首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Dilution of anoxic slurries of paddy soil resulted in a proportional decrease of the rates of total methanogenesis and the rate constants of H2 turnover per gram soil. Dilution did not affect the fraction of H2/CO2-dependent methanogenesis which made up 22% of total CH4 production. However, dilution resulted in a ten fold decrease of the H2 steady state partial pressure from approximately 4 to 0.4 Pa indicating that H2/CO2-dependent methanogenesis was more or less independent of the H2 pool. The rates of H2 production calculated from the H2 turnover rate constants and the H2 steady state partial pressures accounted for only < 5% of H2/CO2-dependent methanogenesis in undiluted soil slurries and for even less after dilution. Upon dilution, the Gibbs free energy available for H2/CO2-dependent methanogenesis decreased from −28.4 to only −5.6 kJ per mol. The results indicate that methane was mainly produced from interspecies H2 transfer within syntrophic bacterial associations and was not significantly affected by the outside H2 pool.  相似文献   

2.
Abstract The effect of temperature on CH4 production, turnover of dissolved H2, and enrichment of H2-utilizing anaerobic bacteria was studied in anoxic paddy soil and sediment of Lake Constance. When anoxic paddy soil was incubated under an atmosphere of H2/CO2, rates of CH4 production increased 25°C, but decreased at temperatures lower than 20°C. Chloroform completely inhibited methano-genesis in anoxic paddy soil and lake sediment, but did not or only partially inhibit the turnover of dissolved H2, especially at low incubation temperatures. Cultures with H2 as energy source resulted in the enrichment of chemolithotrophic homoacetogenic bacteria whenever incubation temperatures were lower than 20°C. Hydrogenotrophic methanogens could only be enriched at 30°C from anoxic paddy soil. A homoacetogen  相似文献   

3.
By use of the radiolabelled substrates sodium [1–14C] acetate, sodium [2–14C] acetate, NaH14CO3 and 14CH3OH, three of the possible methanogenic pathways in fermenting refuse were confirmed. Due to the absence of a methanol pool, however, the relative contribution of each could not be determined. Circumstantial evidence for an operative trimethylamine pathway was gained but not confirmed whilst preliminary attempts to stimulate methanogenesis in refuse by supplementation with mono-and dimethylamine proved unsuccessful.  相似文献   

4.
Soils contain two different activities for oxidation of hydrogen   总被引:1,自引:0,他引:1  
Abstract Hydrogen oxidation rates were measured in a neutral compost soil and an acidic sandy loam at H2 mixing ratios of 0.01 to 5000 ppmv. The kinetics were biphasic showing two different K m values for H2, one at about 10–40 nM dissolved H2, the other at about 1.2–1.4 μM H2. The low- K m activity was less sensitive to chloroform fumigation than the high- K m activity. If sterile soil was amended with Paracoccus denitrificans or a H2-oxidizing strain isolated from compost soil, it exhibited only a high- K m (0.7–0.9 μM) activity. It also failed to utilize H2 mixing ratios below a threshold of 1.6–3.0 ppmv H2 (160–300 mPa). A similar result was obtained when fresh soil samples were suspended in water, and H2 oxidation was determined from the decrease of dissolved H2. However, H2 was again utilized to mixing ratios lower than 0.05 ppmv, if the supernatant of the soil suspension or the settled soil particles were dried onto sterile soil or purified quarz sand. Obviously, soils contain two different activities for oxidation of H2: (1) a high- K m, high-threshold activity which apparently is due to aerobic H2-oxidizing bacteria, and (2) a low- K m, low-threshold activity whose origin is unknown but presumably is due to soil enzymes.  相似文献   

5.
Abstract In the profundal sediment ot Lake Constance (143 m depth) the temperature is constant at 4 °C. Despite the constant temperature, CH4 concentrations changed with season between about 120 μM in winter and about 750 μM in summer, measured down to 30 cm depth. The acetate concentration profiles also varied between seasons. In summer, acetate concentration reached a maximum at about 100 μM in 2 or 4 cm depth. In winter, maximal concentrations of about 5 μM were observed over the entire depth. Input of organic material in late spring may be the reason for the seasonal change of both compounds. To simulate such a sedimentation event, intact sediment cores were covered with suspensions of Porphyridium aerugenium or Synechococcus sp. The addition of the phytoplankton material resulted in a drastic increase of acetate concentrations with a maximum at 2 cm depth, similar to in situ acetate concentrations measured in summer. The same applies for CH4 for which increased concentrations were observed down to 6 cm depth. H2 concentrations, on the other hand, showed no distinct increase. Treatment of intact sediment cores with 14C-labeled Synechococcus cells resulted in the formation of 14C-acetate, 14CH4 and 14CO2. Maximum concentrations of 14CH4 were found at 4 cm depth, i.e. just above the depth to which 14C-acetate penetrated. The results show that phytoplankton blooms may cause a seasonal variation of acetate and CH4 in profundal sediments of deep lakes despite the constant low temperature. They also indicate that acetate is the dominant substrate for methanogenic bacteria in the profundal sediments of Lake Constance.  相似文献   

6.
The anaerobic oxidation of methane (AOM) is a major sink for methane on Earth and is performed by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Here we present a comparative study using in vitro stable isotope probing to examine methane and carbon dioxide assimilation into microbial biomass. Three sediment types comprising different methane-oxidizing communities (ANME-1 and -2 mixture from the Black Sea, ANME-2a from Hydrate Ridge and ANME-2c from the Gullfaks oil field) were incubated in replicate flow-through systems with methane-enriched anaerobic seawater medium for 5–6 months amended with either 13CH4 or H13CO3-. In all three sediment types methane was anaerobically oxidized in a 1:1 stoichiometric ratio compared with sulfate reduction. Similar amounts of 13CH4 or 13CO2 were assimilated into characteristic archaeal lipids, indicating a direct assimilation of both carbon sources into ANME biomass. Specific bacterial fatty acids assigned to the partner SRB were almost exclusively labelled by 13CO2, but only in the presence of methane as energy source and not during control incubations without methane. This indicates an autotrophic growth of the ANME-associated SRB and supports previous hypotheses of an electron shuttle between the consortium partners. Carbon assimilation efficiencies of the methanotrophic consortia were low, with only 0.25–1.3 mol% of the methane oxidized.  相似文献   

7.
Washed bacterial suspensions obtained from the pig hindgut were incubated under 13CO2 in a buffer containing NaH13CO3 and carbohydrates. Incorporation of 13C into short chain fatty acids was assayed by quantitative nuclear magnetic resonance. The effects of different levels of H2 added to the gas phase (0, 20 and 80% v/v) and of the specific methanogenesis inhibitor 2-bromoethane-sulphonic acid (BES) were determined. In control incubations increasing the concentration of H2 markedly increased methane production. Single- and double-labelled acetate and butyrate were formed in all incubations. In the absence of BES, increasing H2 significantly increased the incorporation of 13CO2 into butyrate and the proportion of double-labelled acetate in total labelled acetate. The addition of BES proved to be very successful as a methane inhibitor and greatly enhanced the amount of mono- and double-labelled acetate, especially at the highest H2 partial pressure. The results suggest that methanogenesis inhibited both routes of reductive acetogenesis, i.e. the homoacetate fermentation of hexose (represented for the most part by single labelling) and the synthesis of acetate from external CO2 and H2 (represented mostly by double labelling). A highly significant interaction between BES and H2 concentration was observed. At the highest pH2 BES increased the proportion of labelled acetate in total acetate from 17.1% for the control to 50.9%. It was concluded that although acetogenesis and methanogenesis can occur simultaneously in the pig hindgut, reductive acetogenesis may become a significant pathway of acetate formation in the absence of methanogenesis.  相似文献   

8.
Abstract Turnover times of radioactive glucose were shorter in paddy soil (4–16 min) than in Lake Constance sediment (18–62 min). In the paddy soil, 65–75% of the radioactive glucose was converted to soluble metabolites. In the sediment, only about 25% of the radioactive glucose was converted to soluble metabolites, the rest to particulate material. In anoxic paddy soil, the degradation pattern of position-labelled glucose was largely consistent with glucose degradation via the Embden-Meyerhof-Parnas (EMP) pathway followed by methanogenic acetate cleavage: CO2 mainly originated from C-3,4, whereas CH4 mainly originated from C-1 and C-6 of glucose. Acetate-carbon originated from C-1, C-2 and C-6 rather than from C-3,4 of glucose. In both paddy soil and Lake Constance sediment acetate and CO2 were the most important early metabolites of radioactive glucose. Other early products included propionate, ethanol/butyrate, succinate, and lactate, but accounted each for less than 1–8% of the glucose utilized. The labelling of propionate by [3,4-14C]glucose suggests that it was mainly produced from glucose or lactate rather than from ethanol. Isopropanol and caproate were also detectable in paddy soil, but were not produced from radioactive glucose. Chloroform inhibited methanogenesis, inhibited the further degradation of radioactive acetate and resulted in the accumulation of H2, however, did not inhibit glucose degradation. Since acetate was the main soluble fermentation product of glucose and was produced at a relatively high molar acetate: CO2 ratio (2.5:1), homoacetogenesis appeared to be the most important glucose fermentation pathway.  相似文献   

9.
Abstract A thermophilic acetate-decarboxylating methanogenic bacterium was isolated from a laboratory-scale 60°C sludge digestor. Cells form straight filaments with flat to blunted ends normally consisting of 2–3 cells held together by a sheath-like outer cell wall. The organism uses acetate, H2-CO2 and formate for methanogenesis and growth. With acetate as the sole methanogenic substrate, almost all of the radioactivity from methyl-labelled acetate appeared as methane. Acetate was converted to methane in equimolar amounts with a doubling time of 3 days.  相似文献   

10.
Diel variations in carbonate incorporation into otoliths in goldfish   总被引:1,自引:0,他引:1  
When D-[14C-U]-glucose was administered intraperitoneally into goldfish Carassius amatus at 20° C and 12L: 12D (dark period 1800–0600 hours) at 0600, 1200, 1800, 2400 and 0600 hours on the following day, glucose was metabolized to release 14CO2 and then it was incorporated into otoliths as carbonate. The rate of metabolic activity, judging from the ratio of inorganic to organic radiocarbon in plasma, was low during the dark period. Carbon incorporation into otoliths was also minimized during 1800–2400 h. When fish were exposed to ambient water containing NaH14CO3, plasma radioactivity was lowest during 1800–2400 hours, during which time carbon incorporation into otoliths was lowest. Plasma total CO2 levels markedly increased during the dark period. These results clearly indicate that carbonate formation in otoliths has a diel variation with a nadir lasting 6 h from 1800 to 2400 hours under the photoperiod used.  相似文献   

11.
Rotenone-sensitive 14CO2 formation from [14C]lactate and oxygen consumption by round spermatids were found to be greater at elevated temperatures than at 34°C. More than 96% of the total radioactivity of the metabolized [14C]lactate was recovered in the released CO2 and the acid soluble fraction of the cells. There was practically no incorporation of [14C]latctate into the lipid, nucleic acid, and protein fractions. Intracellular level of ATP in spermatids was enhanced in the presence of lactate (20 mM) at 34°C (scrotal temperature), whereas it was decrease at 37°C (body temperature). However, this was reversible when the cells were transferred from the elevated temperature to 34°C. It was also found that oxygen consumption and CO2 production were increased at 34°C by 2, 4-dinitrophenol (DNP), but decreased by oligomycin. On the other hand, oligomycin and DNP had no effect on oxygen consumption and 14CO2 formation at the elevated temperature.
These findings provide evidence that lactate utilization by spermatids is coupled with oxidative phosphorylation at scrotal temperature, but becomes uncoupled at elevated temperature, although more lactate is consumed.  相似文献   

12.
Abstract: The purpose of the study was to define the potential for reductive acetogenesis of colonic microflora from six non-methane- and four methane-excreting human subjects in relation to numbers of the different H2-utilizing microorganisms. Faecal bacterial suspensions were incubated in the presence of NaH13CO3 and under a gas phase composed of either 100% N2 (control) or 80% H2–20% N2. The effects of a specific methanogenesis inhibitor or of sulfate supplementation were also determined. Quantitative nuclear magnetic resonance showed the presence of both single- and double-labelled acetate in all incubations under hydrogen. H2/CO2-acetogenesis appears to be a quantitatively important activity only in the presence of very low numbers of methanogens. Inhibition of methanogenesis induced a large increase in 13CO2 incorporation into acetate in CH4-producing samples. These results showed that methanogens can efficiently outcompete acetogens in human colonic contents. In contrast, no clear-cut competition for H2 between acetogenesis and dissimilatory sulfate-reduction could be demonstrated. A slight reduction of the acetogenic activity was only observed at the highest sulfate addition (100 mM).  相似文献   

13.
Abstract In situ concentrations of hydrogen and other metabolites involved in H2-consuming and H2-producing reactions were measured in anoxic methanogenic lake sediments, sewage sludge and fetid liquid of cottonwood. The data were used to calculate the Gibbs free energies of the metabolic reactions under the conditions prevailing in situ. The thermodynamics of most of the reactions studied were exergonic with Gibbs free energies being more negative for H2-dependent sulfate reduction methanogenesis acetogenesis and for H2-producing lactate fermentation ethanol fermentation. Butyrate and propionate fermentation, on the other hand, were endergonic under in situ conditions. This observation is interpreted by suggesting that butyrate and propionate is degraded within microbial clusters which shield the fermentating bacteria from the outside H2 (and acetate) pool.  相似文献   

14.
Characterization of populations of aerobic hydrogen-oxidizing soil bacteria   总被引:2,自引:0,他引:2  
Abstract Freshly isolated soil bacteria were screened for different characteristics of the H2 metabolism without prior selection for growth on H2. The bacteria were isolated from different grain size fractions of a neutral meadow cambisol and an acidic forest cambisol, and then tested (1) for the ability to oxidize H2, (2) for chemolithoautotrophic growth on H2 as sole electron donor and energy source, (3) for DNA-DNA-hybridization with two hydrogenase gene fragments from Alcaligenes eutrophus and Rhizobium leguminosarum , and (4) for reduction of 2,3,5-triphenyl-2H-tetrazoliumchloride (TTC) in the presence of H2. Many (65–90%) of the isolates were able to reduce TTC, but only 30–65% were actually able to oxidize H2 indicating that the TTC test was not a specific characteristic for H2 oxidation ability. The TTC test was only reliable in pure cultures of known bacteria with optimized test conditions, here shown for Alcaligenes eutrophus, Bradyrhizobium japonicum and Nocardia opaca , but not in mixed cultures of unknown bacteria. Still less (< 30%) of the isolates were able to grow chemolithoautotrophically indicating that culturable aerobic bacteria with the ability for H2 oxidation are more abundant than bacteria with the ability for chemolithoautotrophic growth. The DNA-DNA-hybridization test failed to detect many of the bacteria with H2 oxidation activity, probably since the hydrogenase genes present in the isolates were too diverse to be all detected by the DNA probes applied.  相似文献   

15.
Primary production studies in two linked but contrasting Welsh lakes   总被引:1,自引:0,他引:1  
SUMMARY. Llyn Padarn and Llyn Peris have distinct phytoplankton populations. During 1975–76, the standing crop measured as chlorophyll- a was 5.5 times greater in Padarn than in Peris and the production rate, determined by the 14CO2 method, was faster by 3.4 times. These differences were attributed to the higher concentrations of phosphorus in the lower lake caused by treated sewage effluent. Incident light intensity, which was slightly lower in Peris due to mountain shading, and temperature, which was 1–4°C higher in Padarn, made little significant contribution to these differences during the summer. The reduced transparency of Padarn water, compared with that of Peris, resulted from denser phytopiankton crops in Padarn. During the summer, Padarn exhibited carbon dioxide depletion which correlated with the chlorophyll concentration. Light inhibition at the surfaces of both lakes correlated with solar radiation intensity. However, the relationship between pigment content and maximum photosynthetic rate was poor. Extracellular products accounted for about 16% of the total production in the lakes. Uptake of 14C-labelled acetate was low compared with that of 14CO2 uptake.  相似文献   

16.
The control of a thermophilic continuous anaerobic digestion system when subjected to potential inhibitory shock loadings was achieved through the regulation of dissolved H2, monitored using membrane inlet mass spectrometry, by the controlled addition of carbon source. At a feed pump switching threshold equivalent to 1 μmol/1 H2 a steady state rate of methanogenesis of approximately 40 μmol/1/min was obtained. Higher H2 thresholds resulted in an inhibition of methanogenesis, but precise control of H2 concentration was demonstrated with an oscillatory response of period 2·5–5·0 min.  相似文献   

17.
Abstract. Cyperus longus L. , which has a widespread but disjunct distribution throughout Europe and extends northwards into Britain, was found to be a C4 species based upon its Kranz leaf anatomy, low CO2 compensation point and the labelling of malate as an early product of 14CO2 fixation. The photosynthetic characteristics of C. longus are similar to many other C4 species with a high maximum rate of photosynthesis (> 1.5 mg CO2 m −2 s −1) and a relatively high temperature optimum (30–35°C), but unlike many C4 species the rate of photosynthesis does not decline rapidly below the optimum temperature and a substantial rate (0.6 mgCO2 m−2s−1)occursat 15°C. Leaf extension is very slow at 15°C and shows a curvilinear response to temperatures between 15 and 25°C. Leaves extend at a rate of almost 4 cm d−1 at 25°C.  相似文献   

18.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1, (3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-: 14C]alanine, [1-14C]glutamate, and [1, (3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate, [1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

19.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

20.
Thermophilic methanogens in rice field soil   总被引:2,自引:0,他引:2  
The soil temperature in flooded Italian rice fields is generally lower than 30°C. However, two temperature optima at ≈ 41°C and 50°C were found when soil slurries were anoxically incubated at a temperature range of 10–80°C. The second temperature optimum indicates the presence of thermophilic methanogens in the rice field soil. Experiments with 14C-labelled bicarbonate showed that the thermophilic CH4 was exclusively produced from H2/CO2. Terminal restriction fragment length polymorphism (T-RFLP) of archaeal SSU rRNA gene fragments revealed a dramatic change in the archaeal community structure at temperatures > 37°C, with the euryarchaeotal rice cluster I becoming the dominant group (about 80%). A clone library of archaeal SSU rRNA gene fragments generated at 49°C was also dominated (10 out of 11 clones) by rice cluster I. Our results demonstrate that Italian rice field soil contains thermophilic methanogenic activity that was most probably a result of members of the as yet uncultivated euryarchaeotal rice cluster I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号