首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We characterized the response of root hair density to phosphorus (P) availability in Arabidopsis thaliana. Arabidopsis plants were grown aseptically in growth media with varied phosphorus concentrations, ranging from 1 mmol m3 to 2000 mmol m3 phosphorus. Root hair density (number of root hairs per mm of root length) was analysed starting at 7 d of growth. Root hair density was highly regulated by phosphorus availability, increasing significantly in roots exposed to low-phosphorus availability. The initial root hairs produced by the radicle were not sensitive to phosphorus availability, but began to respond after 9 d of growth. Root hair density was about five times greater in low phosphorus (1 mmol m3) than in high phosphorus (1000 mmol m3) media. Root hair density decreased logarithmically in response to increasing phosphorus concentrations within that range. Root hair density also increased in response to deficiencies of several other nutrients, but not as strongly as to low phosphorus. Indoleacetic acid (IAA), the auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (CMPA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the ethylene synthesis inhibitor amino-oxyacetic acid (AOA) all increased root hair density under high phosphorus but had very little effect under low phosphorus. Low phosphorus significantly changed root anatomy, causing a 9% increase in root diameter, a 31% decrease in the cross-sectional area of individual trichoblasts, a 40% decrease in the cross-sectional area of individual atrichoblasts, and 45% more cortical cells in cross-section. The larger number of cortical cells and smaller epidermal cell size in low phosphorus roots increased the number of trichoblast files from eight to 12. Two-thirds of increased root hair density in low phosphorus roots was caused by increased likelihood of trichoblasts to form hairs, and 33% of the increase was accounted for by changes in low phosphorus root anatomy resulting in an increased number of trichoblast files. These results show that phosphorus availability can fundamentally alter root anatomy, leading to changes in root hair density, which are presumably important for phosphorus acquisition.  相似文献   

2.
A member of the cellulose synthase-like (subfamily D) gene family of Arabidopsis, AtCSLD3, has been identified by T-DNA tagging. The analysis of the corresponding mutant, csld3-1, showed that the AtCSLD3 gene plays a role in root hair growth in plants. Root hairs grow in phases: First a bulge is formed and then the root hair elongates by polarized growth, the so-called "tip growth." In the mutant, root hairs were initiated at the correct position and grew into a bulge, but their elongation was severely reduced. The tips of the csld3-1 root hairs easily leaked cytoplasm, indicating that the tensile strength of the cell wall had changed at the site of the tip. Based on the mutant phenotype and the functional conservation between CSLD3 and the genuine cellulose synthase proteins, we hypothesized that the CSLD3 protein is essential for the synthesis of polymers for the fast-growing primary cell wall at the root hair tip. The distinct mutant phenotype and the ubiquitous expression pattern indicate that the CSLD3 gene product is only limiting at the zone of the root hair tip, suggesting particular physical properties of the cell wall at this specific site of the root hair cell.  相似文献   

3.
Root hair initiation involves the formation of a bulge at the basal end of the trichoblast by localized diffuse growth. Tip growth occurs subsequently at this initiation site and is accompanied by the establishment of a polarized cytoplasmic organization. Arabidopsis plants homozygous for a complete loss-of-function tiny root hair 1 (trh1) mutation were generated by means of the T-DNA-tagging method. Trichoblasts of trh1 plants form initiation sites but fail to undergo tip growth. A predicted primary structure of TRH1 indicates that it belongs to the AtKT/AtKUP/HAK K(+) transporter family. The proposed function of TRH1 as a K(+) transporter was confirmed in (86)Rb uptake experiments, which demonstrated that trh1 plants are partially impaired in K(+) transport. In line with these results, TRH1 was able to complement the trk1 potassium transporter mutant of Saccharomyces, which is defective in high-affinity K(+) uptake. Surprisingly, the trh1 phenotype was not restored when mutant seedlings were grown at high external potassium concentrations. These data demonstrate that TRH1 mediates K(+) transport in Arabidopsis roots and is responsible for specific K(+) translocation, which is essential for root hair elongation.  相似文献   

4.
J. B. Reid 《Plant and Soil》1981,62(2):319-322
Summary Root hair production by young plants of lucerne, maize and perennial ryegrass grown in a sandy loam was assessed by examining roots growing at a soil-glass interface. Results are given for the percentage frequency distribution of root hair lengths and the numbers of root hairs produced per mm root. The mean lengths of root hairs observed on lucerne, maize and perennial ryegrass roots were 0.35, 0.90 and 1.12 mm respectively. Lucerne produced an average of 105 root hairs per mm of root, whereas maize produced 161 and perennial ryegrass produced 88. The total length of root hairs per mm length of root was estimated to be 37, 146 and 99 mm for lucerne, maize and perennial ryegrass resp. Letcombe Laboratory  相似文献   

5.
The soil bacterium Rhizobium infects its leguminous host plants in temperate regions of the world mostly by way of the growing root hairs. Root hair curling is a prerequisite for root hair infection, although sidelong root hair infections occasionally have been observed. The processes underlying Rhizobium -induced root hair curling are unknown.
Computer simulation of root hair growth indicates that one-sided tip growth inhibition by Rhizobium can result in root hair curling when three conditions are simultaneously fulfilled: 1) rhizobial growth inhibition is strong enough to prevent removal out of the tip growth range: 2) root hair surface growth between the attached Rhizobium and the root hair top is inhibited; 3) rhizobial growth inhibition is limited to one side of the root hair.
The results predict that root hair curling by stimulation of tip growth is improbable. This study accentuates the need for information about the growth processes contributing to tip growth in leguminous root hairs.  相似文献   

6.
Root hair formation is induced by low pH in lettuce (Lactuca sativa L. cv. Grand Rapids) seedlings cultured in mineral medium. The role of mineral concentrations in this phenomenon was investigated, especially for manganese. When lettuce seedlings were cultured in media that were deficient in calcium (Ca), manganese (Mn), boron (B) or molybdenum (Mo), morphological changes were induced in roots. Deficiency of other nutrients had little effect on root hair formation. Ca or B deficiency inhibited the growth of the main root and the formation of root hairs, regardless of pH. Mn or Mo deficiency increased root hair formation at pH 6 and suppressed main root growth slightly. In contrast, increasing the Mn concentration suppressed low-pH-induced root hair formation. The Mn content of roots grown at pH 4 was only about 15% of that at pH 6. In contrast, the Mo content of roots grown at low pH was about six times that of roots grown at neutral pH. These results suggest that root hair formation induced by low pH is at least partly mediated by decreased Mn uptake in root cells.  相似文献   

7.
Root hairs are single-cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a beige and Chediak Higashi domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.  相似文献   

8.
Roles of phosphatidylinositol 3-kinase in root hair growth   总被引:2,自引:1,他引:1  
Lee Y  Bak G  Choi Y  Chuang WI  Cho HT  Lee Y 《Plant physiology》2008,147(2):624-635
The root hair is a model system for understanding plant cell tip growth. As phosphatidylinositol 3-phosphate [PtdIns(3)P] has been shown in other plant cell types to regulate factors that affect root hair growth, including reactive oxygen species (ROS) levels, cytoskeleton, and endosomal movement, we hypothesized that PtdIns(3)P is also important for root hair elongation. The enzyme that generates PtdIns(3)P, phosphatidylinositol 3-kinase (PI3K), was expressed in root hair cells of transgenic plants containing the PI3K promoter:beta-glucuronidase reporter construct. To obtain genetic evidence for the role of PtdIns(3)P in root hair elongation, we attempted to isolate Arabidopsis (Arabidopsis thaliana) mutant plants that did not express the gene VPS34 encoding the PI3K enzyme. However, the homozygous mutant was lethal due to gametophytic defects, and heterozygous plants were not discernibly different from wild-type plants. Alternatively, we made transgenic plants expressing the PtdIns(3)P-binding FYVE domain in the root hair cell to block signal transduction downstream of PtdIns(3)P. These transgenic plants had shorter root hairs and a reduced hair growth rate compared with wild-type plants. In addition, LY294002, a PI3K-specific inhibitor, inhibited root hair elongation but not initiation. In LY294002-treated root hair cells, endocytosis at the stage of final fusion of the late endosomes to the tonoplast was inhibited and ROS level decreased in a dose-dependent manner. Surprisingly, the LY294002 effects on ROS and root hair elongation were similar in rhd2 mutant plants, suggesting that RHD2 was not the major ROS generator in the PtdIns(3)P-mediated root hair elongation process. Collectively, these results suggest that PtdIns(3)P is required for maintenance of the processes essential for root hair cell elongation.  相似文献   

9.
Shi H  Zhu JK 《Plant physiology》2002,129(2):585-593
Root hair development in plants is controlled by many genetic, hormonal, and environmental factors. A number of genes have been shown to be important for root hair formation. Arabidopsis salt overly sensitive 4 mutants were originally identified by screening for NaCl-hypersensitive growth. The SOS4 (Salt Overly Sensitive 4) gene was recently isolated by map-based cloning and shown to encode a pyridoxal (PL) kinase involved in the production of PL-5-phosphate, which is an important cofactor for various enzymes and a ligand for certain ion transporters. The root growth of sos4 mutants is slower than that of the wild type. Microscopic observations revealed that sos4 mutants do not have root hairs in the maturation zone. The sos4 mutations block the initiation of most root hairs, and impair the tip growth of those that are initiated. The root hairless phenotype of sos4 mutants was complemented by the wild-type SOS4 gene. SOS4 promoter-beta-glucuronidase analysis showed that SOS4 is expressed in the root hair and other hair-like structures. Consistent with SOS4 function as a PL kinase, in vitro application of pyridoxine and pyridoxamine, but not PL, partially rescued the root hair defect in sos4 mutants. 1-Aminocyclopropane-1-carboxylic acid and 2,4-dichlorophenoxyacetic acid treatments promoted root hair formation in both wild-type and sos4 plants, indicating that genetically SOS4 functions upstream of ethylene and auxin in root hair development. The possible role of SOS4 in ethylene and auxin biosynthesis is discussed.  相似文献   

10.
Cell biology and genetics of root hair formation inArabidopsis thaliana   总被引:4,自引:0,他引:4  
Ryan E  Steer M  Dolan L 《Protoplasma》2001,215(1-4):140-149
Summary In this review we integrate the information available on the cell biology of root hair formation with recent findings from the analysis of root hair mutants ofArabidopsis thaliana. The mature Arabidopsis root epidermis consists of root-hair-producing cells and non-root-hair-producing cells. Root hair growth begins with a swelling of the outer epidermal wall. It has been postulated that this is due to a pH-mediated localised cell wall loosening. From the bulge a single root hair emerges which grows by tip growth. The root hair tip consists of a vesicle-rich zone and an organelle-rich subapical zone. The vesicles supply new plasma membrane and cell wall material for elongation. The cytoskeleton and its associated regulatory proteins such as profilin and spectrin are proposed to be involved in the targeting of vesicles. Ca2+ influxes and gradients are present in hair tips, but their function is still unclear. Mutants have been isolated with lesions in various parts of the root hair developmental pathway from bulge identity and initiation, to control of tip diameter and extent and polarity of elongation.Abbreviations [Ca2+]c cytosolic calcium concentration - MT microtubule - PM plasma membrane - VRZ vesicle-rich zone - WT wild type Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

11.
Previous data have suggested an involvement of MDR/PGP-like ABC transporters in transport of the plant hormone auxin and, recently, AtPGP1 has been demonstrated to catalyze the primary active export of auxin. Here we show that related isoform AtPGP4 is expressed predominantly during early root development. AtPGP4 loss-of-function plants reveal enhanced lateral root initiation and root hair lengths both known to be under the control of auxin. Further, atpgp4 plants show altered sensitivities toward auxin and the auxin transport inhibitor, NPA. Finally, mutant roots reveal elevated free auxin levels and reduced auxin transport capacities. These results together with yeast growth assays suggest a direct involvement of AtPGP4 in auxin transport processes controlling lateral root and root hair development.  相似文献   

12.
13.
Plant root hairs are believed to be very important for phosphorus (P) uptake from the soil by expanding the absorptive surface area of the root and increasing the soil volume explored by the roots, but genetic information about root hair traits in soybean is relatively scarce. In the present study, two contrasting genotypes of soybean (Glycine max and Glycine soja), CN4 and XM6, and their 88 F9-derived recombinant inbred lines (RILs) were grown in a field with moderately low P availability. Some important root hair traits, including root hair density (RHD), average root hair length (ARHL), and root hair length per unit root (RHLUR) were investigated and quantified with an automatic image analysis system and the genetic variability for these root hair traits was estimated with the RIL population. The results indicated that the two parental genotypes differed significantly in the three root hair traits measured, with XM6 generally having larger RHD and RHLUR (but smaller ARHL) than CN4, which may in part explain the difference in biomass and P status between the two parents. All the three root hair traits were continually segregated in the progenial RIL population with a normal distribution of the phenotypic values, indicating that these traits are possibly controlled by quantitative trait loci (QTLs). Analysis of variance for the RIL population showed that RHD had a low heritability (h2 b = 27.32, 31.04, 33.97% for basal roots, tap roots, total roots, respectively), while ARHL had a relatively higher genetic variance and hence a higher heritability (h2 b = 53.85, 59.18, 60.98% for basal roots, tap roots, total roots, respectively), suggesting that RHD is influenced more by environmental factors than ARHL. Both RHD and ARHL were positively correlated with RHLUR, indicating that the former two traits may be the attributes to the latter. On the other hand, RHD and ARHL were negatively correlated with each other, implying a possible complementary relationship between the two traits. Both RHD and RHLUR (but not ARHL) were positively correlated with P concentration in the plant, suggesting an important role of root hairs in P status. The basal roots had denser and higher total root hair length than the tap roots, and this is in accordance with previous observations with other plants that basal roots are more effective for P uptake than tap roots in cultivated soils.  相似文献   

14.
Root hairs emerge from epidermal root cells (trichoblasts) and differentiate by highly localized tip growth. Microtubules (MTs) are essential for establishing and maintaining the growth polarity of root hairs. The current knowledge about the configuration of the MT cytoskeleton during root hair development is largely based on experiments on fixed material, and reorganization and in vivo dynamics of MTs during root hair development is at present unclear. This in vivo study provides new insights into the mechanisms of MT (re)organization during root hair development in Arabidopsis (Arabidopsis thaliana). Expression of a binding site of the MT-associated protein-4 tagged with green fluorescent protein enabled imaging of MT nucleation, growth, and shortening and revealed distinct MT configurations. Depending on the dynamics of the different MT populations during root hair development, either repeated two-dimensional (x, y, t) or repeated three-dimensional (x, y, z, t) scanning was performed. Furthermore, a new image evaluation tool was developed to reveal important data on MT instability. The data show how MTs reorient after apparent contact with other MTs and support a model for MT alignment based on repeated reorientation of dynamic MT growth.  相似文献   

15.
16.
Development of tobacco root systems was characterized under controlled environmental conditions by use of morphometric root analysis. According to the classification scheme of this system, roots terminating in apical meristems are defined as first-order roots. Elements of second-order roots begin where two first-order roots merge, and so forth. Growth of root systems was similar for susceptible and resistant tobacco cultivars in nonautoclaved and autoclaved soils. During 15 days of growth subsequent to transplanting of 2-week-old plants, relative multiplication and extension rates of first-order and second-order roots were constant. Apparent unit extension rates of first-order and second-order root elements increased through 15 days of root system growth. Classification of tobacco root systems by the morphometric scheme provided a useful means of partitioning susceptibility of tissues to infection byPhytophthora parasitica var.nicotianae. Zoospores applied at the tips of first-order roots were most successful in causing infections; 73.3% of the roots inoculated with 16 zoospores per root tip became infected. Percentages of infections after inoculation of first-order root tissues 2 cm behind root tips or after inoculation of second-order roots were 10 and 4.3%, respectively.Florida Agricultural Experiment Station, Journal Series Paper 8106.  相似文献   

17.
Root hairs are tubular outgrowths of specialized epidermal cells called trichoblasts. They affect anchoring plants in soil, the uptake of water and nutrients and are the sites of the interaction between plants and microorganisms. Nineteen root hair mutants of barley representing different stages of root hair development were subjected to detailed morphological and genetic analyses. Each mutant was monogenic and recessive. An allelism test revealed that nine loci were responsible for the mutated root hair phenotypes in the collection and 1–4 mutated allelic forms were identified at each locus. Genetic relationships between the genes responsible for different stages of root hair formation were established. The linkage groups of four loci rhl1, rhp1, rhi1 and rhs1, which had previously been mapped on chromosomes 7H, 1H, 6H and 5H, respectively, were enriched with new markers that flank the genes at a distance of 0.16 cM to 4.6 cM. The chromosomal position of three new genes – two that are responsible for the development of short root hairs (rhs2 and rhs3) and the gene that controls an irregular root hair pattern (rhi2) – were mapped on chromosomes 6H, 2H and 1H, respectively. A comparative analysis of the agrobotanical parameters between some mutants and their respective parental lines showed that mutations in genes responsible for root hair development had no effect on the agrobotanical performance of plants that were grown under controlled conditions. The presented mutant collection is a valuable tool for further identification of genes controlling root hair development in barley.  相似文献   

18.
Root hairs elongate in a highly polarized manner known as tip growth. Overexpression of constitutively active Rho of Plant (ROP)/RAC GTPases mutants induces swelling of root hairs. Here, we demonstrate that Atrop11CA‐induced swelling of root hairs depends on the composition of the growth medium. Depletion of ammonium allowed normal root hair elongation in Atrop11CA plants, induced the development of longer root hairs in wild‐type plants and suppressed the effect of Atrop11CA expression on actin organization and reactive oxygen species distribution, whereas membrane localization of the protein was not affected. Ammonium at concentrations higher than 1 mM and the presence of nitrate were required for induction of swelling. Oscillations in wall and cytoplasmic pH are known to accompany tip growth in root hairs, and buffering of the growth medium decreased Atrop11CA‐induced swelling. Fluorescence ratio imaging experiments revealed that in wild‐type root hairs, the addition of NH4NO3 to the growth medium induced an increase in the amplitude of extracellular and intracellular pH oscillations and an overall decrease in cytoplasmic pH at the cell apex. Based on these results, we suggest a model in which ROP GTPases and nitrogen‐dependent pH oscillations function in parallel pathways, creating a positive feedback loop during root hair growth.  相似文献   

19.
Phytohormones are thought to mediate plant–arbuscular mycorrhizal (AM) interactions. To explore the role of phytohormones in the interaction between Nicotiana attenuata and Glomus intraradices , we analysed levels of jasmonic acid (JA) and its amino acid conjugate JA–isoleucine/JA–leucine (JA–Ile), salicylic acid (SA) and ethylene in either infected or non-infected N. attenuata wild-type (WT) plants growing in soils that mimic the nutrient supply rates found in the plant's native environment. Under these conditions, the infection decreases plant growth and reproductive performance. Levels of JA, JA–Ile and SA did not change upon infection, but ethylene release was slightly decreased. Transgenic N. attenuata plants defective in JA signalling (as lox3 and ir coi1 ) did not differ significantly in growth or reproductive performance compared with infected WT. Furthermore, no difference in infection rates could be observed. Transgenic plants unable to produce (ir aco ) or perceive ( etr1 ) ethylene showed significantly larger decreases in growth and number of seed capsules produced between infected and non-infected plants compared with WT plants. We conclude that ethylene, rather than JA, signalling plays a role in the interaction between N. attenuata and AM, from which the plant does not realize a fitness benefit.  相似文献   

20.
Hypaphorine, the major indolic compound isolated from the ectomycorrhizal fungus Pisolithus tinctorius, controls the elongation rate of root hairs. At inhibitory concentrations (100 μM), hypaphorine induced a transitory swelling of root hair tips of Eucalyptus globulus Labill. ssp. bicostata. When the polar tip growth resumed, a characteristic deformation was still visible on elongating hairs. At higher hypaphorine concentrations (500 μM and greater), root hair elongation stopped, only 15 min after application. However, root hair initiation from trichoblasts was not affected by hypaphorine. Hypaphorine activity could not be mimicked by related molecules such as indole-3-acetic acid (IAA) or tryptophan. While IAA had no activity on root hair elongation, IAA was able to restore the tip growth of root hairs following inhibition by hypaphorine. These results suggest that hypaphorine and endogenous IAA counteract in controlling root hair elongation. During ectomycorrhiza development, the absence of root hairs might be due in part to fungal release of molecules, such as hypaphorine, that inhibit the elongation of root hairs. Received: 27 October 1999 / Accepted: 14 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号