首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Erwinia soft rot is a destructive disease of Brassica rapa vegetables. Reliable sources of resistance and control methods are limited, so development of highly resistant breeding lines is desirable. Protoplasts from B. rapa and B. oleracea genotypes selected for resistance to soft rot were fused in order to combine different sources of resistance. Twelve somatic hybrids (synthetic B. napus) were obtained and confirmed by morphology, nuclear DNA content, and RAPD analysis. They were normal looking plants that easily set seeds following self-pollination and backcrossing to B. rapa. Assays of detached leaves or seedlings inoculated in a mist-chamber showed that most somatic hybrids had lower disease severity ratings than the B. rapa fusion partner and a commercial variety of B. napus. Some progeny from selfing or backcrossing of somatic hybrids to B. rapa showed much more resistance than either fusion partner. The offspring populations of the somatic hybrids (F1–S1 and F1–BC1) clearly moved to the resistant direction compared to the parents; the percentage of resistant plants increased from 21% (average of parents) to 36% (F1–S1) and 48% (F1–BC1). These results suggest that it may be possible to obtain highly resistant B. rapa lines by further backcrossing and selection. Received: June 1999 / Accepted: 29 July 1999  相似文献   

2.
Amphidiploid Raphanofortii was synthesized by colchicinization of the F1 hybrid Brassica tournefortii (TT, 2n = 20)×Raphanus caudatus (RR, 2n = 18). The crossability between these two species, and the cytomorphology of the F1 plants and the amphidiploids were investigated. Intergeneric hybrids between the species were obtained only when B. tournefortii was involved as female parent. The hybrid plants were intermediate for most of the morphological attributes and showed very low pollen fertility compared to the parents. Although a majority of the pollen mother cells of the dihaploid hybrid (TR, 2n = 19) harboured univalents, a maximum of six bivalents were also observed. Of the 37 colchicine-treated F1 plants analyzed cytologically, 21 were found to be true amphidiploids (2n = 38), whereas seven were mixoploids. Meiosis in the amphidiploids was characterized by the occurrence of 19 bivalents, though multivalents and univalents were also observed in a few cells. Most of the amphidiploid plants exhibited a fairly high pollen and seed fertility, which was further enhanced with the advancement of generations. Out of 69 plants investigated in the A2 generation, 64 were euploids while the remaining five were aneuploids (2n = 36, 37, 39, 40 and 42). The newly synthesized Raphanofortii has great potential as a new commercial crop, as well as a bridge species for the transfer of economically important attributes of both the species to other Brassicas. Received: 2 November 1999 / Accepted: 26 March 2000  相似文献   

3.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

4.
New types of cytoplasmic male sterility (CMS) in Brassica oleracea would be useful for F1 hybrid seed production. The `Anand' cytoplasm derives from the wild species B. tournefortii. Rapid cycling stocks of B. rapa and B. oleracea were used in cybridization experiments as donor and recipient of `Anand' (=`tour') CMS, respectively. Prior to fusion with PEG, donor protoplasts were inactivated with 30 krad γ-rays and recipient ones with 3 mM iodoacetate, respectively. No calli were obtained from the pre-treated protoplasts. The frequency of shoot regeneration was 21–43% in untreated B. oleracea controls, but only 0–0.5% in `Anand' B. rapa. Putative cybrids were regenerated from about 3% of the calli from fused protoplasts. Regenerated plants were analyzed for nuclear DNA content, plant and flower morphology, pollen production, female fertility, cold tolerance, and organelle composition. Eighty-one percent of the regenerated controls and 63% of fusion-derived plants were diploid. The rest showed DNA contents corresponding to 2x–4x, 4x, or higher ploidy levels, presumably due to somatic doubling in vitro and/or fusions in which the donor nucleus was not completely eliminated. Sixty-four percent of the cybrids had stamens and petals varying in size and shape and were male-sterile, with indehiscent anthers. Their phenotype was otherwise similar to that of B. oleracea. The remaining plants had normal flowers and were male-fertile. Data from crosses with fertile pollinators indicated good female fertility in some of the sterile lines, both after hand and insect pollinations in cages. Mitochondrial (mt) segregation in the cybrids was slightly biased towards `Anand' mitochondria, and the presence of `Anand' mtDNA fragments was strongly associated with male sterility. Evidence of mtDNA rearrangements was obtained in some cybrids. Segregation of chloroplasts was slightly biased towards B. oleracea. The presence of `Anand' chloroplasts with a B. oleracea nucleus did not result in cold temperature chlorosis, as seen in `Ogura' CMS plants. Received: 22 February 1996 / Accepted: 10 May 1996  相似文献   

5.
Du XZ  Ge XH  Zhao ZG  Li ZY 《Plant cell reports》2008,27(2):261-271
The intertribal sexual hybrids between three Brassica napus (2n = 38) cultivars and Lesquerella fendleri (2n = 12) with the latter as pollen parent were obtained and characterized for their phenotypes and chromosomal and genomic constitutions. F1 plants and their progenies mainly resembled female B. napus parents, while certain characters of L. fendleri were expressed in some plants, such as longer flowering period, basal clustering stems and particularly the glutinous layer on seed coats related to drought tolerance. Twenty-seven F1 plants were cytologically classified into five types: type I (16 plants) had 2n = 38, type II (2) had 2n = 38–42, type III (3) had 2n = 31–38, type IV (5) had 2n = 25–31, and type V (1) had 2n = 19–22. Some hybrids and their progenies were mixoploids in nature with only 1–2 chromosomes or some chromosomal fragments of L. fendleri included in their cells. AFLP (Amplified fragments length polymorphism) analysis revealed that bands absent in B. napus, novel for two parents and specific for L. fendleri appeared in all F1 plants and their progenies. Some progenies had the modified fatty acid profiles with higher levels of linoleic, linolenic, eicosanoic and erucic acids than those of B. napus parents. The occurrence of these partial hybrids with phenotypes, genomic and fatty acid alterations resulted possibly from the chromosome elimination and doubling accompanied by the introgression of alien DNA segments and genomic reorganization. The progenies with some useful traits from L. fendleri should be new and valuable resource for rapeseed breeding.  相似文献   

6.
Oilseed crop Brassica carinata BBCC is a natural allotetraploid of diploid species B. nigra BB and B. oleracea CC. To transfer the nuclear and organelle genes in a concerted manner from an alien species, B. tournefortii TT, to B. carinata, we produced somatic hybrids with genomic configuration TCBB using B. nigra and B. oleracea stocks that carried selectable marker genes. B. tournefortii TT was sexually crossed with hygromycin-resistant B. oleracea CC. Protoplasts isolated from shoot cultures of hygromycin-resistant F1 hybrids of B. tournefortiixB. oleracea TC were fused with protoplasts of kanamycin-resistant B. nigra BB. In two different fusion experiments 80 colonies were obtained through selection on media containing both hygromycin and kanamycin. Of these, 39 colonies regenerated into plants. Analysis of 15 regenerants by random amplified polymorphic DNA (RAPD) markers showed the presence of all three genomes, thereby confirming these to be true hybrids. Restriction fragment length polymorphism (RFLP) analysis of organelle genomes with heterologous chloroplast (cp)and mitochondrial (mt) DNA probes showed that the chloroplast genome was inherited from either of the two parents while mitochondrial genomes predominantly showed novel configurations due to either rearrangements or intergenomic recombinations. We anticipate that the TCBB genomic configuration will provide a more conducive situation for recombination between the T and C genomes during meiosis than the TTCCBB or TCCBB type configurations that are usually produced for alien gene transfer. The agronomic aim of producing TCBB hybrids is to transfer mitochondrial genes conferring cytoplasmic male sterility and nuclear genes for fertility restoration from B. tournefortii to B. carinata.  相似文献   

7.
The cytological possibility of gene transfer from Sinapis pubescens to Brassica napus was investigated. Intergeneric hybrids between Brassica napus (2n = 38) and Sinapis pubescens (2n = 18) were produced through ovary culture. The F1 hybrids were dihaploid and the chromosome configurations were (0–1) III + (2–11) II + (5–24) I . One F2 plant with 38 chromosomes was obtained from open pollination of the F1 hybrid. Thirty-one seeds were obtained from the backcross of the F2 plant with B. napus. Five out of seven plants had 38 chromosomes, and the pollen stainability ranged from 0% to 81.4%. In the B2 plants obtained from the backcross of B1 plants with B. napus, 66.7% of the plants examined had 38 chromosomes. S. pubescens may become a gene source for the improvement of B. napus.  相似文献   

8.
Several studies in Europe and North America have shown that cultivated Brassica napus will readily hybridise with wild Brassica rapa but at widely different frequencies. To understand the implications of this phenomenon with regard to transgene flow, we examined the rate at which cultivated B. napus cv. Westar containing a capsid (coat protein, CP)‐coding sequence from Turnip mosaic virus (Potyvirus) hybridised under glasshouse conditions with wild B. rapa from Culham, in Oxfordshire, UK. We found that the hybridisation rate, as judged using simple sequence repeat (SSR)‐PCR and primer oligonucleotides specific for either the C or the A genomes in progeny from individual crosses varied from 5% to 100%. In hybrids (F1 progeny), transgene transfer was always observed (inferred by SSR‐PCR) when hybrids were detected. Our observations revealed a hitherto unrecorded source of variability in transgene flow to wild UK B. rapa.  相似文献   

9.
Brassica napus, an allopolyploid species having the A genome of B. rapa and the C genome of B. oleracea, is self-compatible, although both B. rapa and B. oleracea are self-incompatible. We have previously reported that SP11/SCR alleles are not expressed in anthers, while SRK alleles are functional in the stigma in B. napus cv. ‘Westar’, which has BnS-1 similar to B. rapa S-47 and BnS-6 similar to B. oleracea S-15. This genotype is the most frequent S genotype in B. napus, and we hypothesized that the loss of the function of SP11 is the primary cause of the self-compatibility of ‘Westar’. To verify this hypothesis, we transformed ‘Westar’ plants with the SP11 allele of B. rapa S-47. All the transgenic plants and their progeny were completely self-incompatible, demonstrating self-compatibility to be due to the S haplotype having the non-functional SP11 allele in the A genome, which suppresses a functional recessive SP11 allele in the C genome. An artificially synthesized B. napus line having two recessive SP11 alleles was developed by interspecific hybridization between B. rapa and B. oleracea. This line was self-incompatible, but F1 hybrids between this line and ‘Westar’ were self-compatible. These results suggest that the self-compatibility mechanism of ‘Westar’ is applicable to F1 seed production in B. napus.  相似文献   

10.
Interspecific crosses contribute significantly to plant evolution enabling gene exchanges between species. The efficiency of interspecific crosses depends on the similarity between the implicated genomes as high levels of genome similarity are required to ensure appropriate chromosome pairing and genetic recombination. Brassica napus (AACC) is an allopolyploid, resulting from natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), both being diploid species derived from a common ancestor. To study the relationships between genomes of these Brassica species, we have determined simultaneously the pairing and recombination pattern of A and C chromosomes during meiosis of AAC triploid hybrids, which result from the interspecific cross between natural B. napus and B. rapa. Different AAC triploid hybrids and their progenies have been analysed using cytogenetic, BAC-FISH, and molecular techniques. In 71% of the pollen mother cells, homologous A chromosomes paired regularly, and usually one chromosome of each pair was transmitted to the progeny. C chromosomes remained mainly univalent, but were involved in homoeologous pairing in 21.5% of the cells, and 13% of the transmitted C chromosomes were either recombined or broken. The rate of transmission of C chromosomes depended on the identity of the particular chromosome and on the way the hybrid was crossed, as the male or as the female parent, to B. napus or to B. rapa. Gene transfers in triploid hybrids are favoured between A genomes of B. rapa and B. napus, but also occur between A and C genomes though at lower rates.  相似文献   

11.
With the object of studying the genomic relationships of Brassica tournefortii Gouan with the other elementary species of Brassica viz. B. campestris (2n=20, A genome), B. oleracea (2n=18, C genome) and B. nigra (2n=16, B genome), it has been hybridized with them. The percentage of F1 hybrids formed, their morphology and meiotic behaviour have been described. Based upon crossability relationships and meiotic pairing in the F1 hybrids, it is inferred that the D genome of B. tournefortii is more closely related to the A genome than to the B and C genomes. It may have been derived from the A genome which likewise shows a strong genetic isolation from B and C. The species has developed a strong genetic barrier in the course of its evolution and shows little crossability, high hybrid sterility and no gene flow with any of the other elementary species. The fact that it has not formed any natural amphidiploids with the elementary species which otherwise are formed in all combinations, is more evidence that it originated more recently than the A genome. It is presumed that B. tournefortii, being more distantly related to B. nigra than to other elementary species, may form stable artificial aphid resistant amphidiploids with the former.  相似文献   

12.
The frequency of hybridisation between Brassica napus L. and Raphanus raphanistrum L. under agronomic conditions was assessed in field experiments, where R. raphanistrum were randomly planted at two different densities into large plots of B. napus. An acetolacate synthase (ALS)-inhibiting herbicide-resistant trait was used to detect potential hybrid individuals. No hybrids were detected amongst 25,000 seedlings grown from seed collected from R. raphanistrum plants. Two hybrids were obtained from more than 52-million B. napus seedlings. Both hybrids were characterised as amphidiploids (AACCRrRr, 2n = 56) and were fertile. The frequency of hybridisation into B. napus in this experiment using male-fertile B. napus was 4 × 10–8. Received: 31 August 2000 / Accepted: 23 January 2001  相似文献   

13.
Novel Brassica napus somatic hybrids have been created through protoplast fusion of B. oleracea var. botrytis and B. rapa var. oleifera genotypes selected for high erucic acid (22:1) content in the seed oil. Fifty amphidiploids (aacc) and one putative hexaploid (aacccc) hybrid were recovered in one fusion experiment. Conversely, only one amphidiploid and numerous regenerates with higher DNA contents were produced in a similar fusion using a different B. rapa partner. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Analysis of organellar DNA revealed a distinct bias toward the inheritance of chloroplasts from the B. rapa (aa) genome. All amphidiploids set self-pollinated seed. A erucic acid content as high as 57.4% was found in the seed oil of one regenerated plant. Fatty acid composition was stable in the R1 generation and was coupled with increased female fertility. Other novel agronomic characters in the hybrids recovered include large seed size, lodging resistance, and non-shattering seed pods.  相似文献   

14.
In order to set up a quick and easy procedure for determining the cytoplasmic composition of somatic hybrids, we tested a set of ’universal primers’ for plastidial and mitochondrial DNA on 13 genotypes belonging to the following species: Nicotiana tabacum, Solanum commersonii, Solanum tuberosum, Solanum etuberosum, Solanum phureja, Brassica oleracea, Brassica rapa, ’Anand’ CMS B. rapa, ’Chiang’ CMS B. oleracea, and ’Ogura’ CMS B. oleracea. Such primers are homologous to conserved coding sequences and amplify polymorphic intergenic or intronic regions. cpDNA polymorphism within Solanum and Brassica spp. was found with two and four primer pairs, respectively. The primers for the intergenic region between the trnF and trnV genes gave polymorphism among several tested species and were used in S. commersonii (+) S. tuberosum somatic hybrids,and B. oleracea (+) ’Anand’ CMS B. rapacybrids. Two primer pairs for mtDNA revealed polymorphism between S. commersonii and S. tuberosum, and one showed intraspecific polymorphism in S. tuberosum. The primer pair for the intergenic region between the rps14 and cob genes (pumD) showed a fragment of about 1.5 kb in S. tuberosum and S. phureja. A shorter fragment and no amplification were found in S. etuberosum and S. commersonii, respectively, suggesting frequent intrageneric rearrangements in this genome region. All Brassicaceae evidenced a fragment about 150-bp longer than in S. tuberosum. The same primers were also used with interspecific Solanum spp. somatic hybrids. Both PCR with pumD primers and hybridization with rpl5/rps14 genes indicated lack of linkage between rpl5/rps14 and cob genes in S. commersonii. Compared to direct visualization of restricted organellar DNA or Southern analysis with labelled probes, amplification of cpDNA and mtDNA with universal primers, followed by electrophoresis of either entire or restricted amplified fragments, is a simpler, more rapid and less expensive method to determine the organelle genome composition of interspecific Solanum and Brassica somatic hybrids. Received: 2 August 2000 / Accepted: 22 September 2000  相似文献   

15.
The level of transgene expression in crop × weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T1 single-locus insert GFP/Bacillus thuringiensis (Bt) transgenic canola (Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC1F1, BC2F1) were produced by backcrossing various GFP/Bt transgenic canola (B. napus, cv Westar) and birdseed rape (Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC2F2 Bulk) were generated by crossing BC2F1 individuals in the presence of a pollinating insect (Musca domestica L.). The ploidy of plants in the BC2F2 Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F1 hybrid generations contained 95–97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15–29% presence in the BC2F2 Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC2F2 Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid generations (F1, BC1F1 and BC2F1). These data demonstrate that the formation of homozygous individuals within hybrid populations increases the average level of transgene expression as generations progress. This phenomenon must be considered in the development of risk-management strategies.Communicated by J. Dvorak  相似文献   

16.
It has been proposed that both complete and partial separation of the parental genomes during mitosis and meiosis occurs in the intergeneric hybrids between Orychophragmus violaceus (2n=24) and the three cultivated Brassica tetraploids (B. napus, B. carinata and B. juncea). The hypothesis has been that this and the variations in chromosome numbers of these hybrids and their progenies result from the different roles of the A, B and C genomes originating from Brassica. To test this hypothesis, we produced hybrids between O. violaceus and the cultivated Brassica diploids. The hybrids with B. oleracea (2n=18, CC) had an intermediate morphology, but their petals were purple like those of O. violaceus. They were sterile and had the expected chromosome number (2n=21) in their mitotic and meiotic cells. The hybrid with B. campestris (2n=20, AA) was morphologically intermediate, except for its partial fertility and its yellow petals, which were similar to those of B. campestris. It was mixoploid (2n=23–42), and cells with 2n=34 were most frequent. Partial separation of parental genomes during mitosis, leading to the addition of O. violaceus chromosomes to the B. campestris complement, was proposed to explain the findings in the mitotic and meiotic cells of the hybrid and its progeny. In crosses with B. nigra (2n=16, BB), the majority of the F1 plants were of the maternal type (2n=16), a small fraction had B. nigra morphology but were mixoploids (2n=16–18), predominantly with 2n=16 cells and three plants, each with a specific morphology, were mixoploids consisting of cells with varying ranges of chromosome numbers (2n=17–26, 11–17 and 14–17). The origin of these different types of plants was inferred to be a result of the complete and partial separation of parental genomes and the loss of O. violaceus chromosomes. Our findings in the three crosses suggest that the A genome was more influential than the C genome with respect to complete genome separation during mitosis and meiosis of the hybrids with B. napus. Possible complete and partial genome separation during mitotic divisions of the hybrids with B. carinata was mainly attributed to the role of the B genome. The combined roles of the A and B genomes would thus contribute to the most variable chromosome numbers of mitotic and meiotic cells in the hybrids with B. juncea and their progenies. The possible cytological mechanisms pertaining to these hybrids and the potential of genome separation in the production of Brassica aneuploids and homozygous plants are discussed. Received: 8 February 1998 / Accepted: 12 March 1999  相似文献   

17.
Gene transferability from transgenic rapeseed to various subspecies and varieties of Brassica rapa was assessed in this study. Artificial crossability was studied in 118 cultivars of 7 B. rapa subspecies and varieties with the transgenic rapeseed GT73 (Brassica napus) as the pollen donor. On average 5.7 seeds were obtained per pollination, with a range from 0.05 to 19.4. The heading type of B. rapa L. showed significantly higher crossability than non-heading types of B. rapa. The spontaneous outcrossing rate between B. rapa (female) and the transgenic rapeseed Ms8 × Rf3 (B. napus) (male) ranged from 0.039 to 0.406%, with an average of 0.19%. The fertilization process and the development of the hybrid seeds as shown by fluorescent staining techniques indicated that the number of adhered pollens on the stigma was reduced by 80%, the number of pollen tubes in the style was reduced by 2/3 and the fertilization time was delayed by over 20 h when pollinated with the transgenic rapeseed Ms8 × Rf3 in comparison with the bud self-pollination of B. rapa as control. About 10–70% of the interspecific hybrid embryos were aborted in the course of development. Some seeds looked cracked in mature pods, which showed germination abilities lower than 10%. The spontaneous outcrossing rates were much lower than the artificial crossability, and their survival fitness of the interspecific hybrid was very low, indicating that it should be possible to keep the adventitious presence of the off-plants under the allowed threshold, if proper measures are taken.  相似文献   

18.
Resistance to six known races of black rot in crucifers caused by Xanthomonas campestris pv. campestris (Pammel) Dowson is absent or very rare in Brassica oleracea (C genome). However, race specific and broad-spectrum resistance (to type strains of all six races) does appear to occur frequently in other brassica genomes including B. rapa (A genome). Here, we report the genetics of broad spectrum resistance in the B. rapa Chinese cabbage accession B162, using QTL analysis of resistance to races 1 and 4 of the pathogen. A B. rapa linkage map comprising ten linkage groups (A01–A10) with a total map distance of 664 cM was produced, based on 223 AFLP bands and 23 microsatellites from a F2 population of 114 plants derived from a cross between the B. rapa susceptible inbred line R-o-18 and B162. Interaction phenotypes of 125 F2 plants were assessed using two criteria: the percentage of inoculation sites in which symptoms developed, and the severity of symptoms per plant. Resistance to both races was correlated and a cluster of highly significant QTL that explained 24–64% of the phenotypic variance was located on A06. Two additional QTLs for resistance to race 4 were found on A02 and A09. Markers closely linked to these QTL could assist in the transference of the resistance into different B. rapa cultivars or into B. oleracea.  相似文献   

19.
Background and Aims Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species.Methods Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species.Key Results The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus.Conclusions Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.  相似文献   

20.
 There is strong evidence indicating that gene flow from transgenic B. napus into weedy wild relatives is inevitable following commercial release. Research should now focus on the transmission, stability, and impact of transgene expression after the initial hybridization event. The present study investigated the transfer of a phosphinothricin-tolerance transgene by inter-specific hybridization between B. rapa and two transgenic B. napus lines. The expression of the transgene was monitored in the F1 hybrids and in subsequent backcross generations. The transgene was transmitted relatively easily into the F1 hybrids and retained activity. Large differences in the transmission frequency of the transgene were noted between offspring of the two transgenic lines during backcrossing. The most plausible explanation of these results is that the line showing least transmission during backcrossing contains a transgene integrated into a C-genome chromosome. Approximately 10% of offspring retained the tolerant trait in the BC3 and BC4 generations. The implications of these findings for the stable introgression of transgenes carried on one of the chromosomes of the C-genome from B. napus and into B. rapa are briefly discussed. Received: 5 November 1996 / Accepted: 21 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号