首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selenoprotein P associates with endothelial cells in rat tissues   总被引:11,自引:0,他引:11  
 Selenoprotein P is an extracellular heparin-binding protein that has been implicated in protecting the liver against oxidant injury. Its location in liver, kidney, and brain was determined by conventional immunohistochemistry and confocal microscopy using a polyclonal antiserum. Selenoprotein P is associated with endothelial cells in the liver and is more abundant in central regions than in portal regions. It is also present in kidney glomeruli associated with capillary endothelial cells. Staining of selenoprotein P in the brain is also confined to vascular endothelial cells. The heparin-binding properties of selenoprotein P could be the basis for its binding to tissue. Its localization to the vicinity of endothelial cells is potentially relevant to its oxidant defense function. Accepted: 6 March 1997  相似文献   

2.
Radioreceptor assay technology was used to show the presence in the rat of a receptor that binds selenoprotein P, a selenocysteine-containing rat plasma protein. 75Se-labeled selenoprotein P bound to testis, kidney, and liver membranes. The binding was specific in that increasing amounts of partially-fractionated rat plasma specifically displaced the binding of 75Se-labeled selenoprotein P to testis membrane in a competitive manner. 75Se-labeled selenoprotein P binding was saturable in the presence of increasing amounts of testis membranes. The binding of 75Se-labeled selenoprotein P was optimal at about pH 4.2. Several proteins and blood fractions had little or no significant effect on binding of 75Se-labeled selenoprotein P to testis membranes. All plasma sources tested specifically displaced 75Se-labeled selenoprotein P from testis membrane, indicating that selenoprotein P-related proteins may be widespread in nature. The study indicated that selenoprotein P has a receptor and is involved in selenium transport.  相似文献   

3.
Rat plasma selenoprotein P properties and purification   总被引:1,自引:0,他引:1  
A selenoprotein in rat plasma, selenoprotein P, was fractionated and characterized. Plasma collected from rats 3 h post injection of 75SeO3(2-) contained one 75Se-labeled protein, selenoprotein P. Selenoprotein P was fractionated using salt precipitation, Affi-Gel Blue, and DEAE chromatography. The 75Se-containing subunit of selenoprotein P was purified to 90% homogeneity using SDS-polyacrylamide gel electrophoresis followed by electroelution. This isolation resulted in an 850-fold purification of the 75Se-containing subunit of selenoprotein P with a 15% yield of 75Se radioactivity. The molecular weight of selenoprotein P in plasma was 98,000. The 75Se-containing subunit of selenoprotein P had a molecular mass of 57 kDa as determined by SDS-polyacrylamide gel electrophoresis. Isoelectric focusing under nondenaturing conditions resulted in a band of 75Se radioactivity at pH 5.4. A comparison of Coomassie Blue- and silver-staining properties of selenoprotein P in SDS-polyacrylamide gels was made. Reverse-phase HPLC and Sephadex G-50 chromatography of tryptic peptides of the 57 kDa subunit of selenoprotein P yielded several peaks of 75Se radioactivity. These results indicate that 75Se is present in several locations within the 57 kDa subunit of selenoprotein P.  相似文献   

4.
Multiple selenocysteine content of selenoprotein P in rats   总被引:2,自引:0,他引:2  
Partially purified selenoprotein P from rat plasma was digested with either trypsin, endoprotease Lys-C, or endoprotease Arg-C and analyzed by high pressure liquid chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Several 75Se-labeled peptides were detected. The moles of selenium in selenoprotein P were estimated based on the 75Se content of the 75Se-labeled peptide fragments. Using this method, selenoprotein P was shown to contain approximately 9 moles of selenium. This is the first report of a selenoprotein containing more than one selenium per polypeptide. These findings support the proposed function of this protein in selenium transport.  相似文献   

5.
Selenoproteins contain selenium in stoichiometric amounts. Most are synthesized by a process that decodes UGA codons as selenocysteine. Twelve animal selenoproteins have been characterized, and biochemical functions have been described for all but three. Two of these “orphan” selenoproteins are discussed in this paper. Selenoprotein P is an extracellular glycoprotein that contains multiple selenocysteines. It binds heparin and associates with endothelial cells. Two isoforms have been identified. Plasma concentration of selenoprotein P correlates with protection against diquat liver injury, suggesting that the protein protects against oxidant injury. Selenoprotein W is a small intracellular protein that contains one selenocysteine. It binds glutathione and has been suggested to function in oxidant defense. The postulated oxidant defense properties of these selenoproteins are consistent with the facile thiol-redox properties of selenocysteine. It can be predicted that more proteins will be discovered that take advantage of the chemical properties of selenium. BioEssays 21:231–237, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

6.
A selenocysteine-containing selenium-transport protein in rat plasma   总被引:2,自引:0,他引:2  
A selenocysteine-containing rat plasma protein (selenoprotein P) was examined for a possible role in the transport of selenium in the rat. A time-course study of the localization of injected 75Se from [75Se]selenite indicated that one-half of the selenium was sequestered by liver tissue 1 h after injection and that one-fourth of the 75Se in the plasma was attached to selenoprotein P 3 h after injections. By 25 h there was little 75Se in plasma, and much of the 75Se had accumulated in nonhepatic tissues. 75Se was incorporated into selenoprotein P by liver slices in a process that was sensitive to the protein synthesis inhibitor cycloheximide. The fate of 75Se from intracardially injected 75Se-labeled selenoprotein P was followed in rats maintained on selenium-deficient and selenium-sufficient diets. Substantially more of the injected 75Se was present per gram wet weight in the testes and kidneys than the livers of the selenium-deprived rats after 5 h. The results indicate that selenoprotein P is synthesized in rat liver and that it transfers selenium from the liver to extrahepatic tissues.  相似文献   

7.
Selenoprotein W gene regulation by selenium in L8 cells   总被引:3,自引:0,他引:3  
Q.P. Gu  W. Ream  P.D. Whanger 《Biometals》2002,15(4):411-420
  相似文献   

8.
Selenoprotein P is a plasma protein recently purified and characterized as containing 7.5 +/- 1.0 selenium atoms/molecule as selenocysteine. In rats maintained on a defined diet containing nutritionally adequate amounts of selenate as the sole selenium source, over half the selenium in plasma is accounted for by selenoprotein P. Its cDNA has been cloned from a rat liver library and sequenced. The sequence is highly unusual, containing 10 TGA codons in its open reading frame prior to the TAA termination codon. TGA designates selenocysteine in other selenoproteins, and limited peptide sequencing that included the amino acids encoded by two of the TGA codons verified that they correspond to selenocysteine. The deduced 366-amino acid sequence is histidine- and cysteine-rich and contains 9 of its selenocysteines in the terminal 122 amino acids. Comparison of the deduced amino acid sequence of selenoprotein P with those of other selenoprotein reveals no significant similarities. Selenoprotein P represents a new class of selenoproteins and is the first protein described with more than 1 selenocysteine in a single polypeptide chain. The primary structure of selenoprotein P suggests that it might be responsible for some of the antioxidant properties of selenium.  相似文献   

9.
Selenoprotein P is an abundant extracellular glycoprotein. Its mRNA contains 10 UGAs in an open reading frame terminated by a UAA. This predicts that full-length selenoprotein P will contain 10 selenocysteine residues. Full-length selenoprotein P and three smaller isoforms that have identical N termini have been demonstrated. Selenoprotein P was purified from rat plasma, and the four isoforms were separated by heparin chromatography and SDS-PAGE. Mass spectrometric peptide analysis of the full-length isoform verified 357 of its 366 predicted amino acid residues, including its C terminus and all 10 selenocysteines. The C termini of the smaller isoforms were characterized by mass spectrometry. The shortened isoforms terminated where the second, third, and seventh selenocysteine residues were predicted to be. This suggests that all isoforms arise from the same mRNA and that the UGAs that specify the second, third, and seventh selenocysteines in full-length selenoprotein P can alternatively serve to terminate translation, producing the shorter isoforms.  相似文献   

10.
Selenoprotein P was partially purified (> 1000-fold) from human plasma in four chromatographic steps using 75Se-labeled selenoprotein P secreted by HepG2 cells in culture as a marker. The purified preparation was injected into mice and monoclonal antibodies, which precipitated the labeled protein, were generated. Neither of two different monoclonal antibodies had cross-reactivity with plasma from five animal species. Antibodies were coupled to agarose, and selenoprotein P was purified from human plasma by immunoaffinity chromatography followed by chromatography on heparin agarose. With two different matrix-bound monoclonal antibodies, the purification procedure gave two bands on SDS-PAGE with mobilities corresponding to 61 and 55 kDa. Both bands stained for carbohydrate and showed increased electrophoretic mobility after enzymatic deglycosylation. Immunoaffinity chromatography removed approx. one-third of the selenium from plasma or 0.4 μmol Se/l at a total selenium concentration of 1.1 μmol/l, indicating that selenoprotein P constituted this proportion of total plasma selenium in healthy US blood donors.  相似文献   

11.
Most selenoproteins contain a single selenocysteine residue per polypeptide chain, encoded by an in-frame UGA codon. Selenoprotein P is unique in that its mRNA encodes 10-12 selenocysteine residues, depending on species. In addition to the high number of selenocysteines, the protein is cysteine- and histidine-rich. The function of selenoprotein P has remained elusive, in part due to the inability to express the recombinant protein. This has been attributed to presumed inefficient translation through the selenocysteine/stop codons. Herein, we report for the first time the expression of recombinant rat selenoprotein P in a transiently transfected human epithelial kidney cell line, as well as the endogenously expressed protein from HepG2 and Chinese hamster ovary cells. The majority of the expressed protein migrates with the predicted 57-kDa size of full-length glycosylated selenoprotein P. Based on the histidine-rich nature of selenoprotein P, we have purified the recombinant and endogenously expressed proteins using nickel-agarose affinity chromatography. We show that the recombinant rat and endogenous human proteins react in Western blotting and immunoprecipitation assays with commercial anti-histidine antibodies. The ability to express, purify, and immunochemically detect the recombinant protein provides a foundation for investigating the functions and efficiency of expression of this intriguing protein.  相似文献   

12.
Selenium (Se)-containing proteins in microsomal fractions of rat kidney and liver were investigated after isotopic labeling of rats with [75Se]selenite. More than 85% of the 75Se in the solubilized microsomal extracts precipitated with protein after trichloroacetic acid treatment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), used to separate the labeled protein subunits in the solubilized microsomal extracts, revealed several 75Se-containing proteins in addition to glutathione peroxidase. 75Se-labeled subunits with molecular weights of 55, 30, 26, 22, 19, and 17 kDa were present in microsomal fractions of kidney and liver. The 75Se-labeled tryptic peptide of the 55 kDa subunit had the same Rf value on a 17% SDS-PAGE gel as the peptide from plasma selenoprotein P. A time-course study of the labeling of individual protein subunits in kidney and liver microsomes from Se-supplemented and Se-deficient rats showed that most of the 75Se was associated with the 55 kDa subunit 3 hr after injection. The amount of 75Se associated with this protein subunit decreased by 12 hr, with a concurrent increase in the labeling of lower molecular-weight subunits. The results support the hypothesis that there is a mechanism for transfer of Se from the 55 kDa subunit to other Se-containing proteins.  相似文献   

13.
Selenoprotein P is a newly characterized selenoprotein. It is the first protein described to contain multiple selenocysteines. It is secreted by the liver into the plasma and turns over rapidly. Its concentration is sensitive to the selenium status of the animal. Its function is unknown.  相似文献   

14.
15.
Heparin-binding histidine and lysine residues of rat selenoprotein P   总被引:3,自引:0,他引:3  
Selenoprotein P is a plasma protein that has oxidant defense properties. It binds to heparin at pH 7.0, but most of it becomes unbound as the pH is raised to 8.5. This unusual heparin binding behavior was investigated by chemical modification of the basic amino acids of the protein. Diethylpyrocarbonate (DEPC) treatment of the protein abolished its binding to heparin. DEPC and [(14)C]DEPC modification, coupled with amino acid sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry of peptides, identified several peptides in which histidine and lysine residues had been modified by DEPC. Two peptides from one region (residues 80-95) were identified by both methods. Moreover, the two peptides that constituted this sequence bound to heparin. Finally, when DEPC modification of the protein was carried out in the presence of heparin, these two peptides did not become modified by DEPC. Based on these results, the heparin-binding region of the protein sequence was identified as KHAHLKKQVSDHIAVY. Two other peptides (residues 178-189 and 194-234) that contain histidine-rich sequences met some but not all of the criteria of heparin-binding sites, and it is possible that they and the histidine-rich sequence between them bind to heparin under some conditions. The present results indicate that histidine is a constituent of the heparin-binding site of selenoprotein P. The presence of histidine, the pK(a) of which is 7.0, explains the release of selenoprotein P from heparin binding as pH rises above 7.0. It can be speculated that this property would lead to increased binding of selenoprotein P in tissue regions that have low pH.  相似文献   

16.
17.
The human selenoprotein W coding region with the selenocysteine codon (TGA) changed to a cysteine codon (TGT) was fused to six histidine codons (at its 3 end), cloned into a prokaryotic expression vector (pTrc99a), and the corresponding mutated selenoprotein W was expressed in bacteria. The protein was purified by Ni-NTA agarose column and reverse phase HPLC. Polyclonal antibodies raised against this protein were used in Western blots to determine tissue distribution of selenoprotein W from rhesus monkeys fed a commercial chow. Selenoprotein W was found in several tissues with highest amounts in skeletal muscle and heart (muscle 6 fold greater than liver) and lowest levels in liver, but selenium concentrations were highest in kidneys (10 fold greater than muscle) and lowest in skeletal muscle. Northern blots using a human selenoprotein W cDNA probe indicated that mRNA levels were highest in monkey skeletal muscle and heart (2-2.5 fold greater than in liver), which is similar to the pattern found with a human multiple tissue Northern blot. However, as in the monkey, selenium concentrations were highest in human kidney and lowest in skeletal muscle and heart. Thus, selenoprotein W protein levels correlated with selenoprotein W mRNA levels but not with tissue selenium concentrations.  相似文献   

18.
In eukaryotes, the decoding of the UGA codon as selenocysteine (Sec) requires a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA. We purified a SECIS binding protein, SBP2, and obtained a cDNA clone that encodes this activity. SBP2 is a novel protein containing a putative RNA binding domain found in ribosomal proteins and a yeast suppressor of translation termination. By UV cross-linking and immunoprecipitation, we show that SBP2 specifically binds selenoprotein mRNAs both in vitro and in vivo. Using (75)Se-labeled Sec-tRNA(Sec), we developed an in vitro system for analyzing Sec incorporation in which the translation of a selenoprotein mRNA was both SBP2 and SECIS element dependent. Immunodepletion of SBP2 from the lysates abolished Sec insertion, which was restored when recombinant SBP2 was added to the reaction. These results establish that SBP2 is essential for the co-translational insertion of Sec into selenoproteins. We hypothesize that the binding activity of SBP2 may be involved in preventing termination at the UGA/Sec codon.  相似文献   

19.
硒蛋白P的研究进展   总被引:1,自引:0,他引:1  
硒蛋白P(SeP)是从大鼠和人血浆中分离、纯化得到的一种糖蛋白 ,每个硒蛋白P多肽含有10个硒代半胱氨酸。硒蛋白P中的硒含量占大鼠和人血浆中硒含量的 5 0 %以上。在其mRNA开放阅读框架中克隆的cDNA的序列含有 10个UGA密码子。硒代半胱氨酸在一个UGA密码子处嵌入蛋白的一级结构 ,尽管对硒蛋白P功能还没有彻底了解 ,它的一种非常可能的作用是作为一种胞外抗氧化剂。大鼠血浆中的硒蛋白P在体内实验中对Diquat诱导的脂质过氧化和肝损坏具有保护作用 ,人血浆中的硒蛋白P在体外实验中显示减少内毒素过氧化硝酸盐和磷脂氢过氧化物的活性。牛血浆中的硒蛋白P在神经细胞的培养中作为一存活促进因子。  相似文献   

20.
Selenoprotein P is the second plasma selenoprotein to be purified. It is a glycoprotein and has been shown to be distinct from plasma glutathione peroxidase. This study characterizes selenoprotein P further. Deglycosylation of the protein shifts its migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from Mr 57,000 to Mr 43,000, indicating it has a substantial carbohydrate component. Measurement of selenium indicates a selenium content of 7.5 +/- 1.0 atoms/molecule based on a polypeptide weight of 43,000. Amino acid analysis accounts for all the selenium as selenocysteine. The protein is also rich in cysteine (17 residues) and histidine (23 residues). Fragmentation of selenoprotein P by trypsin and by cyanogen bromide produces peptides with varying selenium content. This indicates that selenium-rich regions of the protein exist. The concentration of selenoprotein P determined by radioimmunoassay in serum from control rats is 26.3 +/- 4.5 micrograms/ml and in serum from selenium-deficient rats it is 2.7 +/- 0.8 micrograms/ml. Depletion of selenoprotein P from control serum using an immunoaffinity column indicates that over 60% of serum selenium in the rat is contained in this protein. These results demonstrate that selenoprotein P is the major form of selenium in rat serum. It is the first selenoprotein described which has more than one selenium atom/polypeptide chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号