首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
A two-dimensional gel technique using slab gel isoelectric focusing in the first dimension and sodium dodecyl sulfate gradient gel electrophoresis in the second dimension has been developed for the separation of soluble proteins larger than 10,000 daltons. The technique is sensitive to 0.6 mug of protein and recovery of radiolabeled proteins averages 90%. Analysis of secretory protein from the guinea pig exocrine pancreas shows the presence of 19 distinct high molecular weight proteins. Each of these proteins has been characterized by isoelectric point, molecular weight, and proportionate mass. Thirteen of the 19 proteins have been identified by actual or potential enzymatic activity,accounting for 96% of the protein mass resolved by the two-dimensional gels.  相似文献   

2.
Changing smooth muscle phenotype and abnormal cell proliferation are important features of vascular pathology, including the failure of saphenous vein bypass grafts. We have characterised and mapped protein expression in human saphenous vein medial smooth muscle, using two-dimensional (2-D) polyacrylamide gel electrophoresis. The 2-D system comprised a nonlinear immobilised pH 3-10 gradient in the first dimension (separating proteins with isoelectric point values between pH 3-10), and 12%T total gel concentration sodium dodecyl sulphate polyacrylamide gel electrophoresis in the second dimension (separating proteins in the range 14,000-200,000 Daltons). Using a combination of peptide mass fingerprinting by matrix-assisted laser desorption/ionisation-time of flight mass spectrometry and partial amino acid sequencing by nanospray tandem mass spectrometry, a subset of 149 protein spots was analysed, with 129 protein spots being identified and mapped. The data presented here are an important addition to the limited knowledge of venous medial smooth muscle protein expression in vivo. Our protein map will facilitate the identification of proteins differentially expressed in human saphenous vein bypass grafts. In turn, this may lead to the elucidation of molecular events involved in saphenous vein bypass graft failure. The map should also provide a basis for comparative studies of protein expression in vascular smooth muscle of varying origins.  相似文献   

3.
Sample complexity frequently interferes with the analysis of low-abundance proteins by two-dimensional gel electrophoresis (2DGE). Ideally, high abundance proteins should be removed, allowing low-abundance proteins to be applied at much higher concentrations than is possible with the unfractionated sample. One approach is to partition the sample in a manner that segregates the bulk of extraneous proteins from the protein(s) of interest. Solution phase isoelectric focusing in the multi-compartment electrolyser generates fractions of discrete isoelectric point (pI) intervals allowing isolated narrow segments of a proteome to be analysed individually by 2DGE. It is particularly useful for the isolation of low-abundance proteins of extremely basic or acidic pI.  相似文献   

4.
The Characterization of Tubulin in CNS Membrane Fractions   总被引:13,自引:11,他引:2  
Abstract— Rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SER), and a plasma membrane (PM) fraction enriched in synaptic membranes were isolated from rat forebrain. The proteins in these membrane fractions were analyzed by two-dimensional gel electrophoresis (2DGE) in the isoelectric range of 5.1 to 6.0 by a modification of the O'Farrell procedure. Proteins were detected by Coomassie Brilliant Blue staining of the electrophoretograms. The results of these analyses were compared with 2DGE analysis of cytosol proteins, with particular attention given to tubulin subunits and actin. The RER contained one major protein (53K 5.4) in the β-tubulin region with a molecular weight of 53,000 and an isoelectric point of 5.4. The SER contained at least two major proteins in the β-tubulin region; one with a migration identical to 53K 5.4 and other proteins with slightly higher apparent molecular weights and more acidic isoelectric points (54K, 5.4 to 5.3), identical to cytoplasmic β-tubulin. The PM fraction also contained multiple overlapping proteins (54K, 5.4 to 5.3) in the β-tubulin area and a trace amount of the 53K 5.4 protein. The proteins in the β-tubulin region were removed from the 2DGE electrophoretogram and digested by Staphylococcus aureus V8 protease, and the peptides separated on one-dimensional polyacrylamide gels. The peptide patterns of 53K 5.4 protein from RER and SER were almost identical and differed significantly from the cytoplasmic β-tubulin pattern; however, the peptide maps of the PM and SER β-tubulin region were identical to the cytoplasmic β-tubulin. The 2DGE analysis of RER did not contain proteins in the region of cytoplasmic α-tubulin. SER and PM contained proteins in the α-tubulin region with a similar, but not identical, peptide analysis to cytoplasmic α-tubulin. Significant amounts of actin were detected in 2DGE analysis of SER and PM, and the peptide analysis of the actin was identical to the cytoplasmic actin analysis. The RER fraction contained only trace amounts of actin. The cytosol and all membrane fractions contained a protein (68K 5.6) found among microtubule-associated proteins, as judged by molecular weight and isoelectric point. Several proteins present in all membrane fractions (61K 5.1 and 58K 5.1) bound to concanavalin A agarose.  相似文献   

5.
S Kabir 《Microbios》1977,20(79):47-62
The number, nature and organization of the outer membrane proteins of Salmonella typhimurium have not yet been resolved. Therefore these proteins were isolated using a concentrated solution of guanidine hydrochloride and studied using different analytical techniques. Upon chromatography on Sephadex G-200 four fractions were obtained. Only the fraction containing a protein of molecular weight 13,000 produced immunoprecipitation reactions with the antisera raised against the whole bacteria. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, 7 major proteins were found, with molecular weights between 13,000 and 43,000. Isoelectric focusing on 4.6% polyacrylamide gels resolved the outer membrane proteins into 10 bands with apparent isoelectric points between 5.0 and 8.4. Finally these proteins could be further resolved into as many as 50 spots where a two-dimensional electrophoresis was carried out with isoelectric focusing in the first dimension, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate in the second dimension. These results demonstrated that the outer membrane proteins of S. typhimurium are extremely heterogeneous. To investigate the mode of organization of lipopolysaccharides in the outer membrane, the membrane proteins were separated by the liquid isoelectric focusing technique. Lipopolysaccharides were primarily found to be associated with a protein of isoelectric point 7.8.  相似文献   

6.
High resolution two-dimensional electrophoresis of proteins.   总被引:2166,自引:0,他引:2166  
  相似文献   

7.
The investigation of the intracellular protein levels of bacterial species is of importance to understanding the pathogenic mechanisms of diseases caused by these organisms. Here we describe a procedure for protein extraction from Burkholderia species based on mechanical lysis using glass beads in the presence of ethylenediamine tetraacetic acid and phenylmethylsulfonyl fluoride in phosphate buffered saline. This method can be used for different Burkholderia species, for different growth conditions, and it is likely suitable for the use in proteomic studies of other bacteria. Following protein extraction, a two-dimensional (2-D) gel electrophoresis proteomic technique is described to study global changes in the proteomes of these organisms. This method consists of the separation of proteins according to their isoelectric point by isoelectric focusing in the first dimension, followed by separation on the basis of molecular weight by acrylamide gel electrophoresis in the second dimension. Visualization of separated proteins is carried out by silver staining.  相似文献   

8.
A novel two-dimensional (2D) separation system for proteins was reported. In the system, a piece of dialysis hollow-fiber membrane was employed as the interface for on-line combination of capillary isoelectric focusing (CIEF) and capillary non-gel sieving electrophoresis (CNGSE). The system is similar equivalent to two-dimensional polyacrylamide gel electrophoresis (2D PAGE), by transferring the principal of 2D PAGE separation to the capillary format. Proteins were focused and separated in first dimension CIEF based on their differences in isoelectric points (pIs). Focused protein zones was transferred to the dialysis hollow-fiber interface, where proteins hydrophobically complexed with sodium dodecyl sulfate (SDS). The negatively charged proteins were electromigrated and further resolved by their differences in size in the second dimension CNGSE, in which dextran solution, a replaceable sieving matrix instead of cross-linked polyacrylamide gel was employed for size-dependent separation of proteins. The combination of the two techniques was attributed to high efficiency of the dialysis membrane interface. The feasibility and the orthogonality of the combined CIEF-CNGSE separation technique, an important factor for maximizing peak capacity or resolution elements, were demonstrated by examining each technique independently for the separation of hemoglobin and protein mixtures excreting from lung cancer cells of rat. The 2D separation strategy was found to greatly increase the resolving power and overall peak capacity over those obtained for either dimension alone.  相似文献   

9.
The recent upsurge in proteomics research has been facilitated largely by streamlining of two-dimensional (2-D) gel technology and the parallel development of facile mass spectrometry for analysis of peptides and proteins. However, application of these technologies to the mitochondrial proteome has been limited due to the considerable complement of hydrophobic membrane proteins in mitochondria, which precipitate during first dimension isoelectric focusing of standard 2-D gels. In addition, functional information regarding protein:protein interactions is lost during 2-D gel separation due to denaturing conditions in both gel dimensions. To resolve these issues, 2-D blue-native gel electrophoresis was applied to the mitochondrial proteome. In this technique, membrane protein complexes such as those of the respiratory chain are solubilized and resolved in native form in the first dimension. A second dimension sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel then denatures the complexes and resolves them into their component subunits. Refinements to this technique have yielded the levels of throughput and reproducibility required for proteomics. By coupling to tryptic peptide fingerprinting using matrix-assisted laser desorption/ionization-time of flight mass spectrometry, a partial mitochondrial proteome map has been assembled. Applications of this functional mitochondrial proteomics method are discussed.  相似文献   

10.
Two-dimensional gel electrophoresis (2DE) is a powerful tool to uncover proteome modifications potentially related to different physiological or pathological conditions. Basically, this technique is based on the separation of proteins according to their isoelectric point in a first step, and secondly according to their molecular weights by SDS polyacrylamide gel electrophoresis (SDS-PAGE). In this report an optimized sample preparation protocol for little amount of human post-mortem and mouse brain tissue is described. This method enables to perform both two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mini 2DE immunoblotting. The combination of these approaches allows one to not only find new proteins and/or protein modifications in their expression thanks to its compatibility with mass spectrometry detection, but also a new insight into markers validation. Thus, mini-2DE coupled to western blotting permits to identify and validate post-translational modifications, proteins catabolism and provides a qualitative comparison among different conditions and/or treatments. Herein, we provide a method to study components of protein aggregates found in AD and Lewy body dementia such as the amyloid-beta peptide and the alpha-synuclein. Our method can thus be adapted for the analysis of the proteome and insoluble proteins extract from human brain tissue and mice models too. In parallel, it may provide useful information for the study of molecular and cellular pathways involved in neurodegenerative diseases as well as potential novel biomarkers and therapeutic targets.  相似文献   

11.
Extracellular proteins of Zymomonas mobilis were analyzed by two-dimensional gel electrophoresis and protein maps drawn up. One of these proteins showed sucrose-hydrolyzing activity, as indicated by activity staining after polyacrylamide gel electrophoresis. It was purified from the extracellular extract of a glucose fermentation by polyacrylamide gel electrophoresis, using a two-step procedure. The molecular mass of the protein was 46 kDa and its isoelectric point 5.0. A rabbit antiserum was raised against this protein. As shown by immunoblotting, the same protein was present in extracellular extracts obtained from glucose, fructose and sucrose fermentations. A cross-reaction was also detected by immunoblotting, with a cellular protein of molecular mass 46 kDa present on the three carbon sources studied. However, activity staining was unsuccessful on gels after electrophoresis of these cellular extracts. The extracellular protein extract obtained from a fermentation run on glucose contained another sucrose-hydrolyzing protein of molecular mass 51 kDa and with an isoelectric point of 4.8. This protein was absent in fructose and sucrose fermentations but showed a positive reaction with the antiserum raised against the 46 kDa extracellular protein. Partially purified sucrose-hydrolyzing proteins also catalyzed transfructosylation reactions, suggesting that they could be of the levansucrase type.  相似文献   

12.
Fractionation of human erythrocyte membrane proteins was performed using a modification of two-dimensional gel electrophoresis described by P. O'Farrel with isoelectric point plotted against molecular mass. All major erythrocyte proteins, including high molecular weight proteins, such as spectrin and band 3 protein, identified by one-dimensional sodium dodecyl sulfate gel electrophoresis, were visualized by silver staining of two-dimensional gels. All in all about 50 polypeptides were distinguished on two-dimensional electrophoretic patterns. Preliminary protein map was developed.  相似文献   

13.
The goal of the two-dimensional (2D) electrophoresis protocol described here is to show how to analyse the phenotype of human cultured macrophages. The key role of macrophages has been shown in various pathological disorders such as inflammatory, immunological, and infectious diseases. In this protocol, we use primary cultures of human monocyte-derived macrophages that can be differentiated into the M1 (pro-inflammatory) or the M2 (anti-inflammatory) phenotype. This in vitro model is reliable for studying the biological activities of M1 and M2 macrophages and also for a proteomic approach. Proteomic techniques are useful for comparing the phenotype and behaviour of M1 and M2 macrophages during host pathogenicity. 2D gel electrophoresis is a powerful proteomic technique for mapping large numbers of proteins or polypeptides simultaneously. We describe the protocol of 2D electrophoresis using fluorescent dyes, named 2D Differential Gel Electrophoresis (DIGE). The M1 and M2 macrophages proteins are labelled with cyanine dyes before separation by isoelectric focusing, according to their isoelectric point in the first dimension, and their molecular mass, in the second dimension. Separated protein or polypeptidic spots are then used to detect differences in protein or polypeptide expression levels. The proteomic approaches described here allows the investigation of the macrophage protein changes associated with various disorders like host pathogenicity or microbial toxins.  相似文献   

14.
The development of a dedicated two-dimensional gel electrophoresis system is described that provides superior performance in terms of high resolving power and enhanced gel-to-gel reproducibility. Isoelectric focusing is performed in a 1-mm capillary tube with a 0.08-mm thread, optimized for this application, incorporated along its length prior to polymerization of the gel matrix. The isoelectric focusing gel is 4% T, 2.6% C to minimize sieving of proteins and promote adhesion of the gel to the thread. The thread incorporated in the isoelectric focusing matrix prevents gel stretching and breakage during its application to the second dimension. An optimum ampholyte pH range has been defined based on 1600 polypeptides present in a transformed fibroblast cell lysate and verified using a variety of other cell types. The length of time required to complete an electrophoretic separation in the second dimension was found to depend on buffer conductivity establishing the importance of high quality electrophoresis grade reagents devoid of contaminating salts. To ensure reproducibility of electrophoretic separations, it is critical to maintain a strict control of temperature during the second dimension separation. This prevents altered migration of some polypeptides relative to neighboring polypeptides that have constant Rfs over a broad temperature range. It was also determined that to obtain the maximum information from a complex protein mixture it is critical to use a large format 22- x 22-cm two-dimensional electrophoretic system. Using the optimized two-dimensional electrophoretic system and computerized gel analysis, it was determined that molecular weight estimates of polypeptides differed by approximately 350 daltons between gels, while isoelectric point estimates differed by approximately 0.03 pH units between gels. Using the two-dimensional electrophoresis system described, approximately 1000 polypeptides can be routinely detected from silver-stained 10% polyacrylamide gels or 1600 polypeptides from autoradiographs of 35S-methionine-labeled polypeptides.  相似文献   

15.
A C Smith  J M Harmon 《Biochemistry》1985,24(18):4946-4951
Potential charge heterogeneity within the glucocorticoid binding protein (GBP) of the glucocorticoid receptor was examined by a combination of affinity labeling, immunopurification, and high-resolution two-dimensional (2D) gel electrophoresis. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of [3H]dexamethasone 21-mesylate ([3H]DM) labeled cytosol identified a major, competable, component of Mr approximately equal to 92 000 (92K). This component was recognized by anti-human glucocorticoid receptor antibodies but not by nonimmune serum, indicating that the 92K component was the reduced denatured GBP. Examination of [3H]DM-labeled GBP by conventional 2D electrophoresis utilizing equilibrium isoelectric focusing in the first dimension failed to resolve the 92K GBP into discrete isoelectric components. This behavior was not representative of other, nonspecifically [3H]DM-labeled proteins or proteins in general. Nonequilibrium pH gradient electrophoresis (NEPHGE) was therefore employed to achieve separation in the first dimension. Immunopurified, [3H]DM-labeled GBP subjected to NEPHGE reached isoelectric equilibrium after 6 h of electrophoresis at 400 V. A single, broad peak of radioactivity was identified at pH approximately equal to 6.3. Second-dimension analysis of the NEPHGE-separated GBP by SDS-PAGE resolved this peak into two discrete, 92K, isoforms of apparent pI = 5.7 and 6.0-6.5. The GBP charge heterogeneity was confirmed by NEPHGE 2D analysis of [3H]DM-labeled GBP prepared directly from crude cytosol. Two isoforms indistinguishable from those observed in immunopurified samples were identified. An additional, more acidic, isoform (apparent pI approximately equal to 5.2) was also identified. Thus, there are at least two, and perhaps three, isoforms of the GBP. These data therefore suggest that there is significant charge heterogeneity in the GBP of the glucocorticoid receptor.  相似文献   

16.
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is the most popular and versatile method of protein separation among a rapidly growing array of proteomics technologies. Based on two distinct procedures, it combines isoelectric focusing (IEF), which separates proteins according to their isoelectric point (pI), and SDS-PAGE, which separates them further according to their molecular mass. At present, 2D-PAGE is capable of simultaneously detecting and quantifying up to several thousand protein spots in the same gel image. Here we provide comprehensive step-by-step instructions for the application of a standardized 2D-PAGE protocol to a sample of human plasma or cerebrospinal fluid (CSF). The method can be easily adapted to any type of sample. This four-day protocol provides detailed information on how to apply complex biological fluids to an immobilized dry strip gel, cast home-made gradient acrylamide gels, run the gels, and perform standard staining methods. A troubleshooting guide is also included.  相似文献   

17.
Highlights on the capacities of "Gel-based" proteomics   总被引:1,自引:0,他引:1  
Gel-based proteomic is the most popular and versatile method of global protein separation and quantification. This is a mature approach to screen the protein expression at the large scale, and a cheaper approach as compared with gel-free proteomics. Based on two independent biochemical characteristics of proteins, two-dimensional electrophoresis combines isoelectric focusing, which separates proteins according to their isoelectric point, and SDS-PAGE, which separates them further according to their molecular mass. The next typical steps of the flow of gel-based proteomics are spots visualization and evaluation, expression analysis and finally protein identification by mass spectrometry. For the study of differentially expressed proteins, two-dimensional electrophoresis allows simultaneously to detect, quantify and compare up to thousand protein spots isoforms, including post-translational modifications, in the same gel and in a wide range of biological systems. In this review article, the limits, benefits, and perspectives of gel-based proteomic approaches are discussed using concrete examples.  相似文献   

18.
The major cAMP-binding proteins isolated from [35S]methionine-labeled S49 mouse lymphoma cells or MDBK bovine kidney cells correspond in isoelectric point and apparent molecular weight to the regulatory subunit (R) of type I cAMP-dependent protein kinase. These proteins were compared directly by two-dimensional gel electrophoresis and by two-dimensional gel electrophoresis of peptides generated either from native R with thermolysin and chymotrypsin or from denatured R with papain. Both the undigested proteins and all their major peptides were identical in charge and apparent molecular weights, indicating a very high degree of structural homology.  相似文献   

19.
20.
A method is described which combines the resolving power of two-dimensional gel electrophoresis with that of acetic acid/urea/Triton X-100 gel electrophoresis, avoiding the necessity of eluting protein from the gels at any step of the procedure. The combination of electrophoretic separation on the basis of charge, mass, and hydrophobic properties of the proteins has the potential of resolving modified forms and isoforms present in very complex protein populations. The technique can be used for analytical purposes, or it may be scaled up to yield microgram amounts of highly purified proteins. The resolution obtained by tandem application of nonequilibrium pH gradient electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and polyacrylamide gel electrophoresis in the presence of nonionic detergent was evaluated using crude nuclear proteins of the nematode Caenorhabditis elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号