首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The song system of zebra finches is sexually dimorphic: the volumes of the song control nuclei and the neurons within these nuclei are larger in males. The song system of hatching female zebra finches is masculinized by systemic treatment with estrogen. We investigated the locus of this estrogen action by using microimplants of estradiol benzoate (EB). We implanted female zebra finch nestlings 10–13 days old with Silastic pellets containing approximately 2 μg EB at one of several sites: near the higher vocal center (HVC), in the brain distant from HVC, or in the periphery either under the skin of the breast or in the peritoneal cavity. Controls were either unimplanted or implanted near HVC with Silastic pellets without hormone. The brains were fixed by perfusion at 60 days, and the volumes of the song control regions as well as the sizes of individual neurons were measured. Neurons in HVC were lerger (more masculine) in the HVC-implanted group than in other groups, which did not differ among themselves. The size of neurons in the robust nucleus of the archistriatum (RA) and the lateral magnocellular nucleus ofthe neostriatum (lMAN) were inversely correlated with the distance of the EB pellet to HVC; neurons in RA and lMAN were larger when the EB pellets were closer to HVC. This result suggests that implants near HVC were at or near a site of estrogen action. To our knowledge, this is the first demonstration that localized brain implants of estrogen cause morphological masculinization in any species. 1994 John Wiley & Sons, Inc.  相似文献   

2.
Exogenous estrogens, when administered to hatchling female zebra finches, masculinize the morphology and function of their neural vocal control system. The first of two experiments evaluated whether tamoxifen citrate is an antiestrogen in zebra finches, and the second determined whether it would block the masculinization hypothesized to be caused in hatchling males by the males' endogenous estradiol. In the first experiment adult female zebra finches were ovariectomized and injected for 10 days with estradiol benzoate (EB), tamoxifen, EB and tamoxifen combined, or vehicle (control). The dependent variable was oviduct weight. The EB-stimulated growth of the oviduct was blocked by tamoxifen, which had no effects when administered alone. Thus, tamoxifen acts as an antiestrogen in the zebra finch oviduct. In Experiment 2, male and female zebra finches were treated with tamoxifen or vehicle for the first 20 days after hatching. The males were castrated at 20 days. At 60 days we compared the song control regions of experimental and control males and females. In both sexes tamoxifen increased the somatic areas of neurons in RA (robust nucleus of the archistriatum), HVc (caudal nucleus of the ventral hyperstriatum), and MAN (magnocellular nucleus of the anterior neostriatum). Tamoxifen also increased the volumes of HVc, RA, MAN, and Area X in males. Thus, tamoxifen failed to block masculinization of males, but masculinized females and hypermasculinized males. Tamoxifen's hypermasculinization of the male and masculinization of the female song system is paradoxical given that (1) estradiol does not have similar effects on the male song system, and (2) tamoxifen antagonizes the effects of EB in the oviduct.  相似文献   

3.
Bengalese finches, Lonchura striata, are extremely sexually dimorphic in their singing behavior; males sing complex songs, whereas females do not sing at all. This study describes the developmental differentiation of the brain song system in Bengalese finches. Nissl staining was used to measure the volumes of four telencephalic song nuclei: Area X, HVC, the robust nucleus of the arcopallium (RA), and the lateral portion of the magnocellular nucleus of the anterior nidopallium (LMAN). In juveniles (circa 35 days old), Area X and the HVC were well developed in males, while they were absent or not discernable in females. The RA was much larger in males but barely discernable in females. In males, the volumes of Area X and the RA increased further into adulthood, but that of the HVC remained unchanged. The LMAN volume was greater in juveniles than in adults, and there was no difference in the LMAN volume between the sexes. The overall tendency was similar to that described in zebra finches, except for the volume of the RA, where the degree of sexual dimorphism is larger and the timing of differentiation occurs earlier in Bengalese finches. Motor learning of the song continues until day 90 in zebra finches, but up to day 120 in Bengalese finches. Earlier neural differentiation and a longer learning period in Bengalese finches compared with zebra finches may be related to the more elaborate song structures of Bengalese finches.  相似文献   

4.
The songs of adult male zebra finches (Taeniopygia guttata) arise by an integration of activity from two neural pathways that emanate from the telencephalic nucleus HVC (proper name). One pathway descends directly from HVC to the vocal premotor nucleus RA (the robust nucleus of the arcopallium) whereas a second pathway descends from HVC into a basal ganglia circuit (the anterior forebrain pathway, AFP) that also terminates in RA. Although HVC neurons that project directly to RA outnumber those that contribute to the AFP, both populations are distributed throughout HVC. Thus, partial ablation (microlesion) of HVC should damage both pathways in a proportional manner. We report here that bilateral HVC microlesions in adult male zebra finches produce an immediate loss of song stereotypy from which birds recover, in some cases within 3 days. The contribution of the AFP to the onset of song destabilization was tested by ablating the output nucleus of this circuit (LMAN, the lateral magnocellular nucleus of the anterior nidopallium) prior to bilateral HVC microlesions. Song stereotypy was largely unaffected. Together, our findings suggest that adult vocal production involves nonproportional integration of two streams of neural activity with opposing effects on song--HVC's direct projection to RA underlies production of stereotyped song whereas the AFP seems to facilitate vocal variation. However, the rapid recovery of song in birds with HVC microlesions alone suggests the presence of dynamic corrective mechanisms that favor vocal stereotypy.  相似文献   

5.
Telencephalic nucleus HVC and its two efferent targets, RA and X, play essential roles in the production of complex, learned vocalizations in the male zebra finch. Normal females do not produce these learned vocalizations; HVC, RA, and X are small in volume, and HVC and RA are not synaptically connected. We have shown that estrogen treatment during development causes females to learn and produce male-like vocalizations. This article describes the neural masculinization of these E2 females, replicating and extending the work of others. Female zebra finches were treated with 17 beta-estradiol (E2) at hatching, at 14-22 days of age, or as adults. In adulthood, the volumes of nucleus RA and area X were measured and the efferent projections of nucleus HVC examined using the anterograde tracer PHA-L. Early, sustained E2 treatment caused the greatest increase in the volume of RA and X, the innervation of RA and X by HVC axons, and the masculinization of auditory responses of cells in RA. Treatments that lasted for a shorter period or started later in development resulted in different patterns of partial brain masculinization. E2 treatment in adulthood had no effect on the volume of RA or X or their innervation by HVC. Bilateral lesions of the tracheosyringeal nerves or of HVC had the same effects on the male-typical vocalizations produced by E2 females as they do on the vocalizations produced by males. These results demonstrate that the neural masculinization of telencephalic nuclei induced by E2 treatment sets up a functional circuit in females similar to one in males that enables the learning and production of complex vocalizations.  相似文献   

6.
Telencephalic nucleus HVC and its two efferent targets, RA and X, play essential roles in the production of complex, learned vocalizations in the male zebra finch. Normal females do not produce these learned vocalizations; HVC, RA, and X are small in volume, and HVC and RA are not synaptically connected. We have shown that estrogen treatment during development causes females to learn and produce male-like vocalization. This article describes the neural masculinization of these E2 females, replicating and extending the work of others. Female zebra finches were treated with 17β-estradiol (E2) at hatching, at 14–22 days of age, or as adults. In adulthood, the volumes of nucleus RA and area X were measured and the efferent projections of nucleus HVC examined using the anterograde tracer PHA-L. Early, sustained E2 treatment caused the greatest increase in the volume of RA and X, the innervation of RA and X by HVC axons, and the masculinization of auditory responses of cells in RA. Treatments that lasted for a shorter period or started later in development resulted in different patterns of partial brain masculinization. E2 treatment in adulthood had no effect on the volume of RA or X or their innervation by HVC. Bilateral lesions of the tracheosyringeal nerves or of HVC had the same effects on the male-typical vocalizations produced by E2 females as they do on the vocalizations produced by males. These results demonstrate that the neural masculinization of telencephalic nuclei induced by E2 treatment sets up a functional circuit in females similar to one in males that enables the learning and production of complex vocalizations.  相似文献   

7.
Mechanisms regulating sexual differentiation of the zebra finch song system are not well understood. The present study was designed to more fully characterize secretory carrier membrane protein 1 (SCAMP1), which was identified in a cDNA microarray screen as showing increased expression in the forebrains of developing male compared with female zebra finches. We completed the sequence of the open reading frame and used in situ hybridization to compare mRNA in song control regions of juvenile (25-day-old) individuals. Expression was significantly greater in the HVC (used as a proper name) and robust nucleus of the arcopallium (RA) in males than in females. Immunohistochemistry revealed that SCAMP1 protein is also expressed in these two brain regions, and qualitatively appears greater in males. Western analysis confirmed that the protein is increased in the telencephalon of males when compared with females at 25 days of age. These results are consistent with the idea that SCAMP1 is involved in masculinization of these brain areas, perhaps facilitating the survival of cells within them.  相似文献   

8.
Song behavior and the neural song system that serves it are sexually dimorphic in zebra finches. In this species, males sing and females normally do not. The sex differences in the song system include sex differences in the proportion of neurons that express androgen receptors, which is higher in specific brain regions of males. Estradiol (E2) administered in early development profoundly masculinizes the song system of females, including the proportion of neurons expressing androgen receptors. We examined whether or not the expression of these androgen receptors was causally related to the E2-induced masculinization of this system by co-administering Flutamide, which blocks androgen action at the receptor, along with E2 at hatching. E2 alone had its usual masculinizing effect on the female song system, measured in adulthood: increasing the size of song nuclei, the size of neurons in HVC, RA, and 1MAN, and the number of neurons in HVC. E2's masculinizing action, however, was significantly diminished on all measures by co-administering Flutamide. Indeed, females receiving both E2 and Flutamide were never significantly more masculine than controls on any measure. Flutamide alone had no effect. Our results strongly suggest that the activation of androgen receptors is necessary for the E2-induced masculinization of the song system in females.  相似文献   

9.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
Male zebra finches learn to imitate a tutor's song through auditory and motor learning. The two main song control nuclei in the zebra finch forebrain, the higher vocal center (HVC) and the robust nucleus of the archistriatum (RA), receive cholinergic innervation from the ventral paleostriatum (VP) of the basal forebrain which may play a key role in song learning. By injecting neuroanatomical tracers, we found a topographically segregated pathway from nucleus ovoidalis (Ov) to VP that in turn projects in a topographic fashion to HVC and RA. Ov is a major relay in the main ascending auditory pathway. The results suggest that the cholinergic neurons in the VP responsible for song learning are regulated by auditory information from the Ov.  相似文献   

11.
This study tested the hypothesis that the relative proportion of neurons that are hormone sensitive in avian song control nuclei is related to the basic motor ability to sing, whereas the absolute number of such neurons is related to the complexity of song behavior. Either [3H]testosterone (T) or estradiol (E2) was injected into male and female rufous and white wrens (Thryothorus rufalbus), a tropical species in which females sing duets with males but have smaller song repertoires than males. Autoradiographic analysis indicated that there were no sex differences in the proportions of T or E2 target cells in two song nuclei: the high vocal center (HVC) and the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN). The density of labeled cells per unit volume of tissue did not differ between the sexes in either song nucleus. Males have larger song nuclei, however, which is consistent with their more complex song behavior, and therefore have a greater total number of hormone-sensitive neurons in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches, canaries, and bay wrens supports the hypothesis presented. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female‐directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR‐1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR‐1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR‐1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR‐1 expression in these areas. However, EGR‐1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context‐dependent changes could arise de novo in HVC. The pattern of context‐dependent differences in EGR‐1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 47–63, 2016  相似文献   

13.
This study examined the relationship between the volumes of four song control nuclei: the high vocal center (HVC), the lateral part of the magnocellular nucleus of the anterior neostriatum (lMAN), Area X, and the robust nucleus of the archistriatum (RA), as well as syrinx mass, with several measures of song output and song complexity in male zebra finches (Taeniopygia guttata). Male zebra finches' songs were recorded in standardized recording sessions. The syrinx and brain were subsequently collected from each bird. Volumes of the song control nuclei were reconstructed by measuring the cross-sectional area of serial sections. Syrinx mass was positively correlated with RA volume. The volume of lMAN was negatively related to element repertoire size and the number of elements per phrase. We found no other correlations between brain and behavioral measures. This study, combined with others, indicates that the evidence for a general relationship among songbirds between HVC volume and song complexity is equivocal. There are clear species differences in this brain-behavior correlation. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 421–430, 1998  相似文献   

14.
Only male zebra finches (Poephila guttata) sing, and nuclei implicated in song behavior exhibit marked sex differences in neuron number. In the robust nucleus of the anterior neostriatum (RA), these sex differences develop because more neurons die in young females than in males. However, it is not known whether the sexually dimorphic survival of RA neurons is a primary event in sexual differentiation or a secondary response to sex differences in the number of cells interacting trophically with RA neurons. In particular, since sexual differentiation of the RA parallels the development of dimorphisms in the numbers of neurons providing afferent input from the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the high vocal center (HVC), it has been hypothesized that sex differences in the size of these afferent populations trigger differential RA neuron survival and growth. To test this hypothesis, we lesioned either the lMAN or both the lMAN and HVC unilaterally in 12-day-old male and female zebra finches. Subsequently, RA cell death and RA neuron number and size were measured. Unilateral lMAN lesions increased cell death and decreased neuron number and size within the ipsilateral RA of both sexes. However, even in the lMAN-lesioned hemisphere, these effects were less pronounced in males than in females, so that by day 25 the volume, number, and size of neurons were sexually dimorphic in both the contralateral and ipsilateral RA. Similarly, the absence of both lMAN and HVC afferents did not prevent the emergence of sex differences in the number and size of RA neurons by 25 day posthatching. We conclude that these sex differences within the RA are not a secondary response to dimorphisms in the numbers of lMAN or HVC neurons providing afferent input. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei.  相似文献   

16.
《Journal of Physiology》2013,107(3):178-192
Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.  相似文献   

17.
In order to determine the critical period(s) during which estrogen alters sexually dimorphic behavior and neuroanatomy in zebra finches (Poephila guttata), nestlings were injected daily 20 μg estradiol benzoate (EB) during posthatching week 1, week 2, week 3, or weeks 1, 2, and 3. At 7 months of age, birds were implanted with testosterone propionate and tested with female partners for singing, dancing, and copulatory mounting. Brains were subsequently processed for morphometry, and the volumes of the song system nuclei HVC, area X, and RA and the soma sizes and densities of neurons in RA were determined. Males given EB during week 1 failed to mount. Females given EB during week 1 were fully masculinized with respect to dancing and RA neuron soma size and density, and were partially masculinized with respect to song nuclei volumes and singing. Treatment beginning after week 1 was ineffective or less effective for all measures. Only for RA neuron measures was treatment for all three weeks more effective than week 1 treatment. Thus the first post-hatching week is the most influential period of those tested for effects of exogenous estrogen on sexual differentiation in this species, and is a period during which both masculinization of females and demasculinization of males is possible. 1994 John Wiley & Sons, Inc.  相似文献   

18.
Like many other songbird species, male zebra finches learn their song from a tutor early in life. Song learning in birds has strong parallels with speech acquisition in human infants at both the behavioral and neural levels. Forebrain nuclei in the 'song system' are important for the sensorimotor acquisition and production of song, while caudomedial pallial brain regions outside the song system are thought to contain the neural substrate of tutor song memory. Here, we exposed three groups of adult zebra finch males to either tutor song, to their own song, or to novel conspecific song. Expression of the immediate early gene protein product Zenk was measured in the song system nuclei HVC, robust nucleus of the arcopallium (RA) and Area X. There were no significant differences in overall Zenk expression between the three groups. However, Zenk expression in the HVC was significantly positively correlated with the strength of song learning only in the group that was exposed to the bird's own song, not in the other two groups. These results suggest that the song system nucleus HVC may contain a neural representation of a memory of the bird's own song. Such a representation may be formed during juvenile song learning and guide the bird's vocal output.  相似文献   

19.
Sex‐linked genes are considered to be a major contributor to neural sex differences in zebra finches. While several candidates have been identified, additional ones are continuously being discovered. Here we report on a novel Z‐linked ribosomal gene (rpS6) that is enhanced in the male brain as compared to the female's throughout life. In both sexes, expression of rpS6 is highest at P3 and P8 (just before the onset of morphologically detectable sex differences), decreases around P15, and then remains decreased through adulthood. Analysis of rpS6 mRNA revealed widespread distribution throughout the brain. However, within song regions HVC and RA, mRNA containing cells were greater in males as compared to females. Hormones are also involved in the development of neural dimorphisms, so we additionally investigated whether rpS6 might interact with estradiol (E2). An up‐regulation of rpS6 gene was observed in both sexes following treatment with E2 and the effect was approximately twice as large in males as compared with females. These data suggest that rpS6 may be involved in sexual differentiation of the zebra finch brain, and that the effect is facilitated by E2. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 599–608, 2013  相似文献   

20.
To assess which hormones are capable of masculinizing the neural song system of zebra finch hatchlings, we implanted female hatchlings with estrogen (estradiol [E2], 75 μg, n = 9), testosterone (T, 75–88 μg, n = 13), androstenedione (AE, 75 μg, n = 7), progesterone (P, 117 μg, n = 10), or nothing (Blanks, n = 10) and compared these to unimplanted males (n = 7). Implants, consisting of a hormone and Silastic mixture encased in polyethylene tubing, were placed under the skin of the breast on the day of hatching. Birds were killed when they were subadult (58 to 68 days old). We measured volumes of area X, the higher vocal center (HVC), and the robust nucleus of the archistriatum (RA); measured soma sizes in the lateral magnocellular nucleus of the neostriatum (IMAN), HVC, and RA: and counted RA neurons. E2 masculinized all measures in the song system and nearly sex-reversed the size of RA neurons. T masculinized volumes of nuclei and soma sizes but not the number or spacing of RA neurons. E2 was always at least as effective as T in masculinizing measures of the song system and was usually more effective. AE and P did not significantly masculinize any measure. These data suggest that E2 is more potent than aromatizable androgens or P in masculinizing the female song system in development and that the action of E2 alone may be sufficient to masculinize the volume of song control nuclei and the size and number of neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号