首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelium lines the entire cardiovascular system where performs a series of vital functions including the control of microvascular permeability, coagulation inflammation, vascular tone as well as the formation of new vessels via vasculogenesis and angiogenesis in normal and disease states. Normal endothelium consists of heterogeneous populations of cells differentiated according to the vascular bed and segment of the vascular tree where they occur. One of the cardinal features is the expression of specific subcellular structures such as plas-malemmal vesicles or caveolae, transendothelial channels, vesiculo-vacuolar organelles, endothelial pockets and fenestrae, whose presence define several endothelial morphological types. A less explored observation is the differential expression of such structures in diverse settings of angiogenesis. This review will focus on the latest developments on the components, structure and function of these specific endothelial structures in normal endothelium as well as in diverse settings of angiogenesis.  相似文献   

2.
Rüffer C  Strey A  Janning A  Kim KS  Gerke V 《Biochemistry》2004,43(18):5360-5369
Endothelial cell-cell contacts control the vascular permeability, thereby regulating the flow of solutes, macromolecules, and leukocytes between blood vessels and interstitial space. Because of specific needs, the endothelial permeability differs significantly between the tight blood-brain barrier endothelium and the more permeable endothelial lining of the non-brain microvasculature. Most likely, such differences are due to a differing architecture of the respective interendothelial cell contacts. However, while the molecules and junctional complexes of macrovascular endothelial cells and the blood-brain barrier endothelium are fairly well characterized, much less is known about the organization of intercellular contacts of microvascular endothelium. Toward this end, we developed a combined cross-linking and immunoprecipitation protocol which enabled us to map nearest neighbor interactions of junctional proteins in the human dermal microvascular endothelial cell line HMEC-1. We show that proteins typically located in tight or adherens junctions of epithelial cells are in the proximity in HMEC-1 cells. This contrasts with the separation of the different types of junctions observed in polarized epithelial cells and "tight" endothelial layers of the blood-brain barrier and argues for a need of the specific junctional contacts in microvascular endothelium possibly required to support an efficient transendothelial migration of leukocytes.  相似文献   

3.
Studies in modeled microgravity or during orbital space flights have clearly demonstrated that endothelial cell physiology is strongly affected by the reduction of gravity. Nevertheless, the molecular mechanisms by which endothelial cells may sense gravity force remain unclear. We previously hypothesized that endothelial cell caveolae could be a mechanosensing system involved in hypergravity adaptation of human endothelial cells. In this study, we analyzed the effect on the physiology of human umbilical vein endothelial cell monolayers of short exposure to modeled microgravity (24–48h) obtained by clinorotation. For this purpose, we evaluated the levels of compounds, such as nitric oxide and prostacyclin, involved in vascular tone regulation and synthesized starting from caveolae-related enzymes. Furthermore, we examined posttranslational modifications of Caveolin (Cav)-1 induced by simulated microgravity. The results we collected clearly indicated that short microgravity exposure strongly affected endothelial nitrix oxide synthase activity associated with Cav-1 (Tyr 14) phosphorylation, without modifying the angiogenic response of human umbilical vein endothelial cells. We propose here that one of the early molecular mechanisms responsible for gravity sensing of endothelium involves endothelial cell caveolae and Cav-1 phosphorylation.  相似文献   

4.
Little is known of how adrenal hormones pass from the interstitial to the vascular space. We have begun to examine the adrenal endothelium as a barrier to hormone passage, by the freeze-fracturing technique. The endothelium of both cortex and medulla is fenestrated. Fractures from both regions show endothelial cells to be extremely thin in regions where fenestrations are abundant. En face fractures show fenestrae disposed in tracts; the fenestrae reaching a distribution of 35/μ2. In both cortex and medulla there are areas of continuous endothelium which contain caveolae. Structures believed to represent fenestra diaphragms contain randomly disposed particles and occasional pits. We have not identified in replicas the central ring and pore described in thin-sectioned material (Elfvin, 1965). The main differences between freeze-fractured aspects of cortical and medullary endothelium are the greater abundance of caveolae in the medulla and the size of the fenestrae (fenestra rims in the medulla are 525–780 Å in diameter; in the cortex 570–1660 Å). These differences may reflect the different embryological origins of the medulla and cortex. While caveolae may participate in hormone transport, there is no evidence for this. In the medulla the caveolae are more numerous and may have a function not necessarily related to transport. Possibly, caveolae play a role in processing hormones and related substances. For example, ATP and specific proteins are released as well as epinephrine during exocytosis from chromaffin cells. Epinephrine enters the vascular space but ATP does not. ATPase enzymes are a common feature of caveolae of other endothelia and may occur as well in adrenal endothelium.  相似文献   

5.
A variety of evidence suggests that endothelial cell functions are impaired in altered gravity conditions. Nevertheless, the effects of hypergravity on endothelial cell physiology remain unclear. In this study we cultured primary human endothelial cells under mild hypergravity conditions for 24-48 h, then we evaluated the changes in cell cycle progression, caveolin1 gene expression and in the caveolae status by confocal microscopy. Moreover, we analyzed the activity of enzymes known to be resident in caveolae such as endothelial nitric oxide synthase (eNOS), cycloxygenase 2 (COX-2), and prostacyclin synthase (PGIS). Finally, we performed a three-dimensional in vitro collagen gel test to evaluate the modification of the angiogenic responses. Results indicate that hypergravity shifts endothelial cells to G(0)/G(1) phase of cell cycle, reducing S phase, increasing caveolin1 gene expression and causing an increased distribution of caveolae in the cell interior. Hypergravity also increases COX-2 expression, nitric oxide (NO) and prostacyclin (PGI2) production, and inhibits angiogenesis as evaluated by 3-D collagen gel test, through a pathway not involving apoptosis. Thus, endothelial cell caveolae may be responsible for adaptation of endothelium to hypergravity and the mechanism of adaptation involves an increased caveolin1 gene expression coupled to upregulation of vasodilators as NO and PGI2.  相似文献   

6.
Caveolin-1, a scaffolding protein of caveolae, is known to be tyrosine-phosphorylated by Src kinases. Recently we generated a specific antibody to caveolin-1 phosphorylated at tyrosine-14 (PY14) (R. Nomura and T. Fujimoto, 1999, Mol. Biol. Cell 10, 975-986). In the present study, by applying PY14 to sections of normal rat tissues, we found that tyrosine phosphorylation of caveolin-1 occurred in limited locations, including the endothelium of the continuous capillaries and small venules. Cultured endothelial cells were not labeled by PY14 under a standard culture condition, but became positively labeled when exposed to oxidative stresses and/or tyrosine phosphatase inhibitors. The reaction was prohibited by pretreating the cells with herbimycin A or genistein. Vasoactive reagents or physical stimuli did not cause the phosphorylation. Concomitant with the tyrosine phosphorylation, the number of invaginated caveolae decreased drastically, and vesicles labeled intensely for caveolin-1 appeared in the cytoplasm; the average diameter of the vesicles was larger than that of caveolae. The result implies that tyrosine phosphorylation of caveolin-1 occurs at tyrosine-14 in the normal rat endothelium in vivo and may induce caveolar vesiculation and/or fusion.  相似文献   

7.
Fluid shear stress generated by blood flowing over the endothelium is a major determinant of arterial tone, vascular remodeling, and atherogenesis. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an essential role in regulation of vascular function and structure by blood flow. Although cyclosporin A (CsA), an inhibitory ligand of cyclophilin A, is a widely used immunosuppressive drug, it causes arterial hypertension in part by impairing eNOS-dependent vasodilation. Here we show that CsA inhibits fluid shear stress-mediated eNOS activation in endothelial cells via decreasing cholesterol content in caveolae. Exposure of cultured bovine aortic endothelial cells to 1 mum CsA for 1 h significantly inhibited NO production and eNOS phosphorylation at Ser-1179 induced by flow (shear stress=dynes/cm2). The effect of CsA was not related to inhibition of two known eNOS kinases, protein kinase B (Akt) and protein kinase A, because CsA did not affect Akt or protein kinase A activation. In rabbit aorta perfused ex vivo, CsA also significantly inhibited flow-induced eNOS phosphorylation at Ser-1179 but had no effect on Akt measured by phosphorylation at Ser-473. However, CsA treatment decreased cholesterol content in caveolae and displaced eNOS from caveolae, which may be caused by CsA disrupting the association of caveolin-1 and cyclophilin A. The magnitude of the cholesterol depleting effect was similar to that of beta-cyclodextrin, a cholesterol-binding molecule, and beta-cyclodextrin had a similar inhibitory effect on flow-mediated eNOS activation. Treating bovine aortic endothelial cells for 24 h with 30 mug/ml cholesterol blocked the CsA effect and restored eNOS phosphorylation in response to flow. These data suggest that decreasing cholesterol content in caveolae by CsA is a potentially important pathogenic mechanism for CsA-induced endothelial dysfunction and hypertension.  相似文献   

8.
Summary A new endothelial cell structure, named the endothelial pocket, has been found by combined transmission and scanning electron microscopic studies of renal peritubular capillaries. Transmission EM observations made on these and other fenestrated capillaries demonstrated that each pocket consists of an attenuated fold of fenestrated endothelium that projects 200 nm into the lumen above the rest of the endothelial surface. Beneath this luminal fold, there is a space and then another layer of fenestrated endothelium which abuts the basal lamina. The linear density of endothelial pockets was measured in the capillaries of the kidney cortex, intestinal mucosa and exocrine pancreas in mice and determined to be 0.067, 0.017 and 0.007 pockets·m-1 respectively. Cationic ferritin decoration of the anionic sites on the luminal surface of the endothelium in these capillary beds revealed that both unlabelled and labelled diaphragms are clustered. In such specimens, the majority of the luminal diaphragms on endothelial pockets did not have cationic ferritin binding sites detectable by either scanning or transmission EM. On this account as well as on account of their general morphology, endothelial pockets appear to be multifold versions of the simple transendothelial channel.  相似文献   

9.
Caveolae transcytosis with its diverse mechanisms-fluid phase, adsorptive, and receptor-mediated-plays an important role in the continuous exchange of molecules across the endothelium. We will discuss key features of endothelial transcytosis and caveolae that have been studied recently and have increased our understanding of caveolae function in transcytosis at the molecular level. During transcytosis, caveolae "pinch off" from the plasma membrane to form discrete vesicular carriers that shuttle to the opposite front of endothelial cells, fuse with the plasma membrane, and discharge their cargo into the perivascular space. Endothelial transcytosis exhibits distinct properties, the most important being rapid and efficient coupling of endocytosis to exocytosis on opposite plasma membrane. We address herein the membrane fusion-fission reactions that underlie transcytosis. Caveolae move across the endothelial cells with their cargo predominantly in the fluid phase through an active process that bypasses the lysosomes. Endothelial transcytosis is a constitutive process of vesicular transport. Recent studies show that transcytosis can be upregulated in response to pathological stimuli. Transcytosis via caveolae is an important route for the regulation of endothelial barrier function and may participate in different vascular diseases.  相似文献   

10.
Summary The position, structure and function of the valves within the lateral sinus of the medical leech, Hirudo medicinalis, are described on the basis of vital, light- and electron microscopy. In this species the valvular apparatus consists of multiple elongated fir cone-shaped fibrous villi surrounding the orifices of the latero-lateral and latero-dorsal vessel like a tentacular crest. Each villus is covered by a thin sheet of a continuous endothelium. The valves prevent the backflow of hemolymph during systolic contraction of the lateral sinus.The endothelium contains many small mitochondria and polyribosomes in the perinuclear cytoplasm and it develops deep projections into the underlying connective tissue. Each of these consists of a multilayered system of closely interwoven thin endothelial membranes. The endothelium is anchored to its basement membrane by means of a great number of poorly defined hemidesmosomes. The fibrous tissue of the villi consists mainly of a homogeneous vitreous matrix in which few cellular components and very fine filaments are dispersed. Close to the endothelium this matrix appears to be condensed to form a multilayered framework made out of a basement membrane-like material.Though the valves themselves are devoid of muscle cells, those situated at their base and thus belonging to the vascular wall proper, display some specific morphological features: in particular the nuclei of these cells show a distinct fibrous lamina. Moreover, these muscle cells seem to be innervated only by one type of axon, containing both small, lucent synaptic vesicles as well as some of the dense-core variety.These findings are compared with data from earlier works and are discussed in relation to the hemodynamic functions of this valvular apparatus.  相似文献   

11.
Sinus and venous walls of normal human spleens were studied with enzyme histochemical and electron microscopic methods. Particular attention was paid to the connections between sinuses and veins. Histochemically the sinus lining cells revealed a distinct naphthol-AS-acetate-esterase activity but no reaction for alkaline phosphatase. Venous endothelial cells were positive for the latter but negative for the former enzyme. In the sinus-venous junctional area there were no endothelial cells with reactivity for both enzymes. Electron microscopically both the sinus lining cells and the venous endothelial cells could be clearly characterized and therefore easily distinguished from one another on morphological grounds. There were no clear ultrastrural indications of transitional forms between sinus lining cells and venous endothelial cells in the sinus-venous area. According to these findings, sinus lining cells represent a specialized endothelium, but one with practically no morphological similarities to the venous endothelium.  相似文献   

12.
Summary The morphology of the three types of endothelial vesicles in fenestrated and non-fenestrated capillaries from various sources (human skin, senile dermal angiomas, frog tongue and rat renal medulla) has been studied. The micropinocytotic vesicles of Palade were prevalent in the non-fenestrated endothelium with most caveolae closed by either amorphous material of low electron density or a caveolar membrane. The initial stage of the opening of vesicles onto the surface plasma membrane and the terminal stages of separation were indefinite. Those vesicles which were fusing with or separating from adjacent vesicles displayed amorphous material or an intervesicular membrane at the line of junction. Such features were present irrespective of the relationship of the vesicles to the plasma membrane and of the fenestration of the endothelium. The caveolar and intervesicular membranes vary in morphology as do those bridging the conventional fenestrae.Macropinocytotic vesicles were most numerous in vessels of the senile angioma and in the frog tongue. Membranes were observed closing caveolae of the relatively uncommon coated or dense-walled pinocytotic type.This work was supported by the General Research Fund of the Jewish Hospital of St. Louis.  相似文献   

13.
Expression of chemokines on the surface of different human endothelia   总被引:4,自引:0,他引:4  
Expression of chemokines at the endothelial surface depends on their rate of synthesis, the capacity of the endothelium to bind chemokines and the rate of clearance from the surface. The aim of this study was to establish how these factors depend on the chemokine and the tissue of origin of the endothelium. Human lung and dermal microvascular endothelium, saphenous and umbilical vein endothelium, and a bone marrow endothelial line were assayed in vitro. Chemokine expression, localization and transport was measured by immunoassay and confocal microscopy. All endothelia bound CCL3 (MIP-1alpha), CCL5 (RANTES) and CXCL10 (IP-10). CCL3 and CCL5 bound at high levels, and CXCL10 bound less strongly. However, the profile of chemokine expression varied between endothelia, and different chemokines were shown to bind to the endothelial surface by distinct mechanisms. The half-life of CCL3 and CCL5 at the cell surface was approximately 30 min and chemokines were cleared primarily by endocytosis into caveolae. Endothelia from different tissues synthesize distinctive sets of chemokines, but the profile of surface-expressed chemokines also depends on the distinctive characteristics of each endothelia. These two mechanisms may contribute to the differential recruitment of leucocyte subsets to different tissues.  相似文献   

14.
Clathrin-independent trafficking pathways for internalizing G protein-coupled receptors (GPCRs) remain undefined. Clathrin-mediated endocytosis of receptors including ligand-engaged GPCRs can be very rapid and comprehensive (<10 min). Caveolae-mediated endocytosis of ligands and antibodies has been reported to be much slower in cell culture (≫10 min). Little is known about the role of physiological ligands and specific GPCRs in regulating caveolae trafficking. Here, we find that one receptor for endothelin, ET-B but not ET-A, resides on endothelial cell surfaces in both tissue and cell culture primarily concentrated within caveolae. Reconstituted cell-free budding assays show that endothelins (ETs) induce the fission of caveolae from endothelial plasma membranes purified from rat lungs. Electron microcopy of lung tissue sections and tissue subcellular fractionation both show that endothelin administered intravascularly in rats also induces a significant loss of caveolae at the luminal surface of lung vascular endothelium. Endothelial cells in culture show that ET stimulates very rapid internalization of caveolae and cargo including caveolin, caveolae-targeting antibody, and itself. The ET-B inhibitor BQ788, but not the ET-A inhibitor BQ123, blocks the ET-induced budding of caveolae. Both the pharmacological inhibitor Dynasore and the genetic dominant negative K44A mutant of dynamin prevent this induced budding and internalization of caveolae. Also shRNA lentivirus knockdown of caveolin-1 expression prevents rapid internalization of ET and ET-B. It appears that endothelin can engage ET-B already highly concentrated in caveolae of endothelial cells to induce very rapid caveolae fission and endocytosis. This transport requires active dynamin function. Caveolae trafficking may occur more rapidly than previously documented when it is stimulated by a specific ligand to signaling receptors already located in caveolae before ligand engagement.  相似文献   

15.
THE FINE STRUCTURE OF THE RENAL GLOMERULUS OF THE MOUSE   总被引:43,自引:14,他引:29       下载免费PDF全文
  相似文献   

16.
《The Journal of cell biology》1994,127(5):1217-1232
Caveolae or noncoated plasmalemmal vesicles found in a variety of cells have been implicated in a number of important cellular functions including endocytosis, transcytosis, and potocytosis. Their function in transport across endothelium has been especially controversial, at least in part because there has not been any way to selectively inhibit this putative pathway. We now show that the ability of sterol binding agents such as filipin to disassemble endothelial noncoated but not coated plasmalemmal vesicles selectively inhibits caveolae-mediated intracellular and transcellular transport of select macromolecules in endothelium. Filipin significantly reduces the transcellular transport of insulin and albumin across cultured endothelial cell monolayers. Rat lung microvascular permeability to albumin in situ is significantly decreased after filipin perfusion. Conversely, paracellular transport of the small solute inulin is not inhibited in vitro or in situ. In addition, we show that caveolae mediate the scavenger endocytosis of conformationally modified albumins for delivery to endosomes and lysosomes for degradation. This intracellular transport is inhibited by filipin both in vitro and in situ. Other sterol binding agents including nystatin and digitonin also inhibit this degradative process. Conversely, the endocytosis and degradation of activated alpha 2- macroglobulin, a known ligand of the clathrin-dependent pathway, is not affected. Interestingly, filipin appears to inhibit insulin uptake by endothelium for transcytosis, a caveolae-mediated process, but not endocytosis for degradation, apparently mediated by the clathrin-coated pathway. Such selective inhibition of caveolae not only provides critical evidence for the role of caveolae in the intracellular and transcellular transport of select macromolecules in endothelium but also may be useful for distinguishing transport mediated by coated versus noncoated vesicles.  相似文献   

17.
Several studies have shown the importance of dystrophin-associated protein complex in the development of muscular dystrophies and dilated cardiomyopathy associated to vascular dysfunction. In vascular endothelium, dystrophin is substituted for utrophin (autosomal homolog of dystrophin); however, its role in this tissue is unknown. Therefore, it is important to obtain a more extensive knowledge of utrophin and its associated proteins in endothelial cells. In a previous study, we demonstrated the presence of utrophin-associated protein complex (UAPC) in human umbilical vein endothelial cells HUVEC, which interacts with caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS). Also, some of our observations suggested the presence of this complex in distinct membrane domains. Therefore, the aim of this study was to analyze the presence of the UAPC in caveolae and non-caveolae lipid rafts domains of HUVEC at baseline and with a mechanical stimulus. It was demonstrated, by subcellular fractionation and co-immunoprecipitation assays, the association of UAPC with Cav-1 and eNOS in caveolae domains, as well as its interaction with eNOS in non-caveolae lipid raft domains. Additionally, it was also observed that mechanical stress on endothelial cells induced activation and release of eNOS from both caveolae and non-caveolae lipid raft associated to UAPC. Together these results suggest that UAPC located in caveolae and non-caveolae lipid raft domains of HUVECs may have a mechanosensory function that could participate in the control of eNOS activity.  相似文献   

18.
The ultrastructure of the wall of the main blood vessels of the phoronid Phoronopsis harmeri is described. The walls of the lophophoral and left lateral vessels consist of myoepithelial cells of the coelomic lining (peritoneal cells), a thin basal lamina, and an incomplete endothelial lining. In the head region of the body, the wall of the medial vessel consists of myoepithelial cells of the coelomic lining (peritoneal cells), a basal lamina, and true muscular endothelial cells. The anterior part of the medial vessel functions as the heart. In the anterior part of the body, the medial vessel wall consists of five layers: the external nonmuscular coelothelium, a layer of the extracellular matrix, the internal muscular coelothelium, an internal layer of the extracellular matrix, and an incomplete endothelial lining. The complicated structure of the medial vessel wall may be explained by the superimposition of the lateral mesentery on the ordinary vessel wall.  相似文献   

19.
In order to clarify the morphology of the circulatory system of amphioxus the blood vessels were investigated using modern techniques of light and electron microscopy. The pattern of circulation in amphioxus is forward ventrally and backwards dorsally. In addition, circulating corpuscles, usually associated with the blood of higher chordates, are absent. The circulatory system of amphioxus consists of well defined contractile vessels and vascular spaces or sinuses within a connective tissue matrix. The contractile vessels have a discontinuous endothelial lining resting on a basal lamina and are enclosed by a simple layer of contractile myoepithelial cells. Discontinuous endothelial linings occur throughout the vascular tree, including major and minor afferent and efferent vessels and blood sinuses. This is in contrast to higher animals where the endothelium forms a more or less continuous lining along the inner surface of the boundary layer. It is suggested that the endothelial cells of amphioxus, like the endothelial cells in capillaries of higher chordates, most likely play a role in the physiology of the circulatory system by removing residues of filtration from the basal lamina, thereby facilitating an exchange of materials to and from the surrounding tissues.  相似文献   

20.
The endothelium plays an important role in the regulation of molecular exchanges between the blood and peripheral tissues. The transport of molecules between tissues must be tightly controlled in order to maintain homeostasis between the different organs of the body. The endothelial transcytosis pathway has been shown to direct the transfer of proteins and solutes and therefore to act as a filtering system. This transport mode has been demonstrated to involve plasma-membrane vesicles that may be transferred with their cargo components from the apical to the basal side of endothelial cells. Among the vesicles implicated in the regulation of transcytosis, caveolae, which are 50 to 100-nm plasma-membrane invaginations, have been reported to play an essential part. In this paper, we review the function of caveolae and their major protein component (i.e., caveolin-1) in the regulation of endothelial transcytosis. The roles of caveolae in vascular diseases, such as atherosclerosis, are discussed. P.G.F. is supported by grants from the W.W. Smith Charitable Trust Fund and the Susan G. Komen Foundation. M.P.L. is supported by grants from the National Institutes of Health and the American Heart Association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号