首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is critical for cell locomotion.  相似文献   

2.
Involvement of tyrosine phosphorylation in osteoclastic bone resorption was examined using osteoclast-like multinucleated cells prepared from co-cultures of mouse osteoblastic cells and bone marrow cells in the presence of 1α,25-dihydroxyvitamin D3. When osteoclast-like cells were plated on culture dishes in the presence of 10% fetal bovine serum, they were sharply stained in their peripheral region by anti-phosphotyrosine antibody. Western blot analysis revealed that 115-to 130-kD proteins were tyrosine-phosphorylated in osteoclast-like cells. Using immunoprecipitation and immunoblotting, one of the proteins with 115–130 kD was identified as focal adhesion kinase (p125FAK), a tyrosine kinase, which is localized in focal adhesions. Immunostaining with anti-p 125FAK antibody revealed that p125FAK was mainly localized at the periphery of osteoclast-like cells. Herbimycin A, a tyrosine kinase inhibitor, not only suppressed tyrosine phosphorylation of p125FAK but also changed the intracellular localization of p125FAK and disrupted a ringed structure of F-actin-containing podosomes in osteoclast-like cells. Antisense oligodeoxynucleotides to p125FAK inhibited dentine resorption by osteoclast-like cells, whereas sense oligodeoxynucleotides did not. These results suggest that p125FAK is involved in osteoclastic bone resorption and that tyrosine phosphorylation of p125FAK is critical for regulating osteoclast function.  相似文献   

3.
4.
We have recently shown that changes in tyrosine phosphorylation of a 130-kDa protein(s) (pp130) may be involved in integrin signaling (Kornberg, L., Earp, H.S., Turner, C., Prokop, and Juliano, R. L. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 8392-8396). One component of the pp130 protein complex reacts with an antibody generated against p125fak, which is a focal contact-associated tyrosine kinase (Schaller, M.D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., and Parsons, J. T. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 5192-5196). Both antibody-mediated integrin clustering and adhesion of KB cells to fibronectin leads to increased tyrosine phosphorylation of p125fak. The phosphorylation of p125fak is coincident with adhesion of cells to fibronectin and is maximal prior to cell spreading. Tyrosine phosphorylation of p125fak is induced when KB cells are allowed to adhere to fibronectin, collagen type IV, or laminin, but is not induced on polylysine. When KB cells are subjected to indirect immunofluorescence microscopy, p125fak colocalizes with talin in focal contacts. These data provide additional evidence that tyrosine kinases are involved in integrin signaling.  相似文献   

5.
ASAP1 (ADP ribosylation factor [ARF]- GTPase-activating protein [GAP] containing SH3, ANK repeats, and PH domain) is a phospholipid-dependent ARF-GAP that binds to and is phosphorylated by pp60(Src). Using affinity chromatography and yeast two-hybrid interaction screens, we identified ASAP1 as a major binding partner of protein tyrosine kinase focal adhesion kinase (FAK). Glutathione S-transferase pull-down and coimmunoprecipitation assays showed the binding of ASAP1 to FAK is mediated by an interaction between the C-terminal SH3 domain of ASAP1 with the second proline-rich motif in the C-terminal region of FAK. Transient overexpression of wild-type ASAP1 significantly retarded the spreading of REF52 cells plated on fibronectin. In contrast, overexpression of a truncated variant of ASAP1 that failed to bind FAK or a catalytically inactive variant of ASAP1 lacking GAP activity resulted in a less pronounced inhibition of cell spreading. Transient overexpression of wild-type ASAP1 prevented the efficient organization of paxillin and FAK in focal adhesions during cell spreading, while failing to significantly alter vinculin localization and organization. We conclude from these studies that modulation of ARF activity by ASAP1 is important for the regulation of focal adhesion assembly and/or organization by influencing the mechanisms responsible for the recruitment and organization of selected focal adhesion proteins such as paxillin and FAK.  相似文献   

6.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

7.
In this article, we show that, in transfected COS-1 cells, protein tyrosine phosphatase (PTP)-PEST translocates to the membrane periphery following stimulation by the extracellular matrix protein fibronectin. When plated on fibronectin, PTP-PEST (-/-) fibroblasts display a strong defect in motility. 3 h after plating on fibronectin, the number and size of vinculin containing focal adhesions were greatly increased in the homozygous PTP-PEST mutant cells as compared with heterozygous cells. This phenomenon appears to be due in part to a constitutive increase in tyrosine phosphorylation of p130(CAS), a known PTP-PEST substrate, paxillin, which associates with PTP-PEST in vitro, and focal adhesion kinase (FAK). Another effect of this constitutive hyperphosphorylation, consistent with the focal adhesion regulation defect, is that (-/-) cells spread faster than the control cell line when plated on fibronectin. In the PTP-PEST (-/-) cells, an increase in affinity for the SH2 domains of Src and Crk towards p130(CAS) was also observed. In (-/-) cells, we found a significant increase in the level of tyrosine phosphorylation of PSTPIP, a cleavage furrow-associated protein that interacts physically with all PEST family members. An effect of PSTPIP hyperphosphorylation appears to be that some cells remain attached at the site of the cleavage furrow for an extended period of time. In conclusion, our data suggest PTP-PEST plays a dual role in cell cytoskeleton organization, by promoting the turnover of focal adhesions required for cell migration, and by directly or indirectly regulating the proline, serine, threonine phosphatase interacting protein (PSTPIP) tyrosine phosphorylation level which may be involved in regulating cleavage furrow formation or disassembly during normal cell division.  相似文献   

8.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

9.
Focal adhesion kinase (FAK) is a tyrosine kinase found in focal adhesions, intracellular signaling complexes that are formed following engagement of the extracellular matrix by integrins. The C-terminal 'focal adhesion targeting' (FAT) region is necessary and sufficient for localizing FAK to focal adhesions. We have determined the crystal structure of FAT and show that it forms a four-helix bundle that resembles those found in two other proteins involved in cell adhesion, alpha-catenin and vinculin. The binding of FAT to the focal adhesion protein, paxillin, requires the integrity of the helical bundle, whereas binding to another focal adhesion protein, talin, does not. We show by mutagenesis that paxillin binding involves two hydrophobic patches on opposite faces of the bundle and propose a model in which two LD motifs of paxillin adopt amphipathic helices that augment the hydrophobic core of FAT, creating a six-helix bundle.  相似文献   

10.
Background information. Our previous studies have shown that calreticulin, a Ca2+‐binding chaperone located in the endoplasmic reticulum, affects cell—substratum adhesions via the induction of vinculin and N‐cadherin. Cells overexpressing calreticulin contain more vinculin than low expressers and make abundant contacts with the substratum. However, cells that express low levels of calreticulin exhibit a weak adhesive phenotype and make few, if any, focal adhesions. To date, the identity of the types of focal adhesions made by calreticulin overexpressing and low expressing cells has not been dissected. Results. The results of the present study show that calreticulin affects fibronectin matrix assembly in L fibroblast cell lines that differentially express the protein, and that these cells also differ profoundly in focal adhesion formation. Although the calreticulin overexpressing cells generate numerous interference‐reflection‐microscopy‐dark, vinculin‐ and paxillin‐containing classical focal contacts, as well as some fibrillar adhesions, the cells expressing low levels of calreticulin generate only a few weak focal adhesions. The fibronectin receptor was found to be clustered in calreticulin overexpressing cells, but diffusely distributed over the cell surface in low expressing cells. Plating L fibroblasts on fibronectin‐coated substrata induced extensive spreading in all cell lines tested. However, although calreticulin overexpressing cells were induced to form classical vinculin‐rich focal contacts, the low calreticulin expressing cells overcame their weak adhesive phenotype by induction of many tensin‐rich fibrillar adhesions, thus compensating for the low level of vinculin in these cells. Conclusions. We propose that calreticulin affects fibronectin production and, thereby, assembly, and it indirectly influences the formation and/or stability of focal contacts and fibrillar adhesions, both of which are instrumental in matrix assembly and remodelling.  相似文献   

11.
Transient elevations in Ca2+ have previously been shown to promote focal adhesion disassembly and cell motility through an unknown mechanism. In this study, evidence is provided to show that CaMK-II, a Ca2+/calmodulin dependent protein kinase, influences fibroblast adhesion and motility. TIRF microscopy reveals a dynamic population of CaMK-II at the cell surface in migrating cells. Inhibition of CaMK-II with two mechanistically distinct, membrane permeant inhibitors (KN-93 and myr-AIP) freezes lamellipodial dynamics, accelerates spreading on fibronectin, enlarges paxillin-containing focal adhesions and blocks cell motility. In contrast, constitutively active CaMK-II is not found at the cell surface, reduces cell attachment, eliminates paxillin from focal adhesions and decreases the phospho-tyrosine levels of both FAK and paxillin; all of these events can be reversed with myr-AIP. Thus, both CaMK-II inhibition and constitutive activation block cell motility through over-stabilization or destabilization of focal adhesions, respectively. Coupled with the existence of transient Ca2+ elevations and a dynamic CaMK-II population, these findings provide the first direct evidence that CaMK-II enables cell motility by transiently and locally stimulating tyrosine dephosphorylation of focal adhesion proteins to promote focal adhesion turnover.  相似文献   

12.
To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions.  相似文献   

13.
Myocilin, a novel matricellular protein found in the human eye, can modify signaling events mediated by the Heparin II domain of fibronectin. Using myocilin produced in sf9 insect cells, myocilin inhibited spreading of cycloheximide-treated human skin fibroblasts plated on substrates co-coated with myocilin and either fibronectin or its Heparin II domain. Cell spreading could be rescued by adding back either substrate adsorbed or soluble Heparin II domains. Myocilin did not inhibit cell attachment to fibronectin even in the presence of a 2400 M excess of myocilin. Myocilin impaired focal adhesion formation and specifically blocked the incorporation of paxillin, but not vinculin, into focal adhesions. The Heparin II domain mediated the incorporation of paxillin into focal adhesions, since paxillin was not assembled into focal adhesions unless the Heparin II domain was present. The effect of myocilin on focal adhesions could be overcome by treating cells with either phorbol 12-myristate (PMA) or oleoyl-L-alpha-lysophosphatidic acid (LPA). Myocilin bound to the fibroblast cell surface, but its binding could not be competed with excess fibronectin, suggesting that myocilin does not compete for cell surface binding sites of fibronectin. Myocilin therefore appears to specifically block functions mediated by the Heparin II domain possibly through direct interactions with it.  相似文献   

14.
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.  相似文献   

15.
《The Journal of cell biology》1996,135(4):1109-1123
Paxillin is a 68-kD focal adhesion phosphoprotein that interacts with several proteins including members of the src family of tyrosine kinases, the transforming protein v-crk, and the cytoskeletal proteins vinculin and the tyrosine kinase, focal adhesion kinase (FAK). This suggests a function for paxillin as a molecular adaptor, responsible for the recruitment of structural and signaling molecules to focal adhesions. The current study defines the vinculin- and FAK-interaction domains on paxillin and identifies the principal paxillin focal adhesion targeting motif. Using truncation and deletion mutagenesis, we have localized the vinculin-binding site on paxillin to a contiguous stretch of 21 amino acids spanning residues 143-164. In contrast, maximal binding of FAK to paxillin requires, in addition to the region of paxillin spanning amino acids 143-164, a carboxyl-terminal domain encompassing residues 265-313. These data demonstrate the presence of a single binding site for vinculin, and at least two binding sites for FAK that are separated by an intervening stretch of 100 amino acids. Vinculin- and FAK-binding activities within amino acids 143-164 were separable since mutation of amino acid 151 from a negatively charged glutamic acid to the uncharged polar residue glutamine (E151Q) reduced binding of vinculin to paxillin by >90%, with no reduction in the binding capacity for FAK. The requirement for focal adhesion targeting of the vinculin- and FAK-binding regions within paxillin was determined by transfection into CHO.K1 fibroblasts. Significantly and surprisingly, paxillin constructs containing both deletion and point mutations that abrogate binding of FAK and/or vinculin were found to target effectively to focal adhesions. Additionally, expression of the amino-terminal 313 amino acids of paxillin containing intact vinculin- and FAK-binding domains failed to target to focal adhesions. This indicated other regions of paxillin were functioning as focal adhesion localization motifs. The carboxyl-terminal half of paxillin (amino acids 313-559) contains four contiguous double zinc finger LIM domains. Transfection analyses of sequential carboxyl-terminal truncations of the four individual LIM motifs and site-directed mutagenesis of LIM domains 1, 2, and 3, as well as deletion mutagenesis, revealed that the principal mechanism of targeting paxillin to focal adhesions is through LIM3. These data demonstrate that paxillin localizes to focal adhesions independent of interactions with vinculin and/or FAK, and represents the first definitive demonstration of LIM domains functioning as a primary determinant of protein subcellular localization to focal adhesions.  相似文献   

16.
《The Journal of cell biology》1996,134(5):1323-1332
Integrins alpha v beta 3 and alpha v beta 5 both mediate cell adhesion to vitronectin yet trigger different postligand binding events. Integrin alpha v beta 3 is able to induce cell spreading, migration, angiogenesis, and tumor metastasis without additional stimulators, whereas alpha v beta 5 requires exogenous activation of protein kinase C (PKC) to mediate these processes. To investigate this difference, the ability of beta 3 or beta 5 to induce colocalization of intracellular proteins was assessed by immunofluorescence in hamster CS-1 melanoma cells. We found that alpha v beta 5 induced colocalization of talin, alpha-actinin, tensin, and actin very weakly relative to alpha v beta 3. alpha v beta 5 was able to efficiently induce colocalization of focal adhesion kinase (FAK); however, it was unable to increase phosphorylation of FAK on tyrosine. Activation of PKC by adding phorbol ester to alpha v beta 5-expressing cells induced spreading, increased colocalization of alpha-actinin, tensin, vinculin, p130cas and actin, and triggered tyrosine phosphorylation of FAK. Unexpectedly, talin colocalization remained low even after activation of PKC. Treatment of cells with the PKC inhibitor calphostin C inhibited spreading and the colocalization of talin, alpha-actinin, tensin, and actin for both alpha v beta 3 and alpha v beta 5. We conclude that PKC regulates localization of cytoskeletal proteins and phosphorylation of FAK induced by alpha v beta 5. Our results also show that FAK can be localized independent of its phosphorylation and that cells can spread and induce localization of other focal adhesion proteins in the absence of detectable talin.  相似文献   

17.
In the present study, we examined regulation of activated focal adhesion kinase localization in focal adhesions. By using focal adhesion kinase fused to an inert transmembrane anchor, we found that the focal contact targeting region within focal adhesion kinase was preserved in the membrane-targeted fusion protein. However, upon tyrosine phosphorylation, full-length focal adhesion kinase became excluded from focal adhesions. This negative regulation of localization could be abolished by mutating key amino acid residues of focal adhesion kinase shown previously to be involved in adhesion-mediated signal transduction. Hyper-phosphorylation of endogenous focal adhesion kinase induced by pervanadate resulted in a similar reduction of localization at focal adhesions. We also show here that Src family kinases are essential for the phosphorylation-dependent exclusion of focal adhesion kinase from focal adhesions. We propose here a molecular model for the tyrosine phosphorylation-dependent regulation of focal adhesion kinase organization involving Src kinases and an inhibitory phosphorylation of the C-terminal (Tyr-925) tyrosine residue.  相似文献   

18.
It has been proposed that the focal adhesion kinase (FAK) mediates focal adhesion formation through tyrosine phosphorylation during cell adhesion. We investigated the role of FAK in focal adhesion structure and function. Loading cells with a glutathione-S-transferase fusion protein (GST-Cterm) containing the FAK focal adhesion targeting sequence, but not the kinase domain, decreased the association of endogenous FAK with focal adhesions. This displacement of endogenous FAK in both BALB/c 3T3 cells and human umbilical vein endothelial cells loaded with GST-Cterm decreased focal adhesion phosphotyrosine content. Neither cell type, however, exhibited a reduction in focal adhesions after GST-Cterm loading. These results indicate that FAK mediates adhesion-associated tyrosine phosphorylation, but not the formation of focal adhesions. We then examined the effect of inhibiting FAK function on other adhesion-dependent cell behavior. Cells microinjected with GST-Cterm exhibited decreased migration. In addition, cells injected with GST-Cterm had decreased DNA synthesis compared with control-injected or noninjected cells. These findings suggest that FAK functions in the regulation of cell migration and cell proliferation.  相似文献   

19.
Focal adhesion kinase (pp125FAK or FAK) and paxillin colocalize with integrins in structures called focal adhesions. pp125FAK plays an important role in the transmission of integrin-induced cytoplasmic signals. Paxillin has also been implicated in cell signaling by virtue of its association with the protein tyrosine kinases pp60src and Csk (C-terminal Src kinase) as well as with the adapter/oncoprotein p47gag-crk. In this report we show that endogenous pp125FAK and paxillin form a stable complex both in vivo and in vitro and that this interaction is direct, requiring only pp125FAK and paxillin. The paxillin binding site on pp125FAK has been localized to the carboxy-terminal 148 residues of pp125FAK, but appears to be distinct from the previously identified focal adhesion-targeting sequence also present in the carboxy-terminal domain of pp125FAK. The interaction of paxillin and pp125FAK is independent of the adhesion of cells to the extracellular matrix, as the association can be detected in suspension cells as well as those attached to fibronectin.  相似文献   

20.
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号