首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Abstract: To determine if lactate is produced during aerobic metabolism in peripheral nerve, we incubated pieces of rabbit vagus nerve in oxygenated solution containing d -[U-14C]glucose while stimulating electrically. After 30 min, nearly all the radioactivity in metabolites in the nerve was in lactate, glucose 6-phosphate, glutamate, and aspartate. Much lactate was released to the bath: 8.2 pmol (µg dry wt)−1 from the exogenous glucose and 14.2 pmol (µg dry wt)−1 from endogenous substrates. Lactate release was not increased when bath P o 2 was decreased, indicating that it did not come from anoxic tissue. When the bath contained [U-14C]lactate at a total concentration of 2.13 m M and 1 m M glucose, 14C was incorporated in CO2 and glutamate. The initial rate of formation of CO2 from bath lactate was more rapid than its formation from bath glucose. The results are most readily explained by the hypothesis that has been proposed for brain tissue in which glial cells supply lactate to neurons.  相似文献   

2.
Abstract— Glucose metabolism in the superior cervical ganglion for calves has been studied by incubating slices with [1-14C]-, [6-14C]- and [U-14C]-labelled glucose at 37°C and pH 7.4. Glucose utilization and the metabolic partitioning of glucose carbon in products during different incubation periods ranging from 5 to 60 min were determined by isotopic methods.
Separation and identification of labelled compounds have been achieved by anion and cation exchange chromatography as well as by TLC and enzymatic analyses.
From the data obtained a carbon balance could be constructed showing lactate to be the major product of glucose metabolism followed by CO2 and amino acids. Measuring the release of 14CO2 from differently 4C-labelled glucose, the existence of an active pentose phosphate pathway in the ganglion could be demonstrated although this pathway seems to contribute only to a small extent to glucose metabolism. The marked decrease of the C-U: C-6 and the C-U:C-1 ratios in 14CO2 observed in the course of incubation is discussed in terms of a time-dependent change in the rate of synthesis of amino acids which are directly connected with intermediates of the citric acid cycle.  相似文献   

3.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1, (3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-: 14C]alanine, [1-14C]glutamate, and [1, (3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate, [1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

4.
Abstract: Slices of rat caudate nucleus were incubated in a solution of 123 mM-NaCl, 5 mM-KCl, 1.2 mM-MgCl2, 1.2 mM-NaH2PO4, 25 mM-NaHCO3, 0.2 mM-choline chloride, 0.058 mM-paraoxon, 1 mM-EGTA, and oxidizable substrates. (−)-Hydroxycitrate, a specific inhibitor of ATP-citrate lyase (EC 4.1.3.8), used at a concentration of 2.5 mM, inhibited the synthesis of acetylcholine (ACh) from [1,5-14C]citrate by 82–86%, but that from [U-14C]glucose by only 33%, from [2-14C]pyruvate by 24% and from [1-14C-acetyl]carnitine by 8%; the production of 14CO2 from these substrates was not substantially changed. The synthesis of ACh from glucose and pyruvate was in hibited also by citrate; 2.5 mM- and 5 mM-citrate diminished it by 43% and 66%, respectively; the production of from [U-14C]glucose and from [1-14C]pyruvate was not affected. The mechanism of the inhibitory effect of citrate on the synthesis of ACh is not clear; the possibility is discussed that citrate alters the intracellular milieu in cholinergic neurons by chelating the intracellular Ca2+ and decreases the supply of mitochondrial acetyl-CoA to the cytosol. The results with (−)-hydroxycitrate indicate that the cleavage of citrate by ATP-citrate lyase is not responsible for the supply of more than about one-third of the acetyl-CoA which is used for the synthesis of ACh when glucose or pyruvate are the main oxidizable substrates. This proportion may be even smaller, since (−)-hydroxycitrate possibly affects the synthesis of ACh from glucose and pyruvate by a mechanism (unknown) similar to that of citrate, rather than by the inhibition of ATP-citrate lyase.  相似文献   

5.
Abstract: Synaptosomes from normoxic and hypoxic rats were incubated aerobically in the presence and absence of veratridine. In the absence of veratridine, no significant difference was observed between the two types of preparation regarding either ATP/ADP ratio or 14CO2 or [14C]acetylcholine synthesis from D-[U-14C]glucose. However, in the presence of veratridine, significant reductions in the output of 14CO2 and [14C]acetylcholine by synaptosomes from hypoxic rats were apparent. It was concluded that irreversible metabolic lesions occur at the synapse as a result of hypoxia, which are apparent only when the metabolism of the preparation is accelerated to a level comparable with the maximal rate occurring in vivo. The presence of such lesions is further evidenced by the significant reductions in ATP/ADP ratio, 14CO2 output, and [14C]acetylcholine synthesis that occur in synaptosomes from hypoxic rats made anoxic in vitro and permitted to recover. Such decreases are not seen when synaptosomes from normoxic rats are similarly treated.  相似文献   

6.
Abstract: The metabolic fate of glutamate in astrocytes has been controversial since several studies reported >80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 m M [U-13C]glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2–0.5 m M glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C]lactate was essentially unchanged within the range of 0.2–0.5 m M glutamate, whereas the amount of [13C]aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 m M , suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 m M and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

7.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

8.
Abstract: Production of [14C]acetylcholine and 14CO2 was examined by using tissue prisms from neocortex, hippocampus, and striatum from rats aged approximately 5 months, 13 months, and 27 months. [14C]Acetylcholine synthesis in the striatum showed highly significant decreases with age for measurements in the presence of both 5 m m - and 31 m m -K+, contrasting with the lack of significant change in 14CO2 production in this region. The neocortex and hippocampus showed only small changes, especially when comparison was made between 13-month and senescent animals. Measurements of the release of [14C]acetylcholine and influence of atropine on this release confirmed the relative stability with age of the cholinergic system in the neocortex.  相似文献   

9.
Rotenone-sensitive 14CO2 formation from [14C]lactate and oxygen consumption by round spermatids were found to be greater at elevated temperatures than at 34°C. More than 96% of the total radioactivity of the metabolized [14C]lactate was recovered in the released CO2 and the acid soluble fraction of the cells. There was practically no incorporation of [14C]latctate into the lipid, nucleic acid, and protein fractions. Intracellular level of ATP in spermatids was enhanced in the presence of lactate (20 mM) at 34°C (scrotal temperature), whereas it was decrease at 37°C (body temperature). However, this was reversible when the cells were transferred from the elevated temperature to 34°C. It was also found that oxygen consumption and CO2 production were increased at 34°C by 2, 4-dinitrophenol (DNP), but decreased by oligomycin. On the other hand, oligomycin and DNP had no effect on oxygen consumption and 14CO2 formation at the elevated temperature.
These findings provide evidence that lactate utilization by spermatids is coupled with oxidative phosphorylation at scrotal temperature, but becomes uncoupled at elevated temperature, although more lactate is consumed.  相似文献   

10.
Abstract: We studied the effects of denervation and reinnervation of the rat extensor digitorum longus muscle (EDL) on the oxidation of [6-14C]glucose to 14CO2. The rate of 14CO2 production decreased dramatically following denervation, and the decrease became significant 20 days after nerve section. Prior to day 20, changes apparently reflected the decline of muscle mass. Decreased 14CO2 production was due to reduced capacity of the enzymatic system (apparent Vmax); there was no change in apparent affinity for glucose (apparent K m). Mixing experiments revealed that the loss of oxidative capacity following denervation is not caused by production of soluble inhibitors by degenerating muscle. Oxidative metabolism, as measured by 14CO2 evolution, recovered during reinnervation. Surprisingly, the specific activity in reinnervated muscles displayed an "overshoot" of approximately 50%, which returned to control by day 60, possibly reflecting increased energy demand by the growing muscle. The time-course of the denervation-mediated change indicates that altered oxidative capacity is secondary to events that initiate denervation changes in muscle. Nevertheless, diminished oxidative capacity may be of considerable metabolic significance in denervated muscle.  相似文献   

11.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

12.
Abstract: Metabolism of [U-13C5]glutamine was studied in primary cultures of cerebral cortical astrocytes in the presence or absence of extracellular glutamate. Perchloric acid extracts of the cells as well as redissolved lyophilized media were subjected to nuclear magnetic resonance and mass spectrometry to identify 13C-labeled metabolites. Label from glutamine was found in glutamate and to a lesser extent in lactate and alanine. In the presence of unlabeled glutamate, label was also observed in aspartate. It could be clearly demonstrated that some [U-13C5]glutamine is metabolized through the tricarboxylic acid cycle, although to a much smaller extent than previously shown for [U-13C5]glutamate. Lactate formation from tricarboxylic acid cycle intermediates has previously been demonstrated. It has, however, not been demonstrated that pyruvate, formed from glutamate or glutamine, may reenter the tricarboxylic acid cycle after conversion to acetyl-CoA. The present work demonstrates that this pathway is active, because [4,5-13C2]glutamate was observed in astrocytes incubated with [U-13C5]glutamine in the additional presence of unlabeled glutamate. Furthermore, using mass spectrometry, mono-labeled alanine, glutamate, and glutamine were detected. This isotopomer could be derived via the action of pyruvate carboxylase using 13CO2 produced within the mitochondria or from labeled intermediates that had stayed in the tricarboxylic acid cycle for more than one turn.  相似文献   

13.
Abstract– 14CO2 production and 14C incorporation into proteins was studied in isolated rat sciatic nerves during incubation with 0.1 mM-[1-14C]leucine. Rats were made diabetic with streptozotocin. Nerves from diabetic rats incubated with glucose oxidized more [14C]leucine than controls. This difference was abolished in the presence of insulin (1 mU/ml). The effects of diabetes and insulin on leucine oxidation could not be demonstrated in the absence of glucose. Insulin stimulated the incorporation of [14C] from leucine into proteins by nerves from controls and diabetic rats.
Nerves undergoing Wallerian degeneration showed a marked increase in DNA content and stimulated incorporation of [14C]leucine into proteins. 14CO2 production from leucine proceeded at 75% of the rate observed in intact nerves. Neither insulin nor diabetes affected leucine metabolism in degenerating nerves.
Neither the extracellular space nor the concentration of free amino acids were significantly different in nerves obtained from control and diabetic rats, except for lower glutamine content in the latter.
In vitro leucine metabolism of nerves is affected by diabetes, insulin and the integrity of the axon. The Schwann cell is suggested as a possible site of the observed changes in leucine metabolism.  相似文献   

14.
Abstract: Oligodendroglia prepared from minced calf cerebral white matter by trypsinization at pH 7.4, screening, and isosmotic Percoll (polyvinylpyr-rolidone-coated silica gel) density gradient centrifugation survived in culture on polylysine-coated glass, extending processes and maintaining phenotypic characteristics of oligodendroglia. In the present study, ethanolamine glycerophospholipid (EGP) metabolism of the freshly isolated cells was examined during short-term suspension culture by dual label time course and substrate concentration dependence experiments with [2-3H]glycerol and either [1,2-14C]ethanolamine or L-[U-14C]serine. Rates of incorporation of 3H from the glycerol and of 14C from the ethanolamine into EGP were constant for 14 h. In medium containing 3 mM-[1,2-14C]ethanolamine and 4.8 mM-[2-3H]glycerol, rates of incorporation of 14C and 3H into diacyl glycerophosphoethanolamine (diacyl GPE) were similar. Under the same conditions, 3H specific activities of alkylacyl GPE and alkenylacyl GPE were much lower than 14C specific activities, likely as a result of the loss of tritium during synthesis of these forms of EGP via dihydroxyacetone phosphate. L-[U-14C]serine was incorporated into serine glycerophospholipid (SGP) by base exchange rather than de novo synthesis. 14C from L-[U-14C]serine also appeared in EGP after an initial lag period of several hours. Methylation of oligodendroglial EGP to choline glycerophospholipid (CGP) was not detected.  相似文献   

15.
Brain Carbohydrate Metabolism in Developing Rats During Hypercapnia   总被引:3,自引:2,他引:1  
Abstract: Brain glucose metabolism was studied in developing rats at ages 10 and 20 days postnatal under normal and hypercapnic conditions. Brains were removed and frozen within 1 s with a freeze-blowing apparatus. Glucose utilization was measured with [2-14C]glucose and [3H]deoxyglucose as tracers. Metabolites were determined by standard enzymatic techniques. Data from [3H]deoxyglucose phosphorylation indicated that normal brain glucose utilization increased almost threefold between the 10th and 20th postnatal days. From the relative rates of utilization of the two isotopes in the 20-day-old control group, it appeared that about 25% of 14C label derived from metabolism of [2-14C]glucose was lost from brain (probably as lactate) rather than entering the Krebs cycle. Under hypercapnic conditions (20% CO2-21% O2-59% N2), rates of glucose utilization by brain were decreased by one-half at both ages and there were progressive decreases in the concentrations of many intermediary metabolites. The bases for concluding that these metabolites were used to supplement glucose as a fuel for respiration, rather than being lost by leakage into blood, are discussed. Despite the differences in brain glucose metabolism between 10-day-old and 20-day-old rats, their responses to hypercapnia are remarkably similar: Rates of glucose utilization are reduced to approximately the same proportion of the original rate by 20% CO2, and endogenous metabolites (particularly glutamate and lactate) appear to be oxidized as replacement fuels.  相似文献   

16.
ALANINE METABOLISM IN RAT CORTEX IN VITRO   总被引:1,自引:0,他引:1  
Abstract— (1) The metabolism of [U-14C]alanine was followed in slices of rat cerebral cortex and its interaction with glucose, pyruvate and the metabolic inhibitors fluoracetate and malonate was studied.
(2) Alanine did not stimulate respiration above endogenous levels or affect the rate of oxygen uptake with glucose or pyruvate as cosubstrate. Radioactivity found in CO2 from labelled alanine was only 6 per cent of that from labelled pyruvate. Lactate was not formed from alanine.
(3) After 2 h incubation with [U-14C]alanine the specific activities of glutamate, glutamine and GABA were 20–30 per cent that of alanine. All these specific activities except glutamate were lowered by addition of glucose, but with pyruvate as cosubstrate the specific activity of glutamate was increased by 87 per cent above the level with alanine alone.
(4) The effect of alanine as cosubstrate with [U-14C]pyruvate was to reduce the specific activity of GABA and of glutamine, but not glutamate or lactate; thus there was not an equal dilution of all the metabolites of pyruvate.
(5) Fluoracetate diminished respiration and the production of CO2 from [U-14C]-alanine only slightly; the addition of malonate as well practically abolished both. Fluoracetate lowered incorporation from alanine into all the amino acids, and radioactivity could not be detected in glutamine at all; addition of malonate lowered the specific activity of glutamate to 25 per cent but increased that into aspartate, GABA and glutamine.
(6) The interpretation of these data in terms of known pathways of alanine metabolism is discussed.  相似文献   

17.
The quantification of excitatory and inhibitory neurotransmission and the associated energy metabolism is crucial for a proper understanding of brain function. Although the detection of glutamatergic neurotransmission in vivo by 13C NMR spectroscopy is now relatively routine, the detection of GABAergic neurotransmission in vivo has remained elusive because of the low GABA concentration and spectral overlap. Using 1H-[13C] NMR spectroscopy at high magnetic field in combination with robust spectral modeling and the use of different substrates, [U-13C6]-glucose and [2-13C]-acetate, it is shown that GABAergic, as well as glutamatergic neurotransmitter fluxes can be detected non-invasively in rat brain in vivo .  相似文献   

18.
Methanolic extracts of Zea mays L. cv. Fronica root segments which had been incubated in [14C] indole-3-acetie acid were analysed by reverse-phase high-performance liquid chromatography. Metabolism of indole-3-acetic acid was found to be rapid and extensive with at least 11 products apparent after a 2 h incubation. A comparison of metabolites of [1-14C]– and [2-14C] IAA, calculations of 14CO2 evolution, and data on the polarity of products indicated that decarboxylation had not occurred. An average of 34% of the radioactivity remained associated with the indole-3-acetic acid peak.  相似文献   

19.
Abstract— The effect of 15 h continuous exposure to CS2 on the metaboliam of glucose and free amino acids in the brain of rats was studied. CS2 caused a moderate hypoglycaemia. There were also changes in the amounts of some amino acids in the brain. Glutamate and γ-aminobutyrate were lower whereas glutamine was markedly increased. Comparative studies in vivo of the metabolism of [2-14C]glucose and [1-14C]butyrate indicated that CS2 did not affect glycolysis or the incorporation of 14C from glucose into amino acids except into γ-aminobutyrate which was reduced. Contrary to the findings with [14C]glucose, CS2 provoked distinct changes in the labelling of amino acids when [14C]butyrate was the precursor. The most notable change was a markedly increased incorporation of 14C into glutamine. Based on the two-compartment model of brain glutamate the experimental findings indicated that CS2 affected metabolism associated with the 'small' pool of glutamate but had a minimal effect on metabolism associated with the 'large' glutamate pool. The possibility is suggested that the changes observed involved an increased rate of ammonia removal. The low incorporation of 14C into γ-aminobutyrate from either precursor is consistent with other evidence showing that CS2 interferes with pyridoxal phosphate-dependent enzymes.  相似文献   

20.
L-GLUTAMIC ACID DECARBOXYLASE IN NON-NEURAL TISSUES OF THE MOUSE   总被引:7,自引:5,他引:2  
Abstract— Low levels of γ-aminobutyric acid (GABA) and of glutamic acid decarboxylase (GAD) activity have been detected in mouse kidney, liver, spleen and pancreas. Quantitation of both 14CO2 and [14C]GABA produced in radiometric assays from [U-14CJglutamic acid has shown that measurement of 14CO2 evolution alone is not, in all cases, a valid estimate of true GAD activity. As evidenced by increased ,14CO2 production upon addition of NAD and CoA to assay mixtures, radiometric assay of GAD activity in crude homogenates may yield 14CO2 via the coupled reactions of glutamic acid dehydrogenase and a-ketoglutarate dehydrogenase. The addition of 1 mM aminooxyacetic acid (AOAA) to assays of kidney homogenates inhibited [,14C]GABA production 92 per cent while 14CO2 production was inhibited only 53 per cent. No evidence was found to confirm the reported existence of a second form of the enzyme, GAD II. previously described by Haber el al. (H aber B., K uriyama K. & R oberts E. (1970) Biochem. Pharmac. 19, 1119-1136). Based on sensitivity-to AOAA and chloride inhibition, the GAD activity in mouse kidney is. apparently, indistinguishable from that of neural origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号