首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
2.
The retroviral nucleocapsid (NC) protein is necessary for the specific encapsidation of the viral genomic RNA by the assembling virion. However, it is unclear whether NC contains the determinants for the specific recognition of the viral RNA or instead contributes nonspecific RNA contacts to strengthen a specific contact made elsewhere in the Gag polyprotein. To discriminate between these two possibilities, we have swapped the NC domains of the human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV), generating an HIV-1 mutant containing the M-MuLV NC domain and an M-MuLV mutant containing the HIV-1 NC domain. These mutants, as well as several others, were characterized for their abilities to encapsidate HIV-1, M-MuLV, and nonviral RNAs and to preferentially package genomic viral RNAs over spliced viral RNAs. We found that the M-MuLV NC domain mediates the specific packaging of RNAs containing the M-MuLV psi packaging element, while the HIV-1 NC domain confers an ability to package the unspliced HIV-1 RNA over spliced HIV-1 RNAs. In addition, we found that the HIV-1 mutant containing the M-MuLV NC domain exhibited a 20-fold greater ability than wild-type HIV-1 to package a nonviral RNA. These results help confirm the notion that the NC domain specifically recognizes the retroviral genomic RNA during RNA encapsidation.  相似文献   

3.
4.
Sequences required for efficient packaging of human immunodeficiency virus type 1 (HIV-1) genome RNA into virus particles were identified. Deletion of 19 base pairs between the 5' long terminal repeat and the gag gene initiation codon of HIV-1 resulted in a virus markedly attenuated for replication in human T lymphocytes. The mutant virus was characterized by nearly wild-type ability to encode viral proteins and to produce virion particles. The mutant virions exhibited a significant reduction in the content of HIV-1-specific RNA. These results identify an important component of the HIV-1 packaging signal.  相似文献   

5.
6.
7.
Kaye JF  Lever AM 《Journal of virology》1999,73(4):3023-3031
Retroviral RNA encapsidation is a highly selective process mediated through recognition by the viral Gag proteins of cis-acting RNA packaging signals in genomic RNA. This RNA species is also translated, producing the viral gag gene products. The relationship between these processes is poorly understood. Unlike that of human immunodeficiency virus type 1 (HIV-1), the dominant packaging signal of HIV-2 is upstream of the major splice donor and present in both unspliced and spliced viral RNAs, necessitating additional mechanisms for preferential packaging of unspliced genomic RNA. Encapsidation studies of a series of HIV-2-based vectors showed efficient packaging of viral genomes only if the unspliced, encapsidated RNA expressed full-length Gag protein, including functional nucleocapsid. We propose a novel encapsidation initiation mechanism, providing selectivity, in which unspliced HIV-2 RNA is captured in cis by the Gag protein. This has implications for the use of HIV-2 and other lentiviruses as vectors.  相似文献   

8.
We have recently demonstrated that alteration of the human immunodeficiency virus type 1 (HIV-1) Gag/Gag-Pol ratio in virus-producing cells reduces the infectivity of progeny viruses and hinders the formation of stable virion RNA dimers without impairing virion packaging of the viral genomic RNA. In addition, we have previously shown that the expression of GagPol mediates the selective packaging of tRNA Lys3 . In this study we report that overexpression of uncleaved GagPol in the virus-producing cell did not alter the packaging levels of tRNA Lys3 . Similarly, altering the virion-associated Gag/GagPol ratio did not affect the virion packaging of the HIV-1 envelope protein nor cyclophilin A. Thin section electron microscopy analysis of the cells overexpressing protease-defective [PR(-)] GagPol revealed immature virions but no mature virions. These immature virions were seen both extracellularly and in membrane-bound cytoplasmic vacuoles. Furthermore, an accumulation of electron-dense material was occasionally found at the plasma membrane and associated with intracytoplasmic membranous vacuoles in cells expressing excess PR(–) GagPol. No intracellular HIV was seen in the wild-type control. Density gradient analysis showed that the overall density of these mutant virions with excess PR(–) GagPol was identical to that of the wild-type HIV-1. The findings indicate that overexpression of PR(–) GagPol, in the presence of Gag synthesis, promotes intracellular budding of the mutant virions and inhibits virus maturation.  相似文献   

9.
J Luban  S P Goff 《Journal of virology》1994,68(6):3784-3793
We previously identified blocks of sequence near the 5' end of the human immunodeficiency virus (HIV-1) genome which conferred on RNA the ability to bind specifically to the HIV-1 Gag polyprotein, Pr55gag (J. Luban and S. P. Goff, J. Virol. 65:3203-3212, 1991; R. Berkowitz, J. Luban, and S. P. Goff, J. Virol. 67:7190-7200, 1993). Here we report the use of an RNase protection assay to quantify the effect of deletion of these sequences on RNA packaging into virions. First, we demonstrated with wild-type HIV-1 sequences that in comparison with spliced viral RNA, full-length viral genomic RNA is enriched 20-fold in virions. A previously described mutation with deletion of sequences between the major splice donor and the first codon of gag (A. Lever, H. Gottlinger, W. Haseltine, and J. Sodroski, J. Virol. 63:4085-4087, 1989) disrupted these ratios such that different HIV-1 RNA forms were packaged in direct proportion to cytoplasmic concentrations. The effect of deletion mutations preceding and within gag coding sequence on packaging was then tested in competition with RNAs containing wild-type packaging sequences. Using this system, we were able to demonstrate significant effects on packaging of RNAs with mutations immediately preceding the first codon of gag. The greatest reduction in packaging was seen with RNAs lacking the first 40 nucleotides of gag coding sequence, although sequences more 3' had slight additional effects.  相似文献   

10.
11.
Differences in virion RNA dimer stability between mature and protease-defective (immature) forms of human immunodeficiency virus type 1 (HIV-1) suggest that maturation of the viral RNA dimer is regulated by the proteolytic processing of the HIV-1 Gag and Gag-Pol precursor proteins. However, the proteolytic processing of these proteins occurs in several steps denoted primary, secondary, and tertiary cleavage events and, to date, the processing step associated with formation of stable HIV-1 RNA dimers has not been identified. We show here that a mutation in the primary cleavage site (p2/nucleocapsid [NC]) hinders formation of stable virion RNA dimers, while dimer stability is unaffected by mutations in the secondary (matrix/capsid [CA], p1/p6) or a tertiary cleavage site (CA/p2). By introducing mutations in a shared cleavage site of either Gag or Gag-Pol, we also show that the cleavage of the p2/NC site in Gag is more important for dimer formation and stability than p2/NC cleavage in Gag-Pol. Electron microscopy analysis of viral particles shows that mutations in the primary cleavage site in Gag but not in Gag-Pol inhibit viral particle maturation. We conclude that virion RNA dimer maturation is dependent on proteolytic processing of the primary cleavage site and is associated with virion core formation.  相似文献   

12.
13.
M Sakalian  J W Wills    V M Vogt 《Journal of virology》1994,68(9):5969-5981
In all retrovirus systems studied, the leader region of the RNA contains a cis-acting sequence called psi that is required for packaging the viral RNA genome. Since the pol and env genes are dispensable for formation of RNA-containing particles, the gag gene product must have an RNA binding domain(s) capable of recognizing psi. To gain information about which portion(s) of Gag is required for RNA packaging in the avian sarcoma and leukemia virus system, we utilized a series of gag deletion mutants that retain the ability to assemble virus-like particles. COS cells were cotransfected with these mutant DNAs plus a tester DNA containing psi, and incorporation of RNA into particles were measured by RNase protection. The efficiency of packaging was determined by normalization of the amount of psi+ RNA to the amount of Gag protein released in virus-like particles. Specificity of packaging was determined by comparisons of psi+ and psi- RNA in particles and in cells. The results indicate that much of the MA domain, much of the p10 domain, half of the CA domain, and the entire PR domain of Gag are unnecessary for efficient packaging. In addition, none of these deleted regions is needed for specific selection of the psi RNA. Deletions within the NC domain, as expected, reduce or eliminate both the efficiency and the specificity of packaging. Among mutants that retain the ability to package, a deletion within the CA domain (which includes the major homology region) is the least efficient. We also examined particles of the well-known packaging mutant SE21Q1b. The data suggest that the random RNA packaging behavior of this mutant is not due to a specific defect but rather is the result of the cumulative effect of many point mutations throughout the gag gene.  相似文献   

14.
Wang T  Tian C  Zhang W  Luo K  Sarkis PT  Yu L  Liu B  Yu Y  Yu XF 《Journal of virology》2007,81(23):13112-13124
Cytidine deaminase APOBEC3G (A3G) has broad antiviral activity against diverse retroviruses and/or retrotransposons, and its antiviral functions are believed to rely on its encapsidation into virions in an RNA-dependent fashion. However, the cofactors of A3G virion packaging have not yet been identified. We demonstrate here that A3G selectively interacts with certain polymerase III (Pol III)-derived RNAs, including Y3 and 7SL RNAs. Among A3G-binding Pol III-derived RNAs, 7SL RNA was preferentially packaged into human immunodeficiency virus type 1 (HIV-1) particles. Efficient packaging of 7SL RNA, as well as A3G, was mediated by the RNA-binding nucleocapsid domain of HIV-1 Gag. A3G mutants that had reduced 7SL RNA binding but maintained wild-type levels of mRNA and tRNA binding were packaged poorly and had impaired antiviral activity. Reducing 7SL RNA packaging by overexpression of SRP19 proteins inhibited 7SL RNA and A3G virion packaging and impaired its antiviral function. Thus, 7SL RNA that is encapsidated into diverse retroviruses is a key cofactor of the antiviral A3G. This selective interaction of A3G with certain Pol III-derived RNAs raises the question of whether A3G and its cofactors may have as-yet-unidentified cellular functions.  相似文献   

15.
Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.  相似文献   

16.
After their release from host cells, most retroviral particles undergo a maturation process, which includes viral protein cleavage, core condensation, and increased stability of the viral RNA dimer. Inactivating the viral protease prevents protein cleavage; the resulting virions lack condensed cores and contain fragile RNA dimers. Therefore, protein cleavage is linked to virion morphological change and increased stability of the RNA dimer. However, it is unclear whether protein cleavage is sufficient for mediating virus RNA maturation. We have observed a novel phenotype in a murine leukemia virus capsid mutant, which has normal virion production, viral protein cleavage, and RNA packaging. However, this mutant also has immature virion morphology and contains a fragile RNA dimer, which is reminiscent of protease-deficient mutants. To our knowledge, this mutant provides the first evidence that Gag cleavage alone is not sufficient to promote RNA dimer maturation. To extend our study further, we examined a well-defined human immunodeficiency virus type 1 (HIV-1) Gag mutant that lacks a functional PTAP motif and produces immature virions without major defects in viral protein cleavage. We found that the viral RNA dimer in the PTAP mutant is more fragile and unstable compared with those from wild-type HIV-1. Based on the results of experiments using two different Gag mutants from two distinct retroviruses, we conclude that Gag cleavage is not sufficient for promoting RNA dimer maturation, and we propose that there is a link between the maturation of virion morphology and the viral RNA dimer.  相似文献   

17.
Gag proteins of human immunodeficiency virus type 1 (HIV-1) play a pivotal role in the budding of the virion, in which the zinc finger motifs of the gag proteins recognize the packaging signal of genomic RNA. Nucleolin, an RNA-binding protein, is identified as a cellular protein that binds to murine leukemia virus (MuLV) gag proteins and regulates the viral budding, suggesting that HIV-1 gag proteins, the packaging signal, psi and nucleolin affect the budding of HIV-1. Here we report that nucleolin enhances the release of HIV-1 virions which contain psi. Furthermore, nucleolin and gag proteins form a complex incorporated into virions, and nucleolin promotes the infectivity of HIV-1. Our results suggest that an empty particle which contains neither nucleolin nor the genomic RNA is eliminated during the budding process, and this mechanism is beneficial for escape from the host immune response against HIV-1.  相似文献   

18.
Tian C  Wang T  Zhang W  Yu XF 《Nucleic acids research》2007,35(21):7288-7302
Diverse retroviruses have been shown to package host SRP (7SL) RNA. However, little is known about the viral determinants of 7SL RNA packaging. Here we demonstrate that 7SL RNA is more selectively packaged into HIV-1 virions than are other abundant Pol-III-transcribed RNAs, including Y RNAs, 7SK RNA, U6 snRNA and cellular mRNAs. The majority of the virion-packaged 7SL RNAs were associated with the viral core structures and could be reverse-transcribed in HIV-1 virions and in virus-infected cells. Viral Pol proteins influenced tRNAlys,3 packaging but had little influence on virion packaging of 7SL RNA. The N-terminal basic region and the basic linker region of HIV-1 NCp7 were found to be important for efficient 7SL RNA packaging. Although Alu RNAs are derived from 7SL RNA and share the Alu RNA domain with 7SL RNA, the packaging of Alu RNAs was at least 50-fold less efficient than that of 7SL RNA. Thus, 7SL RNAs are selectively packaged into HIV-1 virions through mechanisms distinct from those for viral genomic RNA or primer tRNAlys,3. Virion packaging of both human cytidine deaminase APOBEC3G and cellular 7SL RNA are mapped to the same regions in HIV-1 NC domain.  相似文献   

19.
Flock House virus (FHV; Nodaviridae) is a positive-strand RNA virus that encapsidates a bipartite genome consisting of RNA1 and RNA2. We recently showed that specific recognition of these RNAs for packaging into progeny particles requires coat protein translated from replicating viral RNA. In the present study, we investigated whether the entire assembly pathway, i.e., the formation of the initial nucleating complex and the subsequent completion of the capsid, is restricted to the same pool of coat protein subunits. To test this, coat proteins carrying either FLAG or hemagglutinin epitopes were synthesized from replicating or nonreplicating RNA in the same cell, and the resulting particle population and its RNA packaging phenotype were analyzed. Results from immunoprecipitation analysis and ion-exchange chromatography showed that the differentially tagged proteins segregated into two distinct populations of virus particles with distinct RNA packaging phenotypes. Particles assembled from coat protein that was translated from replicating RNA contained the FHV genome, whereas particles assembled from coat protein that was translated from nonreplicating mRNA contained random cellular RNA. These data demonstrate that only coat proteins synthesized from replicating RNA partake in the assembly of virions that package the viral genome and that RNA replication, coat protein translation, and virion assembly are processes that are tightly coupled during the life cycle of FHV.  相似文献   

20.
HIV-1 and HIV-2 are derived from two distinct primate viruses and share only limited sequence identity. Despite this, HIV-1 and HIV-2 Gag polyproteins can coassemble into the same particle and their genomes can undergo recombination, albeit at an extremely low frequency, implying that HIV-1 and HIV-2 RNA can be copackaged into the same particle. To determine the frequency of HIV-1 and HIV-2 RNA copackaging and to dissect the mechanisms that allow the heterologous RNA copackaging, we directly visualized the RNA content of each particle by using RNA-binding proteins tagged with fluorescent proteins to label the viral genomes. We found that when HIV-1 and HIV-2 RNA are present in viral particles at similar ratios, ~10% of the viral particles encapsidate both HIV-1 and HIV-2 RNAs. Furthermore, heterologous RNA copackaging can be promoted by mutating the 6-nucleotide (6-nt) dimer initiation signal (DIS) to discourage RNA homodimerization or to encourage RNA heterodimerization, indicating that HIV-1 and HIV-2 RNA can heterodimerize prior to packaging using the DIS sequences. We also observed that the coassembly of HIV-1 and HIV-2 Gag proteins is not required for the heterologous RNA copackaging; HIV-1 Gag proteins are capable of mediating HIV-1 and HIV-2 RNA copackaging. These results define the cis- and trans-acting elements required for and affecting the heterologous RNA copackaging, a prerequisite for the generation of chimeric viruses by recombination, and also shed light on the mechanisms of RNA-Gag recognition essential for RNA encapsidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号