首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Cuprofilin, a newly synthesized C.(II)-chlorophyll complex, was assessed in rats with experimental atherosclerosis. The study was focused on changes in serum cholesterol, lipids, and triglycerides concentration as well as on serum and abdominal aorta Cu and Zn values. It has been ascertained that after 90 d in animals fed a rich lipid diet there was a statistically significant increase in serum cholesterol, triglycerides, and lipid concentration (p < 0.01). A significant augmentation of serum Cu values (p < 0.01) accompanied by a marked lowering of the same element in abdominal aorta (p < 0.01) was also found, as compared to the results registered in the control group. However, Cuprofilin, administered for 90 d in the group of animals with experimental atherosclerosis, significantly decreased the serum cholesterol, triglycerides, and serum lipid values (p < 0.01), increased copper content in aortic tissue (p < 0.01) and lowered serum copper concentration (p < 0.01) as compared to the untreated group. Moreover, in the aorta of administered animals the lipid infiltration has been demonstrated to be significantly diminished vs the untreated group.  相似文献   

2.
This experiment was conducted to investigate the effect of dietary arsenic (As) levels on growth performance, serum biochemistry, and the retention of iron, copper, and zinc in tissues of growing and finishing pigs. Ninety-six crossbred pigs were randomly allotted to four dietary treatments. The corn-soybean basal diets were supplemented with 0, 10, 20, and 30 mg As/kg. Arsenic trioxide was used as the arsenic source. The feeding experiment lasted for 78d. The results showed that the high arsenic diet decreased average daily gain (ADG) (p<0.05) and increased feed gain ratio (F/G) (p<0.05). Arsenic intake significantly increased (p<0.05) serum γ-gultamyltransferase (GGT), glutamic-pyruvic transaminase (GPT), and alkaline phosphatase (ALP) activities, and decreased (p<0.05) total protein, urea nitrogen, creatinine, and triglycerides. Glutamic-oxalacetic transaminase (GOT) activity, albumin, and cholesterol were not affected (p>0.05). Arsenic feeding elevated (p<0.05) liver and kidney copper concentration, but reduced (p<0.05) copper concentration in heat, bile, and lymphaden of intestine mesentery. There were increases in iron levels in liver, bile, spleen, thymus, and pancreas in pigs fed the high As diets (p<0.05), but iron contents in kidney, heart, and serum were decreased by the arsenic treatment (p<0.05). Zinc concentrations were increased (p<0.05) in liver, kidney, and thymus of pigs with arsenic treatment, but decreased (p<0.05) in bile and lymphaden of intestine mesentery. This study suggested that high dietary As levels could alter serum biochemical parameters and the retention of copper, iron, and zinc in the viscera of growing and finishing pigs.  相似文献   

3.
The aim of the present study is to evaluate the effects of diet enriched with dietary fiber of barley variety “Rihane” and azoxymethane on serum and liver lipid variables in male rats. Forty male rats were divided into four groups and fed on control diet or experimental diet that contained control enriched with dietary fiber of barley variety “Rihane”. Animals were injected with saline (controls) or azoxymethane (20 mg/kg body weight s.c.) at 7 and 8 weeks of age. The experimental diet significantly decreased cholesterol level compared with the control diet. Rats fed with BR diet significantly increased the serum high-density lipoprotein (HDL) cholesterol and significantly decreased low-density lipoprotein (LDL) cholesterol concentrations. The experimental diet decreased the atherogenic index (p < 0.05) compared with the control diet. Whereas the azoxymethane induced a significant increase of liver lipid, serum LDL and triglyceride concentrations, but it caused a significant reduction of HDL. Consequently, the ratio of HDL/TC decreased significantly compared with the control (p < 0.05). Accordingly, these results indicated that the diet enriched with dietary fiber of barley variety “Rihane” could be effective in decreasing the atherogenic risk factors in rats whereas the use of the azoxymethane as colon-specific carcinogen substance altered the lipid metabolism.  相似文献   

4.
This study was performed in order to analyze the relative and combined effects of ethanol and protein deficiency on hair copper, zinc, manganese, and iron content in four groups of seven animals each which were pair-fed during 8 wk with (1) a nutritionally adequate diet, (2) a 36% (as energy) ethanol-containing isocaloric diet, (3) a 2% protein, isocaloric diet, and (4) a 36% ethanol, 2% protein isocaloric diet, respectively, following the Lieber-DeCarli model, and to analyze the relationship between hair copper, zinc, manganese, and iron content, and the liver and muscle content of these elements. Although there was a trend to higher levels of all the elements analyzed in the the hair of the low-protein fed animals, differences were statistically significant regarding copper and manganese, effects being solely attributable to the low protein diet, not to ethanol. Moreover, hair copper was significantly, inversely related with final weight and weight loss. There were significant relationship between liver zinc and muscle zinc (r=0.57, p=0.002), but not between liver or muscle zinc and hair zinc; no correlations were observed between muscle copper and hair copper, nor between liver manganese and hair manganese. An inverse, statistically significant correlation was observed between liver copper and hair copper (r=−0.39, p<0.05).  相似文献   

5.
The objective of the present study was to determine the effects of exercise and zinc deficiency on some elements in rats. Forty adult male Sprague–Dawley species male rats were allocated to four groups as follows: Group 1: control, Group 2: zinc-deficient, Group 3: exercise in which exercise group fed with a normal diet, Group 4: zinc-deficient exercise, exercise group fed by a zinc-deficient diet for 15 days. After the procedure ended, rats in groups 3 and 4 were exercised on the treadmill for 60 min at a speed of 6 m/min until the exhaustion. The rats were decapitated 48 h after exercise together with their controls, and blood samples were collected to determine copper (Cu), iron (Fe), magnesium (Mg), calcium (Ca), and phosphorus (P) levels. The highest Cu and Fe values in the serum were obtained in group 2 (p < 0.01). The levels of these elements in group 4 were lower than those in group 2 and higher than the levels in groups 1 and 3 (p < 0.01). Serum Mg levels did not differ significantly between groups. Group 4 had the lowest serum Ca and P levels (p < 0.01). These same parameters in Group 2 were higher than those in group 4 but significantly lower than those in groups 1 and 3 (p < 0.01). There was no significant difference between Ca and P levels of groups 1 and 3. The results of the study indicate that zinc deficiency adversely affects copper, iron, calcium, and phosphorus mechanisms and that these adverse effects much more marked after an effort exercise.  相似文献   

6.
The purpose of the study was to assess the influence of dietary iron content on lipid and carbohydrate metabolism and on zinc and copper status in rats fed with a diet high in fat, fructose, and salt. Wistar rats were fed with diets high in fat, fructose, and salt, containing differing amounts of iron, namely, deficit, normal, and high levels. After 6 weeks, the animals were weighed and killed. The liver, heart, and pancreas were collected, as were blood samples. The total cholesterol, triglycerides, fasting glucose, and insulin levels in the serum were measured. The iron, zinc, and copper concentrations in tissues and serum were determined. It was found that in rats fed with the iron-deficit diet, cholesterol and glucose profiles improved. Both deficit and excess iron in the diet decreased insulin concentration in rats and disturbed iron, zinc, and copper status. High-iron level in the diet decreased the relative mass of the pancreas. In conclusion, the decrease in serum insulin concentration observed in rats fed with the modified diet high in iron was associated with iron and copper status disorders, and also, with a relatively diminished pancreas mass. A deficit of iron in the diet improved lipid and carbohydrate metabolism in rats.  相似文献   

7.
An experiment was conducted to determine the effect of dietary copper (Cu) on mineral profile, hematological parameters, and lipid metabolism in lambs. Eighteen Zandi male lambs (approximately 3 months of age; 17.53?±?1.6 kg of body weight) were housed in individual pens and were assigned randomly to one of three treatments. Treatments consisted of (1) control (no supplemental Cu), (2) 10 mg Cu/kg dry matter (DM) from copper sulfate (CuS), and (3) 10 mg Cu/kg DM from Cu proteinate (CuP). The Cu concentration was 8.2 mg/kg DM in the basal diet. Blood was sampled from the jugular vein at the beginning of the study (enrollment, before feeding Cu supplement) and at days 25, 50, and 70 of experiment. The amounts of total serum glucose, urea nitrogen, calcium, phosphorus, iron, copper, zinc, and lipids and hematological parameters were measured. Average daily gain and feed efficiency were improved (P?<?0.05) with Cu supplementation and were better for the lambs fed diet supplemented with CuP. The concentrations of serum Ca, P, and Zn were not affected by source of Cu in the diet. However, Fe concentration was lower (P?<?0.01) in the Cu-supplemented groups. Experimental treatment had no significant effects on the hematological parameters. The serum glucose concentration was not affected by treatments. However, the urea nitrogen concentrations were significantly affected (P?<?0.05) by added Cu and was lower for CuP group as compared to the lambs in the CuS and control groups. Addition of Cu had no influence (P?>?0.05) on the serum triglyceride concentration, but lambs fed with CuP supplement had lower (P?<?0.05) serum cholesterol than the CuS and control animals. These results indicated that CuP supplemented at 10 mg/kg DM improved gain and enhanced the efficiency of nitrogen in male lambs.  相似文献   

8.
In the present study, the role of pentacyclic triterpenes, lupeol and its ester lupeol linoleate, was studied in relation to hepatic oxidative abnormalities and lipoprotein peroxidation in hypercholesterolemic rats. Hypercholesterolemia was induced in male Wistar rats by feeding them with high cholesterol diet (4% cholesterol + 1% cholic acid; HCD) for 30 days. Pentacyclic triterpenes, lupeol and lupeol linoleate were supplemented (50 mg/kg body wt/day) during the last 15 days. After the experimental period, there was a significant depression in hepatic activities of antioxidant enzymes, SOD (38.39%), CAT (25.03%) and GPx (30.26%) along with a marked fall in the levels of non-enzymic antioxidant molecules GSH (31.39%), vitamin C (46.07%) and vitamin E (42.28%), with a concomitant increase (p<0.001) in lipid peroxidation and in the activities of serum alkaline phosphatase, lactate dehydrogenase and aminotransferases when compared to controls. Treatment with triterpenes decreased lipid peroxidation and reverted the activities of antioxidants (p<0.001 and p<0.01) and marker enzymes to near control. Histopathological findings further confirmed the hepatoprotective nature of triterpenes by showing the normal architecture in treated rats, as against the fatty cellular changes in HCD fed rats. Further, the susceptibility of apo-B containing lipoprotein to oxidation by copper and Fenton’s reagent was increased in in vitro condition in HCD fed rats, whereas the lipoproteins were less susceptible to oxidation in triterpenes treated animals. Therefore, it may be concluded that lupeol and its ester afford protection against the hepatic abnormalities and lipoprotein peroxidation in hypercholesterolemic rats.  相似文献   

9.
The aim of this study was to determine the effects of oral zinc treatment on red cell copper/zinc-superoxide dismutase (Cu/Zn-SOD) activity and zinc and copper concentrations in growth retardation. Thirty-five patients, average age of 11 yr, were selected. The control group consisted of 10 healthy children whose average age was 10 yr. Superoxide dismutase activity was determined by spectrophotometer. Copper and zinc concentrations were measured by an atomic absorption spectrophotometer. The activity of Cu/Zn-SOD before zinc treatment was higher than the controls (p<0.001). There was a decrease in Cu/Zn-SOD activity after zinc treatment (p<0.001) and the values after treatment were still higher than the controls (p<0.001). Plasma zinc concentrations before zinc treatment were lower than controls (p<0.01). After treatment, there was an increase in plasma zinc concentrations compared to controls and the patients' values before zinc treatment, respectively (p<0.001, p<0.001). After zinc treatment, plasma copper concentrations were decreased significantly (p<0.01). An increase in red cell zinc concentration (p<0.01) and a decrease in copper concentration (p<0.001), which were statistically significant, were seen after zinc treatment. The results suggested that there were significant alterations in Cu/Zn-SOD activity and zinc and copper concentrations during growth retardation. With zinc treatment, these parameters appeared to approach normal values.  相似文献   

10.
This experiment was conducted to evaluate the effects of zinc (ZnSO4H2O) and vitamin A (retinol) supplementation on performance, carcass characteristics, and serum concentrations of glucose, cholesterol, total protein, and malondialdehyde (MDA) as an indicator of lipid peroxidation in broiler chickens (Ross) reared at a high temperature (34°C). One hundred twenty 10-d-old male broilers were randomly assigned to 4 treatment groups, 3 replicates of 10 birds each. The birds were fed either a basal diet or the basal diet supplemented with either 30 mg Zn/kg diet, 4.5 mg (15,000 IU) retinol/kg diet, or 30 mg Zn+4.5 mg retinol/kg diet. Supplemental zinc and vitamin A significantly increased live weight gain and improved feed efficiency (p<0.05). However, a combination of zinc and vitamin A, rather than each separately, provided a greater performance. Hot and chilled carcass weights and yields and the weights of internal organs with the exception of abdominal fat were greater for each supplement (p<0.05) compared to the control group. Abdominal fat decreased (p<0.05) upon dietary zinc and vitamin A supplementation. Supplemental treatments resulted in an increased total serum protein but decreased glucose, cholesterol, and MDA concentrations. The results of the study show that, separtely or as a combination, zinc and vitamin A supplementation resulted in an improved live weight gain, feed efficiency, and carcass traits, as well as a decrease in serum MDA concentrations. The results of the present study also suggest that zinc and vitamin A have similar effects and that a combination of zinc and vitamin A may offer a potential protective management practice in preventing heat-stress-related depression in performance of broiler chickens.  相似文献   

11.
We investigated the serum concentrations of zinc and copper during the inflammatory process together with the effect of treatment with a nonsteroid anti-inflammatory agent on these trace elements concentrations. In the present study, we used 92 guinea pigs, 12 of which constituted the control group; the remaining 80 were the experimental group. To start with, proquazone (as anti-inflammatory agent) was administered orally to 40 guinea pigs of the experimental group at 20-mg/kg doses 2 h before the surgery. Throughout the experimental period, the above dose was administered to the animals twice a day. We produced inflammation in all animals of the experimental group by using carrageenan (inflammatory agent) dropped into mandibular surgical defects. Serum concentrations of zinc and copper were determined by atomic absorption spectrophotometry in both groups at the 6th, 48th, 120th, 168th, and 240th h. The serum zinc concentrations of the carrageenan-administered group decreased significantly (p<0.01). When comparing the serum zinc concentrations of the carrageenan plus proquazone-administered group with those of control group, the decrease (p<0.05) at the 6th, 48th, and 120th h were statistically significant. When the copper serum concentrations of the carrageenan-administered group were compared with those of the control group, at the 48th, 120th, and 168th h, a statistically significant increase (p<0.01) was observed. However, there was no significant change in the carrageenan plus proquazone-administered group at the 168th and 240th h. As a result during the acute phase of inflammation, serum zinc concentrations decreased, whereas serum copper concentrations increased. The alterations in zinc concentrations were more rapid than those in copper concentrations, but the administration of proquazone slowed the rate of decrease in serum zinc concentrations. This work was presented at the Fourth International Congress of Pathophysiology, June 29–July 5, 2002, Budapest, Hungary.  相似文献   

12.
This study was performed to determine the effects of copper proteinate on performance, blood chemistry, lipid peroxidation status, and organs as well as copper deposition in the liver and eggs of laying hens. Seventy-two 30-week-old Bovans laying hens were distributed into four groups with three replicates. Animals were fed basal diet containing at least 17% crude protein and 2,800 kcal/kg metabolizable energy supplemented with either 0, 150, 300, or 450 mg/kg copper as copper proteinate. Supplementation of 150 and 300 mg/kg copper increased egg production, whereas 450 mg/kg copper decreased (p < 0.001). Liver copper levels were elevated in 300 and 450 mg/kg copper-supplemented groups (p < 0.001). Egg copper contents increased in all treatment groups (p < 0.01). An increase in glucose (p < 0.001) and decreases in albumin (p < 0.01) and total cholesterol (p < 0.05) levels were determined with 300 and 450 mg/kg copper. Supplementation of 450 mg/kg copper increased alkaline phosphatase and gamma glutamyl transpeptidase activities (p < 0.05), malondialdehyde, and high-density lipoprotein levels (p < 0.01) but decreased alanine aminotransferase and lactate dehydrogenase activities (p < 0.01). No gross and microscopic changes were observed in the liver and kidneys. These results indicated that 150 and 300 mg/kg copper increased egg production without having marked adverse effects, but 450 mg/kg copper altered some blood chemistry variables and reduced egg production in laying hens.  相似文献   

13.
Essential elements, mainly selenium and zinc, were involved in protection against oxidative stress in cells. Oxidation could lead to the formation of free radicals that have been implicated in the pathogenesis of many diseases, including leukemia. Leukemia is a neoplastic disease that is susceptible to antioxidant enzyme and essential elements alterations. This study was undertaken to examine the levels of essential elements, antioxidant enzymes activities, and their relationships with different types of leukemia. Serum selenium, zinc, and copper concentrations, red blood cell glutathione peroxidase (GPx) activities, plasma Cu−Zn superoxide dismutase (Cu−Zn SOD) activities and lipid peroxidation (LPO) levels were determined in 49 patients with different types of leukemia before initial treatment. Serum selenium and zinc concentrations were lower in leukemia patients than those of controls (p<0.01). Serum copper concentration was higher in leukemia patients than that of controls (p<0.01). The activities GPx and Cu−Zn SOD were significantly increased in leukemia patients, especially with acute leukemia (AL), acute lymphoid leukemia (ALL), and acute nonlymphoid leukemia (ANLL) (p<0.05), whereas no difference was found between those of chronic myelogeneous leukemia and the controls. The levels of LPO were normal as controls. Serum selenium concentration was not correlated with GPx, and serum levels of zinc and copper were not related to Cu−Zn SOD. Serum zinc levels had a negative correlation with the absolute peripheral blast cells, whereas serum copper had a positive correlation with the absolute peripheral blast cells. Increased GPx and Cu−Zn SOD activities and normal levels of LPO, which were a protective responses, were an indicator of mild oxidative stress; it mights indicate that the essentials elements alterations in leukemia patients were mostly dependent on tumor activity. Changes of their levels demonstrated that there are low selenium, zinc, and high copper status in leukemia patients. The decrease of plasma zinc and increase of the Cu/Zn ratio could be the index that showed an unfavorable prognosis of acute leukemia.  相似文献   

14.
A commercial-feed-grade form of zinc propionate was examined as a potential feed amendment at a concentration of 1% zinc to induce molt in 90-wk-old hens. Dietary treatments consisted, of 4 treatment groups of 28 birds each randomly assigned to either (1) molted conventionally by feed withdrawal, (2) 1% zinc as Zn acetate, (3) 1% zinc as Zn propionate, or (4) nonmolted control for 9 d. Ovary weights of hens fed Zn acetate or Zn propionate were not significantly different from each other, but hens fed Zn acetate or Zn propionate were significantly (p<0.05) lighter than the ovary weight of nonmolted control hens. Zinc concentrations in the kidney and liver were significantly (p<0.05) increased in both Zn acetate- and Zn propionate-molted hens when compared to either nonmolted control-fed hens or feed-withdrawal molted hens. Over the entire 3-mo postmolt period, there were no significant differences in interior or exterior egg qualities among the four treatments Egg production of hens fed Zn acetate was significantly lower than feed-withdrawal hens, Zn propionate-fed hens, or nonmolted control hens (p<0.05). The data of the current study demonstrated that feeding a feed grade of Zn propionate (1% Zn)-supplemented diet can induce molt and retain postmolt egg quality and production comparable to hens molted by feed withdrawal.  相似文献   

15.
This study was conducted to investigate the effects of different sources of dietary selenium (Se) supplementation on growth performance, meat quality, Se deposition, and antioxidant property in broilers. A total of 600 one-day-old Ross 308 broilers with an average body weight (BW) of 44.30 ± 0.49 g were randomly allotted to three treatments, each of which included five replicates of 40 birds. These three groups received the same basal diet containing 0.04 mg Se/kg, supplemented with 0.15 mg Se/kg from sodium selenite (SS) or from l-selenomethionine (l-Se-methionine (Met)) or from d-selenomethionine (d-Se-Met). The experiment lasted 42 days. Both Se source and time significantly influenced (p < 0.01) drip loss of breast muscle. Supplementation with l-Se-Met and d-Se-Met were more effective (p < 0.05) in decreasing drip loss than SS. Besides, the pH value of breast muscle was also significantly influenced (p < 0.05) by time. The SS-supplemented diet increased more (p < 0.05) liver, kidney, and pancreas glutathione peroxidase (GSH-Px) activities than the d-Se-Met-supplemented diet. In addition, l-Se-Met increased more (p < 0.01) liver and pancreas GSH-Px activities than d-Se-Met. The antioxidant status was greatly improved in broilers of l-Se-Met-treated group in comparison with the SS-treated group and was illuminated by the increased glutathione (GSH) concentration in serum, liver, and breast muscle (p < 0.05); superoxide dismutase (SOD) activity in liver (p < 0.01); total antioxidant capability (T-AOC) in kidney, pancreas, and breast muscle (p < 0.05) and decreased malondialdehyde (MDA) concentration in kidney and breast muscle (p < 0.05) of broilers. Besides, supplementation with d-Se-Met was more effective (p < 0.01) in increasing serum GSH concentration and decreasing breast muscle MDA concentration than SS. l-Selenomethionine supplementation significantly increased GSH concentration in liver and breast muscle (p < 0.05); SOD activity in liver (p < 0.01); and T-AOC in liver, pancreas, and breast muscle (p < 0.05) of broilers, compared with broilers fed d-Se-Met diet. The addition of l-Se-Met and d-Se-Met increased (p < 0.01) Se concentration in serum and different organs studied of broilers in comparision with broilers fed SS diet. Therefore, dietary l-Se-Met and d-Se-Met supplementation could improve antioxidant capability and Se deposition in serum and tissues and reduce drip loss of breast muscle in broilers compared with SS. Besides, l-Se-Met is more effective than d-Se-Met in improving antioxidant status in broilers.  相似文献   

16.
Trace element content of different tissues might be altered by both age and exercise training. We aimed to determine the effects of a 1-yr swimming protocol (60 min/d, 5 day/wk) on tissue levels and the distribution of zinc (Zn), magnesium (Mg), and copper (Cu) in aging rats. Three groups were formed: sedentary and trained old groups and a young control group. Tissue Zn, Mg, and Cu concentrations were measured in the kidney, heart, liver, lungs, and gastrocnemius and soleus muscles. Kidney zinc concentration significantly decreased in the sedentary old group compared to the young control group (p<0.01) and was significantly higher in the trained old group compared to the sedentary old group (p<0.01), whereas Zn levels in the soleus muscle significantly increased in the sedentary old group in comparison to young controls (p<0.05). Tissue Mg concentrations remained unchanged. The sedentary old group exhibited a significant decrease in kidney Cu concentration compared to the young control group (p<0.01). Although kidney Cu levels also decreased in trained old rats in comparison to young controls (p<0.05), they were significantly higher than in sedentary old rats (p<0.01). The decrease in kidney Zn and Cu content as a result of aging was partly prevented by long-term swimming exercise.  相似文献   

17.
The aim of the study was to investigate the effects of zinc deficiency and supplementation on lipid peroxidation and glutathione levels in blood and in some tissues of rats performing swimming exercise. Forty adult male Sprague-Dawley rats were divided into four groups: group 1, zinc-deficient consisted of swimming rats; group 2 consisted of zinc-supplemented swimming rats; groups 3 and 4 were the swimming and nonswimming controls, respectively. The levels of malondialdehyde and glutathione were measured after 4 wk of zinc-deficient or zinc-supplemented diet and 30 min of swimming exercise daily. The erythrocyte glutathione levels of groups 2 and 4 were significantly higher than those of groups 1 and 3 (p<0.01). The plasma malondialdehyde level of group 1 was significantly higher than all other groups. The glutathione levels in liver, kidney, striated muscle, and testes of group 2 were higher than in the other groups (p<0.01) and higher in kidney and striated muscle of group 3 than in groups 1 and 4 (p<0.01). The tissue malondialdehyde levels of striated muscle, liver, kidney, and testes of group 1 were significantly higher than for all other groups (p<0.01). Our findings suggest that both swimming exercise and zinc deficiency result in an increase of lipid peroxidation in tissues and that zinc supplementation prevents these alterations by the activation of the antioxidant system.  相似文献   

18.
Forty weaned male guinea pigs of 208.20±6.62 g mean body weight were divided into 4 groups of 10 animals in a randomized block design. All of the guinea pigs were fed a basal diet [25% ground maize hay, 30% ground maize grain, 22% ground chickpea (Cicer arietinum L.), 9.5% deoiled rice bran, 6% soybean meal, 6% fish meal, 1.45% mineral supplement (without Zn) and 0.05% ascorbic acid] and available green fodder. Group I served as the control (no Zn supplementation), whereas 20 ppm Zn was added in the diet in groups II, III, and IV either as zinc sulfate (ZnSO4), zinc amino acid complex (ZAAC), and ZnSO4 + ZAAC in equal parts, respectively. Experimental feeding lasted for 70 d, including a 3-d digestibility trial. Blood was collected through cardiac puncture from four animals in each group at d 0 and subsequently at the end of experimental feeding. After 40 d of experimental feeding, four animals from each group were injected with 0.4 mL of Brucella abortus cotton strain-19 vaccine to assess the humoral immune response of the animals. After 10 wk of study, four animals from each group were sacrificed to study the concentration of Zn, Cu, Co, Fe, and Mn in the liver, pancreas and spleen. Results revealed no significant difference in the feed intake, body weight gain, and digestibility of the nutrients, except for crude protein (CP) digestibility, which was significantly (p<0.05) lower in group IV. Although concentrations of serum glucose, Ca, and P and the albumin:globulin (A:G) ratio were similar in the different groups, the total protein, albumin, and serum alkaline phosphatase activity were higher in all of the Zn-supplemented groups on d 70. The serum Zn levels at the end of experimental feeding were significantly higher in groups II and III, whereas serum Mn levels were found to be significantly (p<0.05) higher in groups III and IV. The organ weights (as percentage of body weights) did not show any differences among the treatment groups. Although the Mn concentration was significantly (p<0.05) higher in the pancreas, the Cu concentration was significantly (p<0.05) reduced in the spleen in all of the Zn-supplemented groups. The humoral immune response (antibody titer values) on d 14 of vaccination was significantly (p<0.05) higher in all of the Zn-supplemented groups. It was concluded that the 20-ppm level of Zn in the diet might be adequate for growth and nutrient utilization in guinea pigs, but supplementation of 20-ppm zinc significantly improved the immune response and impact was more prominent with the ZAAC (organic source) compared to ZnSO4 (inorganic source).  相似文献   

19.
The study was conducted to investigate the effects of dietary maternal selenomethionine or sodium selenite supplementation on performance and selenium status of broiler breeders and their next generation. Two hundred and forty 39-week-old Lingnan yellow broiler breeders were allocated randomly into two treatments, each of which included three replicates of 40 birds. Pretreatment period was 2 weeks, and the experiment lasted 8 weeks. The groups were fed the same basal diet supplemented with 0.30 mg selenium/kg of sodium selenite or selenomethionine. After incubation, 180 chicks from the same parental treatment group were randomly divided into three replicates, with 60 birds per replicate. All the offspring were fed the same diet containing 0.04 mg selenium/kg, and the experiment also lasted 8 weeks. Birth rate was greater (p < 0.05) in hens fed with selenomethionine than that in hens fed with sodium selenite. The selenium concentration in serum, liver, kidney, and breast muscle of broiler breeders, selenium deposition in the yolk, and albumen and tissues' (liver, kidney, breast muscle) selenium concentrations of 1-day-old chicks were significantly (p < 0.01) increased by maternal selenomethionine supplementation compared with maternal sodium selenite supplementation. The antioxidant status of 1-day-old chicks was greatly improved by maternal selenomethionine intake in comparison with maternal sodium selenite intake and was evidenced by the increased glutathione peroxidase activity in breast muscle (p < 0.05), superoxide dismutase activity in breast muscle and kidney (p < 0.05), glutathione concentration in kidney (p < 0.01), total antioxidant capability in breast muscle and liver (p < 0.05), and decreased malondialdehyde concentration in liver and pancreas (p < 0.05) of 1-day-old chicks. Feed utilization was better (p < 0.05), and mortality was lower (p < 0.05) in the progeny from hens fed with selenomethionine throughout the 8-week growing period compared with those from hens fed with sodium selenite. In summary, we concluded that maternal selenomethionine supplementation increased birth rate and Se deposition in serum and tissues of broiler breeders as well as in egg yolk and egg albumen more than maternal sodium selenite supplementation. Furthermore, maternal selenomethionine intake was also superior to maternal sodium selenite intake in improving the tissues Se deposition and antioxidant status of 1-day-old chicks and increasing the performance of the progeny during 8 weeks of post-hatch life.  相似文献   

20.
Ellagic acid (EA) is a natural polyphenolic compound. Although, modulator effects of EA on copper (Cu) and zinc (Zn) levels in some liver diseases have been reported in experimental animals, its effects in obstructive jaundice (OJ) has not been clarified. We aimed to evaluate potential effects of EA on Cu and Zn levels in liver and serum of cholestatic rats. Forty Wistar albino rats were equally divided into four groups. First group was used as controls. Second group received EA (60 mg−1 kg−1 day−1) for 8 days. Third was OJ group, and fourth group was OJ plus EA group. After 8 days, blood and liver samples were obtained. Higher serum and liver Cu and lower serum and liver Zn levels were found in OJ group (p < 0.05) compared with other groups. However, these differences reached to significant levels for Cu in serum and for Zn in lever. Higher serum copper levels were decreased, and lower liver Zn levels were increased by EA treatment in cholestatic rats (p < 0.05). Also, higher Cu/Zn ratio in OJ group was decreased by EA treatment both in liver (p < 0.05) and in serum (p < 0.05). Significantly higher serum bilirubin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase values were found in OJ and OJ + EA groups compared with the control and EA groups (p < 0.05). In conclusion, result of the current study indicated that ellagic acid has modulator effects on Cu and Zn levels in liver and serum of cholestatic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号