首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of chemical modification of arginine residues in mitochondrial creatine kinase (mit-CK) from beef heart by 4-hydroxy-3-nitrophenylglyoxal (HNPG) have been studied with simultaneous registration of enzyme inactivation. Experiments showed that complete inactivation of mit-CK corresponded to modification of two arginine residues per mit-CK monomer. The data on the modification kinetics can be described by the sum of two exponential terms and suggest strong negative cooperativity in the binding of HNPG to arginine residues. The rate constants for the fast and slow phases of modification differ by a factor of about 50. The corresponding rate constants for inactivation differ by a factor of about 30. The rate constant for the slow stage of inactivation is twice as large as that for the rate constant for the slow stage of modification, i.e., the inactivation process is ahead of the modification process.  相似文献   

2.
本文比较了大然乳酸脱氢酶和硫酸铵稳定的乳酸脱氢酶在盐酸胍性过程式中失活与内源荧光的变化速度.酶失活表现为三相反应,即极快相,其速度常数用停流装置也无法测定;快相和慢相,1M胍变性时,此二相的一级反应速度常数分别为2.7×10~(-3)秒~(-1)和4.17×10~(-4)秒~(-1).在2M硫酸铵存在条件下,用2M胍更性时,快相和慢相的一极反应速度常数分别为6.16×10~(-3)秒~(-1)和1.88×10~(-3)秒~(-1).内源荧光强度的变化表现为二相反应,即极快相,相当酶失活的极快相,但变化幅度远小于酶失活的变化幅度;快相,相当于酶失活的快相,其速度常数为失活速度常数的1/3倍.上述结果表明,类似肌酸激酶,乳酸脱氢酶的失活速度快于酶分子整体构象的变化,相对于整个酶分子来说,活性中心的构象变化对变性剂更加敏感.  相似文献   

3.
The storage stability of bilirubin oxidase was studied in water-in-oil CTAB microemulsions with a chloroformrich continuous organic phase. The kinetics of the inactivation process were best described by a double exponential equation. Approximately half of enzymatic activity was lost during a "fast" phase with a half life of ca. 50 min, whereas the remaining activity was lost much more slowly (half life ca. 1000 min). Rates of inactivation were not affected significantly by variation of either solvent composition or concentration of water droplets, but inactivation was more rapid when droplet size was very small. Steady-state enzyme kinetics were studied at various stages in the inactivation process, and it was shown that inactivation occurred without change in the K(m) of the enzyme for bilirubin. Stability was also studied in a liquid/solid two-phase system; it was found that the inactivation process in this system; it was found that the inactivation process in this system was best described by a single exponential term. The rate was similar to the "fast" phase rate observed in the water-in-oil microemulsion system. Inactivation of the enzyme slow. Addition of the surfactant CTAB to the aqueous environment increased the rate of inactivation to levels comparable to those of the "slow" phase observed in water-in-oil microemulsions. (c) 1993 Wiley & Sons, Inc.  相似文献   

4.
2,3-Butanedione inactivates the pure form of UDP-glucuronyltransferase used in these experiments (GT2P) (EC 2.4.1.17) purified from pig liver microsomes. The kinetics of the reaction indicates that 2,3-butanedione reacts with two amino acids that affect activity. A rapid, partial inactivation is followed by a slower rate of inactivation that leads eventually to completely inactive enzyme. UDP-glucuronic acid and glucuronic acid, as compared with UDP, are effective as protectors against the slow, secondary phase of inactivation; no ligand tested protected against the rapid phase of inactivation. The lipid environment of GT2P was a determinant of the pseudo-first order rate constant for the slow phase of inactivation, but did not affect the rate of the rapid phase of inactivation. The data suggest that GT2P contains an active site arginine that interacts with the -COO- at C-6 of the glucuronic acid moiety of UDP-glucuronic acid.  相似文献   

5.
In native nonactivated phosphorylase kinase [14C] iodacetamide interacts with 50 cysteinyl residues per enzyme molecule (alpha beta gamma delta)4. According to their reactivity towards iodacetamide these residues can be classified into 3 groups. The most reactive cysteinyl residues are involved in the enzyme activation caused by modification of SH-groups. The enzyme inhibition is biphasic. The fast and slow inactivation reactions follow the pseudo-first order kinetics. The rate of inactivation is increased by Ca2+. Mg-ATP effectively protects the enzyme against the inactivation and chemical modification of three SH-groups per protomer (apha beta gamma delta). The kinetics of inactivation and of the [14C] iodacetamide label incorporation demonstrate that two cysteinyl residues per enzyme protomer (alpha beta gamma delta) are essential for the enzyme activity. These residues are located near the ATP-binding site of the beta and gamma subunits of phosphorylase kinase.  相似文献   

6.
S Mobashery  E T Kaiser 《Biochemistry》1988,27(10):3691-3696
Two peptide-based affinity inactivators Ac-Leu-(BrAc)Orn-Arg-Ala-Ser-Leu-Gly (4) and Ac-Leu-Arg-(BrAc)Orn-Ala-Ser-Leu-Gly (5) were prepared as probes for the study of the nature of the active-site residues in the catalytic subunit of cyclic AMP dependent protein kinase. Under conditions of inhibitor in excess, both peptides inactivated the catalytic subunit by an apparent biphasic process. A fast phase, which inactivated the protein by approximately 40%, was followed by a slow phase that accounted for the loss of the remaining enzyme activity. Protection experiments with the kinase substrates showed that the slow phase of inactivation was active site directed, while the fast phase was not. Studies with radioactively labeled peptides 4 and 5 indicated incorporation of two peptide residues per molecule of the catalytic subunit upon complete inactivation. This observation is consistent with the occurrence of one alkylation event in each phase of the inactivation. The protein was proteolyzed subsequent to its modification with radioactive peptides. High-performance liquid chromatography afforded two radioactive peptide fragments in each case, which were sequenced by Edman degradation. Peptide 4 alkylated Thr-197 and Glu-346, while peptide 5 modified Cys-199 and also Glu-346. Data are presented to support the conclusion that Thr-197 and Cys-199 are located at or near the active site.  相似文献   

7.
The modification of both beta-Tyr-368 and beta-His-427 can be correlated with the loss of activity observed when the bovine mitochondrial F1-ATPase is inactivated with 5'-p-fluorosulfonylbenzoyl[3H]adenosine ([3H]FSBA). At pH 8.0, where the rate of inactivation is fast, beta-Tyr-368 is modified predominantly, while at pH 6.0, where the rate of inactivation is slow, beta-His-427 is modified predominantly. At pH 7.0, the 2 residues are modified with about equal efficiency. When the F1-ATPase was inactivated by 80% at pH 6.5, 7.0, and 7.5, the sum of radioactivity incorporated into beta-Tyr-368 and beta-His-427 was 1.99, 1.87, and 1.82 mol of label incorporated per mol of enzyme, respectively. Examination of the rate of inactivation of the enzyme by FSBA as a function of pH revealed two pKa values, one of about 7.6 associated with the modification of beta-Tyr-368 and the other of about 5.8 associated with the modification of beta-His-427. The inactivation of the F1-ATPase by FSBA exhibited an initial fast rate followed by a slower rate in triethanolamine-HCl, pH 7.0. In contrast, only a single rate, equivalent to the fast phase of inactivation in the absence of phosphate, was observed in 0.2 M phosphate, pH 7.0. The dependence of this stimulation on phosphate concentration is sigmoidal with half-maximal stimulation occurring at approximately 160 mM. The ratio of 3H incorporated into beta-Tyr-368 to that incorporated into beta-His-427 was approximately the same during the fast and slow phases of inactivation in triethanolamine-HCl, pH 7.0. Approximately the same ratio was observed when the enzyme was modified during the single phase of inactivation exhibited in the presence of 0.2 M phosphate, pH 7.0. The sum of the 3H incorporated into beta-Tyr-368 and beta-His-427 during inactivation of the F1-ATPase from bovine heart mitochondria by [3H]FSBA in the presence and absence of phosphate was linear and extrapolated to a value of about 2.6 residues modified on complete inactivation of the enzyme. From these data, it is concluded that FSBA binds to a single binding site on the beta subunits of the enzyme where it reacts with either beta-Tyr-368 or beta-His-427 in mutually exclusive reactions. All three beta subunits must be modified in this manner for complete inactivation to be observed.  相似文献   

8.
Two SH-groups per enzyme subunit have been identified in the native preparation of rabbit liver NAD kinase, using DTNB. The titration curve is biphasic; one SH-group is modified at each step. There is a strict correlation between the loss of the enzyme activity and the rate of modification of fast and slow SH-groups. Substrates afford only a partial protection of NAD kinase against the DTNB-induced inactivation. The data obtained suggest that two SH-groups of NAD kinase are essential for the enzyme activity; however, these groups are not directly involved in the active center formation.  相似文献   

9.
Carbamate kinase from Streptococcus faecalis is inactivated by butanedione in borate buffer, which implies the presence of an essential arginine at the active site of the enzyme. The inactivation reaction is first order in [butanedione] and a replot of the inactivation rate data infers that one arginine is modified. The enzyme is protected against inactivation by ADP, ATP, the metal-nucleotides and carbamyl phosphate but not by carbamate. Amino acid analyses reveal that one of three arginines is modified by butanedione in the absence of protecting agents, and the binding of ADP to the enzyme prevents modification. Thus, analysis of the data suggest that (i) substrate binding to arginine and (ii) protein conformational changes at the active site are responsible for protection of an essential arginine against modification by butanedione.  相似文献   

10.
Inactivation of isocitrate lyase (native and EDTA-dialysed) by excess tetranitromethane (TNM) exhibits, biphasic kinetics, in which half of the initial activity is lost in a fast and the remaining half in a slow phase each following the pseudo-first order kinetics. Rate constants of the two phases are proportional to the TNM concentration. High succinate concentration protects the enzyme against TNM inactivation only in the slow phase without any effect on the fast phase. With the EDTA-dialysed enzyme, no such protection (against inactivation by TNM) is observed in the presence of succinate or Mg2+ ions. Addition of both these ligands together brings about protection against the slow phase (as with the native enzyme). It has been proposed that the site-site heterogeneity of isocitrate lyase is a consequence of its quaternary structure constraints.  相似文献   

11.
人肌肌酸激酶胍变性时的失活与构象变化的比较研究   总被引:1,自引:1,他引:0  
应用二阶导数光谱、紫外差吸收光谱和荧光光谱等监测手段,研究了人肌肌酸激酶在盐酸胍溶液中的构象变化。二阶导数光谱结果表明,若以6M盐酸胍中肌酸激酶酪氨酸残基的暴露程度为100%,则天然酶酪氨酸残基的暴露程度只有2%。而紫外差吸收光谱和荧光光谱的变化与兔肌肌酸激酶的结果相似。比较不同胍浓度下人肌肌酸激酶的失活与构象变化,表明酶的失活先于构象变化。同时还测定了不同浓度胍溶液中人肌酶的失活与构象变化的速度常数。结果表明以几种方法测定的构象变化均为单相的一级过程,而酶的失活却呈现了由快慢两相组成的一级反应过程。比较同浓度胍溶液中的失活速度与构象变化速度,发现酶失活的快相反应速度常数比构象变化的速度常数大1—2个数量级,慢相速度常数与构象变化速度常数相近。上述结果进一步支持了酶的活性部位构象柔性的观点。  相似文献   

12.
S-(2,3-Dichlorotriazinyl)glutathione (SDTG) was synthesized and shown to be an effective alkylating affinity label for recombinant maize glutathione S-transferase I (GST I). Inactivation of GST I by SDTG at pH 6.5 followed biphasic pseudo-first-order saturation kinetics. The biphasic kinetics can be described in terms of a fast initial phase of inactivation followed by a slower phase, leading to 42 +/- 3% residual activity. The rate of inactivation for both phases exhibits nonlinear dependence on SDTG concentration, consistent with the formation of a reversible complex with the enzyme (K(d) 107.9 +/- 2.1 micro m for the fast phase, and 224.5 +/- 4.2 micro m for the slow phase) before irreversible modification with maximum rate constants of 0.049 +/- 0.002 min(-1) and 0.0153 +/- 0.001 min(-1) for the fast and slow phases, respectively. Protection from inactivation was afforded by substrate analogues, demonstrating the specificity of the reaction. When the enzyme was inactivated (42% residual activity), approximately 1 mol SDTG per mol dimeric enzyme was incorporated. Amino-acid analysis, molecular modelling, and site-directed mutagenesis studies suggested that the modifying residue is Met121, which is located at the end of alpha-helix H"'(3) and forms part of the xenobiotic-binding site. The results reveal an unexpected structural communication between subunits, which consists of mutually exclusive modification of Met residues across enzyme subunits. Thus, modification of Met121 on one subunit prevents modification of Met121 on the other subunit. This communication is governed by Phe51, which is located at the dimer interface and forms part of the hydrophobic lock-and-key intersubunit motif. The ability of SDTG to inactivate other glutathione-binding enzymes and GST isoenzymes was also investigated, and it was concluded that this new reagent may have general applicability as an affinity reagent for other enzymes with glutathione-binding sites.  相似文献   

13.
The properties of SH-groups of mitochondrial creatine kinase existing in solution as a hexamer with Mr of (240 +/- 12) X 10(3) Da, were investigated. The number and reactivity of SH-groups by specific modifiers--[5.5'-dithiobis-(2-nitrobenzoic acid), DTNB; 7-chloro-4-nitrobenzo-2-oxo-1.3-diazol, NBD-Cl; 2.2'-dithiopyridine, DTP] were determined. It was found that each subunit of the enzyme hexameric molecule contains two modified SH-groups, only one of which is protected against modification by Mg-ADP, Mg-ATP as well as during the formation of the transition state analog (TSA)--E-Mg X ADP-NO3-creatine--and is essential for the enzyme activity. These six essential SH-groups within the hexameric molecule of mitochondrial creatine kinase may be classified into two groups according to the rate of their interaction with DTNB, NBD-Cl and DTP. The rate constants of modification of three fast and three slow essential SH-groups differ 4-10 times. The kinetics of enzyme inactivation by iodoacetamide (IAA) is biphasic; each phase is characterized by a 50% loss of activity. The inactivation constants differ 30 times; both phases being protected by TSA; consequently, the inactivation is caused by the binding of IAA to the essential SH-groups. The unequal reactivity of essential SH-groups seems to be preexisting. Using a computer analysis, the dependence of the amount of residual activity on the number of modified SH-groups by NBD-Cl and DTNB was studied. The interaction of NBD-Cl and DTNB with the most reactive essential SH-groups in half of the subunits results in the inactivation of these subunits as well as in partial or complete inactivation of the other half of the non-modified subunits. The degree of inactivation of the latter 50% of subunits strongly depends on the nature of the modifier. The inactivating effect of the bound modifier is translated from one subunit to another in one direction. The experimental results point to asymmetrical association of mitochondrial creatine kinase subunits.  相似文献   

14.
N10-Formyltetrahydrofolate synthetase from bacteria and yeast catalyzes a slow formate-dependent ADP formation in the absence of H4folate. The synthesis of formyl phosphate by the enzyme was detected by trapping the intermediate as formyl hydroxamate. That the "formate kinase" activity was part of the catalytic center of N10-formyltetrahydrofolate synthetase was shown by demonstrating coordinate inactivation of the "kinase" and synthetase activities by heat and a sulfhydryl reagent, similar effects of monovalent cations, similar Km values for substrates, and similar Ki values for the inhibitor phosphonoacetaldehyde for both activities. The relative rates of the kinase activities for the bacterial and yeast enzymes are about 10(-4) and 4 x 10(-6) of their respective synthetase activities. These slow rates for the kinase reaction can be explained by the slow dissociation of ADP and formyl phosphate from the enzyme. This conclusion is supported by rapid-quench studies where a "burst" of ADP formation (6.4 s-1) was observed that is considerably faster than the steady-state rate (0.024 s-1). The demonstration of enzyme-bound products by a micropartition assay and the lack of a significant formate-stimulated exchange between ADP and ATP provide further evidence for the slow release of the products from the enzyme. The synthesis of N10-CHO-H4folate when H4folate was added to the E-formyl phosphate-ADP complex is also characterized by a "burst" of product formation. The rate of this burst phase at 5 degrees C occurs with a rate constant of 18 s-1 compared to 14 s-1 for the overall reaction at the same temperature. These results provide further evidence for formyl phosphate as an intermediate in the reaction and are consistent with the sequential mechanism of the normal catalytic pathway. Positional isotope exchange experiments using [beta,gamma-18O]ATP showed no evidence for exchange during turnover experiments in the presence of either H4folate or the competitive inhibitor pteroyltriglutamate. The absence of scrambling of the 18O label as observed by 31P NMR suggests that the central complex may impose restraints to limit free rotation of the P beta oxygens of the product ADP.  相似文献   

15.
The kinetics of inactivation of the pyruvate dehydrogenase component of the pigeon breast muscle pyruvate dehydrogenase complex in the presence of 5,5'-dithiobis (2-nitrobenzoate) is biphasic. The rate constants for the fast and slow phases of the inactivation reaction are close to those for modification of two classes of SH-groups differing in their reactivities towards the inhibitor. The reaction order with respect to the inhibitor concentration suggests that the two distinct SH-groups are essential for the enzyme activity. Modification of these SH-groups results in inhibition of the overall activity of the pyruvate dehydrogenase complex and of the 2-hydroxyethyl thiamine pyrophosphate - acceptor oxidoreductase activity of its decarboxylating component. Thiamine pyrophosphate exerts a protective effect on the enzyme only at the slow phase of the enzyme inactivation and SH-modification. As a result of interaction between the holoenzyme and pyruvate (or apoenzyme and 2-hydroxyethyl thiamine pyrophosphate) the rate of the enzyme inactivation is increased. This is associated with masking of non-essential SH-groups and with an increase of the accessibility of two essential SH-groups to the inhibitor. The data obtained suggest the interrelationship between the essential SH-groups and the 2-hydroxyethyl thiamine pyrophosphate-acceptor oxidoreductase activity of pyruvate dehydrogenase.  相似文献   

16.
3-磷酸甘油醛脱氢酶胍变性时的活力及构象变化   总被引:1,自引:1,他引:0  
酵母3-磷酸甘油醛脱氢酶在盐酸胍溶液中的内源荧光及剩余活力的变化结果提示:apo酶及holo酶的活力在胍浓度为0.5M左右可完全丧失.同时伴有内源荧光强度的下降,光谱宽度的增加和335nm最大发射峰的红移(提示了色氨酸残基的暴露).与已经报导的肌肉酶(内源荧光强度在胍浓度为0.4—1.2M范围相对稳定)不同,酵母酶内源荧光在此浓度范围内表现为逐渐降低.在0.7M胍溶液中,内源荧光变化动力学过程只能测出一相,而酶失活动力学过程为快慢两相,快相动力学速度常数至少大于内源荧光降低速度常数三个数量级以上.以上结果提示:低浓度胍可引起该酶的完全失活,活性部位的空间构象比酶分子的构象更易受到变性剂的扰乱;有一个色氨酸残基位于或靠近酶的活性部位.  相似文献   

17.
The reaction of choline acetyltransferase with methoxycarbonyl alkyl disulfides leads to a progressive loss in enzyme activity as the size of the alkyl group increases from methyl to n-butyl. Reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or methoxycarbonyl coenzyme A (CoA) disulfide, leads to a total loss of enzyme activity. DTNB inactivation is biphasic (k1 = approximately 9 x 10(2) M-1 s-1, k2 = approximately 6 x 10(1) M-1 s-1) with the slow phase being diminished by acetyl-CoA. Methoxycarbonyl-CoA disulfide inactivation is also biphasic (k1 = approximately 2.1 x 10(3) M-1 s-1, k2 = approximately 6 x 10(1) M-1 s-1), with the rapid phase being diminished in the presence of acetyl-CoA. Inactivation by methoxycarbonyl methyl disulfide, ethyl disulfide, or hydroxyethyl disulfide, or by methyl methanethiosulfonate is not biphasic. Pretreatment of the enzyme with methyl methanethiosulfonate, which leads to a 25% loss in enzyme activity, abolishes the fast phase of DTNB inactivation, the slow phase of methoxycarbonyl-CoA disulfide inactivation, and any further inactivation by methoxycarbonyl ethyl disulfide. These results are interpreted to suggest that choline acetyltransferase contains two classes of reactive sulfhydryl groups, neither of which are required for enzyme activity.  相似文献   

18.
Depolarization of sodium channels initiates at least three gating pathways: activation, fast inactivation, and slow inactivation. Little is known about the voltage sensors for slow inactivation, a process believed to be separate from fast inactivation. Covalent modification of a cysteine substituted for the third arginine (R1454) in the S4 segment of the fourth domain (R3C) with negatively charged methanethiosulfonate-ethylsulfonate (MTSES) or with positively charged methanethiosulfonate-ethyltrimethylammonium (MTSET) produces a marked slowing of the rate of fast inactivation. However, only MTSES modification produces substantial effects on the kinetics of slow inactivation. Rapid trains of depolarizations (2-20 Hz) cause a reduction of the peak current of mutant channels modified by MTSES, an effect not observed for wild-type or unmodified R3C channels, or for mutant channels modified by MTSET. The data suggest that MTSES modification of R3C enhances entry into a slow-inactivated state, and also that the effects on slow inactivation are independent of alterations of either activation or fast inactivation. This effect of MTSES is observed only for cysteine mutants within the middle of this S4 segment, and the data support a helical secondary structure of S4 in this region. Mutation of R1454 to the negatively charged residues aspartate or glutamate cannot reproduce the effects of MTSES modification, indicating that charge alone cannot account for these results. A long-chained derivative of MTSES has similar effects as MTSES, and can produce these effects on a residue that does not show use-dependent current reduction after modification by MTSES, suggesting that the sulfonate moiety can reach a critical site affecting slow inactivation. The effects of MTSES on R3C are partially counteracted by a point mutation (W408A) that inhibits slow inactivation. Our data suggest that a region near the midpoint of the S4 segment of domain 4 plays an important role in slow inactivation.  相似文献   

19.
NADP-linked malic enzyme from Escherichia coli W contains 7 cysteinyl residues per enzyme subunit. The reactivity of sulfhydryl (SH) groups of the enzyme was examined using several SH reagents, including 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). 1. Two SH groups in the native enzyme subunit reacted with DTNB (or NEM) with different reaction rates, accompanied by a complete loss of the enzyme activity. The second-order modification rate constant of the "fast SH group" with DTNB coincided with the second-order inactivation rate constant of the enzyme by the reagent, suggesting that modification of the "fast SH group" is responsible for the inactivation. When the enzyme was denatured in 4 M guanidine HCl, all the SH groups reacted with the two reagents. 2. Althoug the inactivation rate constant was increased by the addition of Mg2+, an essential cofactor in the enzyme reaction, the modification rate constant of the "fast SH group" was unaffected. The relationship between the number of SH groups modified with DTNB or NEM and the residual enzyme activity in the absence of Mg2+ was linear, whereas that in the presence of Mg2+ was concave-upwards. These results suggest that the Mg2+-dependent increase in the inactivation rate constant is not the result of an increase in the rate constant of the "fast FH group" modification. 3. The absorption spectrum of the enzyme in the ultraviolet region was changed by addition of Mg2+. The dissociation constant of the Mg2+-enzyme complex obtained from the Mg2+- dependent increment of the difference absorption coincided with that obtained from the Mg2+- dependent enhancement of NEM inactivation. 4. Both the inactivation rate constant and the modification rate constant of the "fast SH group" were decreased by the addition of NADP+. The protective effect of NADP+ was increased by the addition of Mg2+. Based on the above results, the effects of Mg2+ on the SH-group modification are discussed from the viewpoint of conformational alteration of the enzyme.  相似文献   

20.
Escherichia coli acetate kinase (ATP: acetate phosphotransferase, EC 2.7.2.1.) was inactivated in the presence of either 2,3-butanedione in borate buffer or phenylglyoxal in triethanolamine buffer. When incubated with 9.4 mM phenylglyoxal or 5.1 mM butanedione, the enzyme lost its activity with an apparent rate constant of inactivation of 0.079 min-1, respectively. The loss of enzymatic activity was concomitant with the loss of an arginine residue per active site. Phosphorylated substrates of acetate kinase, ATP, ADP and acetylphosphate as well as AMP markedly decreased the rate of inactivation by both phenylglyoxal and butanedione. Acetate neither provided any protection nor affected the protection rendered by the adenine nucleotides. However, it interfered with the protection afforded by acetylphosphate. These data suggest that an arginine residue is located at the active site of acetate kinase and is essential for its catalytic activity, probably as a binding site for the negatively charged phosphate group of the substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号