosomal DNA intergenic spacers as markers of the genomic background and PCR-RFLP of a nodulation gene region, nodD, as a marker of the symbiotic component of the genome. Pairwise comparisons showed differences among the genetic structures of the bulk soil, rhizosphere, and nodule populations and in the degree of host specificity within the Vicieae cross-inoculation group. With fava bean, the symbiotic genotype appeared to be the preponderant determinant of the success in nodule occupancy of rhizobial genotypes independently of the associated genomic background, the plant genotype, and the soil sampled. The interaction between one particular rhizobial symbiotic genotype and fava bean seems to be highly specific for nodulation and linked to the efficiency of nitrogen fixation. By contrast with bulk soil and fava bean-nodulating populations, the analysis of pea-nodulating populations showed preferential associations between genomic backgrounds and symbiotic genotypes. Both components of the rhizobial genome may influence competitiveness for nodulation of pea, and rhizosphere colonization may be a decisive step in competition for nodule occupancy.  相似文献   

14.
Two Rhizobium etli strains, EBRI 2 and EBRI 26, isolated from Egypt were tested for nodulation competitiveness on beans using Rhizobium tropici CIAT 899G as the competing strain. The insertion of the gus-reporter transposon mTn5ssgusA30 did not alter the nodulation or nitrogen fixation capacity of mutant strain CIAT 899G compared to the wild type. At neutral pH, R. etli strains EBRI 2 and EBRI 26 were more competitive than CIAT 899G with the bean cultivar Saxa. These two strains gave nodule occupancies of 52.1 and 61.1% competing with equal cell numbers of CIAT 899G. Nodule occupancies from these two native strains increased with the bean cultivar Giza 6 from Egypt to 66 and 67.5%. Based on these results, cultivar Giza 6 was used to select the most competitive strains under stress of salinity or alkalinity as a major problem for a large part of Egyptian soils. Under stress of salinity (0.2% NaCl or 34.2 mM NaCl), the salt-sensitive strain EBRI 2 was more competitive than the salt-resistant strain EBRI 26. Strain EBRI 2 gave 87.4% but strain EBRI 26 gave 63.7% nodule occupancy against CIAT 899G. The same trend of results was observed under stress of alkalinity (pH 8). Strain EBRI 2 occupied 83% while Strain EBRI 26 occupied 53.2%.  相似文献   

15.
Summary A Tn5-induced mutant strain of R. phaseoli which failed to synthesize exopolysaccharide (EPS) was isolated and was shown to induce normal nitrogen-fixing nodules on Phaseolus beans, the host of this Rhizobium species. The corresponding wild-type Rhizobium DNA was cloned in a wide host-range vector and by isolating Tn5 insertions in this cloned DNA, mutations in a gene termed pss (polysaccharide synthesis) were isolated. These were introduced by marker exchange into near-isogenic strains of R. leguminosarum and R. phaseoli which differed only in the identity of their symbiotic plasmids. Whereas the EPS-deficient mutant strain of R. phaseoli induced normal nitrogen-fixing nodules on Phaseolus beans, the same mutation prevented nodulation of peas by a strain of R. leguminosarum which normally nodulates this host. Further, it was found that DNA cloned from the plant pathogen Xanthomonas campestris pathover campestris could correct the defect in EPS synthesis in R. leguminosarum and R. phaseoli and also restored the ability to nodulate peas to the pss::Tn5 mutant strain of R. leguminosarum.  相似文献   

16.
This study compared growth, nodulation, nitrogen fixation, and nodular enzyme activities in response to salinity in some common bean-rhizobia symbiotic combinations. Seeds of Paulista and Efequince, two varieties of the common bean (Phaseolus vulgaris) were germinated and seedlings were transferred to pots containing vermiculite inoculated with the reference Rhizobium strain CIAT899 or with RhM11 or RhM14, two local strains. Plants were grown in a temperature-controlled glasshouse at 28°C and irrigated with a nutrient solution without NaCl (control) or supplemented with 25 mM NaCl (stressed). Plants were harvested at the flowering stage. The results showed that in controls, inoculation with RhM11 improved plant and nodule growth compared with those inoculated with RhM14 and CIAT 899. NaCl treatment generally had a negative affect on plant and nodule growth. Under the saline treatment, symbiotic nitrogen fixation was not significantly affected in the CIAT899-Paulista, CIAT899-Efequince and RhM11-Paulista combinations. Plant mineral nutrition was negatively affected under salt treatment for all of the tested symbiotic combinations. Inoculation with CIAT899 and RhM11 conferred more plant tolerance to salinity than inoculation with RhM14. The nodular phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) exhibited higher activities and were less affected by salinity in plants inoculated with the reference strain CIAT899 than those inoculated with local strains. We conclude that plants inoculated with CIAT899 and RhM11 showed more salinity stress tolerance than those inoculated with RhM14.  相似文献   

17.
Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France   总被引:1,自引:0,他引:1  
Two hundred and eighty seven isolates of Rhizobium nodulating Phaseolus vulgaris L. were sampled in France from four geographically distant field populations. They were characterized by their colony morphology and by plasmid profiles. A representative sample was further characterized: a) by the ability of each isolate to nodulate a potential alternative host Leucaena leucocephala and to grow on specific media, and b) by RFLP analysis of PCR amplified 16S rRNA genes. On the basis of their phenotypic and genetic characteristics the isolates could be assigned either to Rhizobium leguminosarum bv phaseoli, or to R. tropici. The two species co-occurred at three sites. R. leguminosarum bv phaseoli represented 2%, 4%, 72% and 100% of the population at the four different sites. Eighteen and 22 different plasmid profiles were identified within R. tropici and R. leguminosarum bv phaseoli, respectively. Some of them were conserved between distant geographical regions. The fact that R. tropici was found in France shows that this species is not limited to tropical regions and gives additional evidence of the multi-specific nature of the Phaseolus microsymbiont, even over a geographically limited area.  相似文献   

18.
Rhizobium leguminosarum strain VF39, isolated from nodules of field-grown faba beans in the Federal Republic of Germany, was shown to contain six plasmids ranging in molecular weight from 90 to 400 Md. Hybridisation to nif gene probes, plasmid curing, and mobilisation to other strains of Rhizobium and to Agrobacterium showed that the third largest plasmid, pRleVF39d (220 Md), carried genes for nodulation and nitrogen fixation. This plasmid was incompatible with pRL10JI, the Sym plasmid of R. leguminosarum strain JB300. Of the other plasmids, the two smallest (pRleVF39a and pRleVF39b, 90 and 160 Md respectively) were shown to be self-transmissible at a low frequency. Although melanin production is as yet unreported in strains of R. leguminosarum biovar viceae, strain VF39 produced a dark pigment, which, since it was not produced on minimal media and its production was greatly enhanced by the presence of tyrosine in the media, is probably melanin-like. Derivatives of VF39 cured of pRleVF39a no longer produced this pigment, but regained the ability to produce it when this plasmid was transferred into them. Strains of Agrobacterium tumefaciens, R. meliloti, and some strains of R. leguminosarum carrying pRleVF39a did not produce this pigment, indicating perhaps that some genes elsewhere on the VF39 genome are also involved in pigment production. Plasmid pRleVF39a appeared to be incompatible with the cryptic Rhizobium plasmids pRle336b and pRL8JI (both ca. 100 Md), but was compatible with the R. leguminosarum biovar phaseoli Sym plasmids pRP1JI, pRP2JI and pRph51a, all of which also code for melanin production. The absence of pRleVF39a in cured derivatives of VF39 had no effect on the symbiotic performance or competitive ability of this strain.  相似文献   

19.
The fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512 were identified by DNA hybridization of a genomic library with an internal fragment of the Rhizobium meliloti fixJ gene. The nucleotide sequence was determined and the corresponding amino acid sequence was aligned with the amino acid sequences of the FixL proteins of R. meliloti, Bradyrhizobium japonicum and Azorhizobium caulinodans. While the FixJ protein and the carboxy-terminal part of the FixL protein are highly homologous to the other FixL and FixJ proteins, the homology in the central heme-binding, oxygen-sensing domain and in the amino-terminal domain of FixL is very low. The R. leguminosarum bv. phaseoli FixL protein does not contain the heme-binding motif defined for the previously described FixL proteins. R. leguminosarum bv. phaseoli fixLJ and fixJ mutants were constructed. These mutants can still fix nitrogen, albeit at a reduced level. Expression analysis of nifA-gusA and nifH-gusA fusions in the constructed mutants revealed that the R. leguminosarum bv. phaseoli fixLJ genes are involved in microaerobic nifH expression but not in nifA expression.  相似文献   

20.
We studied the symbiotic behaviour of 20 independent Tn5 mutants of Rhizobium tropici strain CIAT899 that were deficient in exopolysaccharide (EPS) production. The mutants produced non-mucoid colonies, were motile, grew in broth cultures at rates similar to those of the parent, and produced significantly less EPS than did CIAT899 in broth culture. A genomic library of strain CIAT899, constructed in pLA2917, was mobilized into all of the mutants, and cosmids that restored EPS production were identified. EcoRI restriction digests of the cosmids revealed nine unique inserts. Mutant complementation and hybridization analysis showed that the mutations affecting EPS production fell into six functional and physical linkage groups. On bean, the mutants were as efficient in nodulation and as effective in acetylene reduction as strain CIAT899, induced a severe interveinal chlorosis, and all but one were less competitive than CIAT899. On siratro, CIAT899 induced nodules that were ineffective in acetylene reduction, whereas the EPS-deficient mutants induced effective nodules. Microscopic examination of thin sections showed that nodules from both siratro and bean plants inoculated with either CIAT899 or an EPS-deficient mutant contained infected cells. These data indicate that EPS is not required for normal nodulation of bean by R. tropici, that it may contribute to competitiveness of R. tropici on bean, and that the loss of EPS production is accompanied by acquisition of the ability to reduce acetylene on siratro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号