首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this report we describe the first patient ever found to have azoospermia in association with both exceptional complex chromosomal rearrangements and microdeletions at two translocation breakpoints. A 36-year-old male who had been suffering from male factor infertility was admitted to our clinic. The patient also displayed mild dysmorphia. An analysis of the patient's semen revealed azoospermia. GTG banding revealed the presence of an exceptional complex chromosomal rearrangement involving chromosomes 1, 4, 10 and 14. Using subtelomeric FISH analysis, the patient's karyotype was designated as 46,XY,t(1;10)(q43q44;q21q26.1)(CEB108/T7+,D1S3738-;10PTEL006+,D10S2290+, D1S3738+), ins(14;4) (q31.3;q23q33)(D14S1420+; D4S3359+, D4S2930+). Array-CGH analysis revealed two microdeletions at the 4q22.3q23 and 14q31.1q31.3 chromosomal regions. We suggest that microdeletions at the 4q22.3q23 and 14q31.1q31.3 chromosomal regions associated with both an exceptional complex chromosomal rearrangement and the Homo sapiens chromosome 4 open reading frame 37 (C4orf37) gene located at the 4q22.3q23 region might be associated with male factor infertility.  相似文献   

2.
We report on a Yq/15p translocation in a 23-year-old infertile male referred for Klinefelter Syndrome testing, who had azoospermia and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Conventional cytogenetic procedures giemsa trypsin giemsa (GTG) and high resolution banding (HRB) and molecular cytogenetic techniques Fluorescence In Situ Hybridization (FISH) performed on high-resolution lymphocyte chromosomes revealed the karyotype 46,XX, t(Y;15)(q12;p11). SRY-gene was confirmed to be present by classical Polymerase Chain Reaction (PCR) methods. His father carried de novo derivative chromosome 15 [45,X, t(Y;15)(q12;p11)] and was fertile; the karyotype of the father using G-band technique confirmed a reciprocal balanced translocation between chromosome Y and 15. In the proband, the der (15) has been inherited from the father because the mother had a normal karyotype (46,XX). In the proband, the der (15) could have produced genetic imbalance leading to unbalanced robertson translocation between chromosome Y and 15, which might have resulted in azoospermia and infertility in the proband. The paternal translocation might have lead to formation of imbalanced ova, which might be resulted infertility in the proband. Sister''s karyotypes was normal (46,XX) while his brother was not analyzed.  相似文献   

3.
对217例无精和严重少精症患者外周血淋巴细胞染色体核型进行分析,并采用聚合酶链反应对7例Y染色体结构异常患者的AZFc区进行检测。发现187例无精症患者中检出异常核型77例(41.18%)(其中46,XY,t(6;14)(p21;p13),46,XY,t(8;12)(p21;q24)为世界首报核型),主要涉及染色体异常(数目异常和结构异常);染色体异态(Y染色体异态和9号染色体臂间倒位)及46,XX性反转;30例严重少精症患者中检出异常核型4例(13.33%)(结构异常和46,XX性反转)。由此可见,性染色体数目和结构异常是精子发生障碍的主要原因,其次常染色体的某些断裂点也可能影响精子发生。AZFc区的缺失与否与精子发生也有直接关系。  相似文献   

4.
About 50% of acute myeloid leukemia (AML) patients show the occurrence of non-random chromosome rearrangements. Most of the recurrent karyotypic rearrangements in AML have been defined as distinct disease entities in the 2008 World Health Organization (WHO) classification. In this paper we report an AML case showing a novel t(4;16)(q25;q23.1) rearrangement causing the activation of epidermal growth factor (EGF) and elongation of long-chain fatty acids family member 6 (ELOVL6) genes, rather than the generation of a novel fusion gene.  相似文献   

5.
Inverted duplications associated with terminal deletions are complex anomalies described in an increasing of chromosome ends. We report on the cytogenetic characterization of the first de novo inv dup del(4) with partial 4p duplication and 4q deletion in a girl with clinical signs consistent with “recombinant 4 syndrome”. This abnormality was suspected by banding, but high-resolution molecular cytogenetic investigations allowed us to define the breakpoints of the rearrangement. The terminal duplicated region extending from 4p15.1 to the telomere was estimated to be 29.27 Mb, while the size of the terminal deletion was 3.114 Mb in the 4q35.1 region. Until now, 10 patients with duplicated 4p14-p15 and deleted 4q35 chromosome 4 have been described. In all cases the abnormal chromosome 4 was derived from a pericentric inversion inherited from one of the parents. In conclusion, we have identified the first case of inv dup del(4) with normal parents suggesting that, often, terminal duplications or terminal deletions mask complex rearrangements.  相似文献   

6.
Genomic rearrangements of chromosome 15q11–q13 are responsible for diverse phenotypes including intellectual disabilities and autism. 15q11.2 deletion, implicating common PWS/AS breakpoints BP1–BP2, has been described in patients with delayed motor and speech development and behavioural problems. Here we report the clinical and molecular characterisation of a maternally inherited BP1–BP2 deletion in two siblings with intellectual, motor and speech delay, autistic syndrome disorder and several dysmorphic features. One of the patients was also a carrier of an FMR1 allele in the low premutation range. The four genes within the deletion were under-expressed in all deletion carriers but FMR1 mRNA levels remained normal. Our results suggest that BP1-BP2 deletion could be considered as a risk factor for neuropsychological phenotypes and that it presents with variable clinical expressivity.  相似文献   

7.
Only nine non-polymorphic constitutional pericentric inversions of chromosome 9 have been described. We report on a familial inv(9)(p24q13) associated with sterility in three brothers. The mother's chromosomes were normal in blood lymphocytes (n=130); the father was already deceased and his karyotype unknown. However, the presence of any of the maternal chromosomes 9 (as assessed by C-banding) in her carrier children is inconsistent with the assumption of maternal mosaicism. Two single sisters were also carriers. The same rearranged chromosome 9 in the three sterile brothers can hardly be regarded as a fortuitous association, especially when the breakpoints are almost identical to those of the sole inversion previously found in an azoospermic male. If their father was a carrier, the observed sterility may be the result of 'chromosome anticipation', a phenomenon already invoked for certain familial chromosomal rearrangements.  相似文献   

8.
Chromosomal abnormality and Y chromosome microdeletion are regarded as two frequent genetic causes associated with spermatogenic failure in Caucasian population. To investigate the distribution of the two genetic defects in Chinese patients with azoospermia or severe oligozoospermia, karyotype analysis by G-banding was carried out in 358 idiopathic infertile men, including 256 patients with azoospermia and 102 patients with severe oligozoospermia, and screening of AZF region microdeletion of Y chromosome by multiplex PCR was performed in those patients without detectable chromosomal abnormality and 100 fertile controls. Of 358 patients, 39(10.9%) were found to have chromosomal abnormalities in which Klinefelters syndrome (47, XXY) was the most common chromosomal aberration. The incidence of sex chromosomal abnormality in patients with azoospermia was significantly higher than that in patients with severe oligozoospermia (12.1% vs 1%). Among the rest of the 319 patients with normal karyotype, 46 (14.4%) were found to have microdeletions in AZF region. The prevalence rates of AZF microdeletion was 15% and 13.1% in patients with azoospermia and severe oligozoospermia respectively. The microdeletion in AZFc was the most frequent deletion and all the microdeletions in AZFa were found in azoospermic patients. No microdeletion in AZF region was detected in fertile controls. In conclusion, chromosomal abnormality and AZF region microdeletion of Y chromosome might account for about 25% of Chinese infertile patients with azoospermia or severe oligozoospermia, suggesting the two abnormalities are important genetic etiology of spematogenic failure in Chinese population and it is essential to screen them during diagnosis of male infertility before in vitro assisted fertilization by introcytoplasmic sperm injection.  相似文献   

9.
We describe a female patient of 1 year and 5 months-old, referred for genetic evaluation due to neuropsychomotor delay, hearing impairment and dysmorphic features. The patient presents a partial chromosome 21 monosomy (q11.2→q21.3) in combination with a chromosome 3p terminal monosomy (p25.3→pter) due to an unbalanced de novo translocation. The translocation was confirmed by fluorescence in situ hybridization (FISH) and the breakpoints were mapped with high resolution array. After the combined analyses with these techniques the final karyotype was defined as 45,XX,der(3)t(3;21)(p25.3;q21.3)dn,-21.ish der(3)t(3;21)(RP11-329A2-,RP11-439F4-,RP11-95E11-,CTB-63H24 +).arr 3p26.3p25.3(35,333-10,888,738)) × 1,21q11.2q21.3(13,354,643-27,357,765) × 1. Analysis of microsatellite DNA markers pointed to a paternal origin for the chromosome rearrangement. This is the first case described with a partial proximal monosomy 21 combined with a 3p terminal monosomy due to a de novo unbalanced translocation.  相似文献   

10.
11.
Interstitial duplications involving chromosome 11q have rarely been reported in the literature and mainly represent large, cytogenetically detectable rearrangements associated with a wide and variable spectrum of neurodevelopmental disorders. We report on a patient affected by intellectual disability, craniosynostosis, and microcephaly. Array-CGH analysis identified a de novo 290 kb interstitial duplication of chromosome 11q13.3 including the FGF3 and FGF4 genes. Clinical comparison of our patient with those previously reported with overlapping 11q duplications allows us to define the minimal duplicated region associated with craniosynostosis and strongly supports the hypothesis that the constitutional increased dosage of the FGF3 and FGF4 genes is a risk factor for craniosynostosis in humans.  相似文献   

12.
男性不育中, 原发无精、少精是最为重要的因素之一, 核型异常和无精子症因子(Azoospermia factor, AZF)微缺失能解释部分原发无精、少精的原因, 然而还有许多致病因素尚不清楚。Y染色体作为男性特有的染色体, 与男性生殖系统的正常功能密切相关。文章主要对Y染色体单倍群这一分子遗传背景与男性原发无精、严重少精症之间是否存在相关性进行探讨, 为进一步探索原发无精、严重少精症的遗传学致病原因提供依据和可行的方向。采集265名生精障碍患者(原发无精症患者193名, 原发严重少精症患者72名)以及193名正常男性样本的外周血, 进行核型分析和AZF缺失分析, 以排除有此两类异常的样本。将经过筛选的样本进行Y染色体单倍群分析, 并对其单倍群分布情况进行统计分析。分析显示, 生精障碍组和对照组分别在D1*、F*、K*、N1*和O3* 上有显著性差异(P=0.032, 0.022, 0.009, 0.009, 0.017, <0.05)。Y染色体单倍群, 这一Y染色体遗传背景与男性原发生精障碍的发生有相关性。  相似文献   

13.
Previous studies and replication analyses have linked chromosome 18q21.1–23 with type 2 diabetes (T2DM) and its complications, including diabetic nephropathy (DN). Here we investigated the association of POL1-nearby variant rs488846, MALT1-nearby variant rs2874116, MC4R-nearby variant rs1942872, PHLPP rs9958800 and DSEL-nearby variant rs9966483 single nucleotide polymorphisms (SNPs) in the 18q region, previously linked with DN in African-Americans, with T2DM in (North African) Tunisian subjects, followed by their association with DN, which was performed subsequent to the analysis of the association with T2DM. Study subjects comprised 900 T2DM cases and 748 normoglycemic control, and genotyping was carried out by PCR–RFLP analysis. Of the 5 SNPs analyzed, POL1-nearby variant rs488846 [P = 0.044], and MC4R-nearby variant rs1942872 [P = 0.012] were associated with moderate risk of T2DM. However, there was a lack of consistency in the association of the 5 tested SNPs with DN. As such, it appears that the three chromosome 18q region variants appear to play a role in T2DM pathogenesis, but not with DN in North African Tunisian Arabs.  相似文献   

14.
Detection of an unbalanced t(4;15) by FISH in a child with multiple congenital anomalies: In this report, we present the clinical history and findings in a 6-month-old male with multiple congenital anomalies, developmental delay, and an initial male karyotype with 4q+. The origin of the additional segment on 4q was unequivocally established by fluorescence in situ hybridization (FISH). Whole chromosome probe for chromosome 4 and chromosome 15-specific a-satellite probe were used. The karyotype was demonstrated to be 46,XY,der(4), t(4;15)(q35;?),inv(9)(p13q13). To the best of our knowledge the above cytogenetic abnormalities with these clinical findings have not been described previously. This case further demonstrates the advantage of FISH in the identification of anomalous chromosome regions and breakpoints.  相似文献   

15.
We present rapid aneuploidy diagnosis of ring chromosome 2 with 2p25.3 and 2q37.3 microdeletions by aCGH using uncultured amniocytes in a fetus with IUGR, microcephaly, lissencephaly and ambiguous external genitalia. Our case adds lissencephaly to the list of CNS abnormalities in ring chromosome 2 with 2p25.3 and 2q37.3 microdeletions. We discuss the consequence of haploinsufficiency of HDAC4, KIF1A, PASK, HDLBP, FRAP2 and D2HGDH on 2q37.3, and haploinsufficiency of MYT1L, SNTG2 and TPO on 2p25.3 in this case.  相似文献   

16.
Summary An inv(1)(p3500q21.3) was found in an azoospermic man, his mother and two other maternal relatives. Although the mechanisms involved are still unclear, it is stressed that pericentric inversions of chromosome 1 in which the inverted chromosome becomes submetacentric (centromeric index 0.324) apparently impair spermatogenesis.  相似文献   

17.

Background

The etiology of premature ovarian failure (POF) still remains undefined. Although the majority of clinical cases are idiopathic, there are possibilities of the underestimation of the most common etiologies, probably genetic causes. By reporting a case of POF with a partial Xp duplication and Xq deletion in spite of a cytogenetically 46,XX normal karyotype, we look forward that the genetic cause of POF will be investigated more methodically.

Methods

We performed a basic and clinical study at a university hospital-affiliated fertility center. The study population was a POF patient and her family. Cytogenetic analysis, FMR1 gene analysis, multiplex ligation-dependent probe amplification (MLPA), fluorescent in situ hybridization (FISH), and oligonucleotide-array based comparative genomic hybridization (array CGH) were performed.

Results

In spite of normal cytogenetic analysis in the proband and her mother and younger sister, FMR1 gene was not detected in the proband and her younger sister. In Southern blot analysis, the mother showed a normal female band pattern, but the proband and her younger sister showed no 5.2 kb methylated band. The abnormal X chromosome of the proband and her sister was generated from the recombination of an inverted X chromosome of the mother during maternal meiosis, and the karyotype of the proband was 46,XX,rec(X)dup(Xp)inv(X)(p22.1q27.3).

Conclusion

Array CGH followed by FISH allowed precise characterization of the der(X) chromosome and the initial karyotype of the proband had been changed to 46,XX,rec(X)dup(Xp)inv(X)(p22.3q27.3)mat.arr Xp22.33p22.31(216519–8923527)x3,Xq27.3q28(144986425–154881514)x1. This study suggests that further genetic investigation may be needed in the cases of POF with a cytogenetically 46,XX normal karyotype to find out the cause and solution for these disease entities.  相似文献   

18.
Fraser syndrome (FS) is a rare autosomal recessive inherited disorder characterized by cryptophthalmos, laryngeal defects and oral clefting, mental retardation, syndactyly, and urogenital defects. To date, 250 patients have been described in the literature. Mutations in the FRAS1 gene on chromosome 4 have been identified in patients with Fraser syndrome. So far, 26 mutations have been identified, most of them are truncating mutations. The mutational spectrum includes nucleotide substitutions, splicing defects, a large insertion, and small deletions/insertions. Moreover, single heterozygous missense mutations in FRAS1 seem to be responsible for non-syndromic unilateral renal agenesis.  相似文献   

19.
We present rapid aneuploidy diagnosis of de novo partial trisomy 12q (12q24.21 → qter) and partial monosomy 6q (6q27 → qter) by aCGH using uncultured amniocytes in a fetus with coarctation of the aorta, ventriculomegaly and thickened nuchal fold. We discuss the association of TBX3, TBX5 and MED13L gene duplication with coarctation of the aorta, and the association of RNASET2 gene haploinsufficiency with ventriculomegaly in this case.  相似文献   

20.
Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号