首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Immunocharacteristics of the pars distalis cells of the pituitary of the male lizard A. carolinensis are determined by employing the immunoperoxidase technique with antisera to mammalian pituitary hormones. On the basis of their immunoreactivity, 5 different cell types with characteristic anatomical distribution are recognized. ACTH cells are found in the rostral half of the pars distalis, and PRL cells in the rostral two thirds of the pars distalis. GH and TSH cells are located in the caudal half of the pars distalis. GTH cells are distributed throughout the gland. When consecutive sections are stained with antiserum to ovine FSH or its beta-subunit and to ovine LH, the same cells show immunoreactivity to all the three antisera. None of the GTH cells show positive immunoreactivity to ovine beta-LH antiserum. The results suggest the existence of one gonadotropic cell type in the pituitary of this lizard.  相似文献   

2.
In this paper we report the first complete mapping of the pituitary in a tuna species. The various different adenohypophysis cell types of the bluefin tuna, Thunnus thynnus L. have been identified and located using different antisera against mammalian and piscine hormones and various histochemical techniques: PAS, Alcian Blue pH 2.5 and lectins -ConA and WGA(Neutral and Acidic Glycoproteins); Bromophenol Blue (Proteins) and Tioglycollate-Ferric-Ferricianide-FeIII (-S-S- groups). Prolactin (PRL) and adrenocorticotrophic (ACTH) cells were located in the rostral pars distalis (RPD) of the pituitary, while the proximal pars distalis (PPD) displayed gonadotrophic (GTH), thyrotrophic (TSH), somatotrophic (GH) and also a few PRL cells. Moreover, somatolactin (SL) and melanotrophic (MSH) cells were identified inside the pars intermedia (PI). Interestingly, some SL-immunoreactive fibers were also detected in the neurohypophysis. Some GTH cells were also located on the exterior surface of the PI. Glycoproteins containing mannose (Man) and/or glucose (Glc); N-acetyl-glucosamine (GlcNAc) and/or sialic acid sugar residues, as well as -S-S- groups, were observed in GTH, TSH and SL cells. The Bromophenol Blue technique stained amphiphilic SL, acidophilic GH cells and weakly ACTH cells. GH and ACTH cells were unreactive to PAS, Alcian Blue, Tioglycollate-Ferric-Ferricianide-FeIII and lectin (Con A and WGA) techniques. Finally, PAS reaction was positive in amphiphilic SL cells, which were PbH unreactive, while MSH and ACTH cells were stained with PbH technique.  相似文献   

3.
Summary Immunocharacteristics of the pars distalis cells of the pituitary of the male lizard A. carolinensis are determined by employing the immunoperoxidase technique with antisera to mammalian pituitary hormones. On the basis of their immunoreactivity, 5 different cell types with characteristic anatomical distribution are recognized. ACTH cells are found in the rostral half of the pars distalis, and PRL cells in the rostral two thirds of the pars distalis. GH and TSH cells are located in the caudal half of the pars distalis. GTH cells are distributed throughout the gland. When consecutive sections are stained with antiserum to ovine FSH or its -subunit and to ovine LH, the same cells show immunoreactivity to all the three antisera. None of the GTH cells show positive immunoreactivity to ovine -LH antiserum. The results suggest the existence of one gonadotropic cell type in the pituitary of this lizard.Supported by U.S. Council for International Exchange of Scholars (to D.R.N.) and PHS Grant NS09914  相似文献   

4.
Adenohypophysial cell types in the pituitary of adult sea lampreys, Petromyzon marinus, was localized by means of immunocytochemical and lectin cytochemical techniques. At least four types of adenohypophysial hormone cells are present in the pituitary of adult sea lampreys. The first type of cell is ACTH-like and occupies most parts of the rostral pars distalis (RPD), but a few scattered ACTH-like cells are also present in the proximal pars distalis (PPD). The second type of cell is MSH-like and occupies the whole pars intermedia. The third type of cell is GH/PRL-like and occupies the dorsal half of the PPD. These GH/PRL-like cells were initially detected by heterologous immunocytochemistry using antibodies to salmon GH, salmon PRL and blue shark GH, after hydrated autoclave pretreatment of sections. Later, by use of an antiserum raised against a synthetic peptide corresponding to the partial sequence of lamprey GH/PRL, the same cells as those containing GH/PRL-like immunoreactivity were stained positively. Similarity of the topographic distributions between lamprey GH/PRL-like cells and gnathostome fish GH cells in the pituitary suggests that GH/PRL-like cells in the lamprey may be GH cells. The last type of cell is GTH-like and occupies the ventral half of the PPD. Although GTH has not yet been isolated from the lamprey pituitary, our immunocytochemical data suggest that GTH-like material in the sea lamprey pituitary is more closely related to mammalian-like LH, rather than to FSH or TSH. These four types of adenohypophysial cells occupy most parts of the lamprey adenohypophysis and indeed there is little room for TSH or PRL cells. Thus, the present study further suggests that GH and LH-like GTH are ancestral forms of GH/PRL/SL family and glycoprotein hormones, respectively.  相似文献   

5.
The adenohypophysis of the greater weever fish (Trachinus draco) was studied using histochemical and immunocytochemical methods. The adenohypophysis comprised the rostral pars distalis (RPD), the proximal pars distalis (PPD), and the pars intermedia (PI). Neurohypophysis showed a patent hypophyseal stalk which was divided into several branches intermingled with the adenohypophysis. Salmon prolactin (PRL)-immunoreactive (ir) cells, arranged in follicles, resided in the RPD and the most rostral part of the ventral PPD. Human adrenocorticotropin (ACTH)-ir cells were located in the RPD between PRL-ir cells and the neurohypophyseal processes. Salmon and seabream somatotropin (GH)-ir cells were located in both the dorsal and the ventral PPD. Some GH-ir cells were seen in surrounding and in contact with neurohypophyseal branches, whereas other isolated or clustered GH-ir cells were embedded in adenohypophyseal cells of the PPD. In addition, isolated or clustered GH-ir cells were also detected in the tissue of the PPD covering the most rostral part of PI. Only one class of salmon and carp gonadotropin (GTH)-ir cells was detected. Isolated or clustered GTH-ir cells resided in both the dorsal and the ventral PPD and were seen surrounding the PI and in the tissue of the PPD covering the most rostral part of PI. In addition, a few scattered GTH-ir cells were observed in the ventral RPD. Scattered groups of thyrotropin (TSH)-ir cells were present in the anteroventral PPD. Salmon and seabream somatolactin (SL)-ir and bovine melanotropin (MSH)-ir cells were intermingled surrounding the neurohypophyseal tissue. SL-ir cells were negative to periodic acid-Schiff technique. MSH-ir cells showed a very weak immunoreactivity to anti-human ACTH((1-24)) serum. In addition to the PI location, few isolated or clustered SL- and MSH-ir cells were observed in the dorsal PPD.  相似文献   

6.
The morphological characteristics and percentage of the cellular associations between gonadotrophs (LH- and FSH-secreting cells) and other cellular types were studied in pituitary pars distalis of adult male viscachas (Lagostomus maximus maximus) by double immunohistochemistry using specific antibodies to LH, FSH, PRL, GH, ACTH, TSH and S-100 protein (by folliculostellate cells; FSC), during long and short photoperiods. Bihormonal gonadotrophs were observed in ventro-medial and dorsal regions, interspersed between monohormonal gonadotrophs, and their number increased in short photoperiod. LH- and FSH-gonadotrophs were found around lactotrophs, enclosed by somatotrophs in the dorsal region, and associated with irregular corticotrophs. Gonadotrophs and thyrotrophs were associated along blood vessels and follicular structures. The cytoplasmic prolongations of FSC were in contact with both gonadotrophs. The percentage of LH–FSH, LH–ACTH, LH–FSC, FSH–LH, FSH–PRL, FSH–GH, FSH–ACTH, FSH–TSH and FSH–FSC associations decreased, whereas LH–PRL increased in short as compared to long photoperiod. The most abundant associations were LH–GH and LH–TSH during long photoperiod, but LH–GH and LH–PRL during short photoperiod. FSH–GH and FSH–PRL were the most numerous associations, and LH–FSC and FSH–FSC were the less abundant ones in both photoperiods. These results provide the morphological evidence for specific cellular associations between gonadotrophs and other cellular types of viscacha pituitary.  相似文献   

7.
乌脑龟垂体显微及其腺垂体超微结构的研究   总被引:1,自引:0,他引:1  
乌龟脑垂体由柄形神经垂体和椭圆形腺垂体两部分组成,神经垂体位于腺垂体后部上方呈背腹型排列。神经垂体中神经叶不发达,腺垂体分为远侧部和中间部,特殊空泡结构成为垂体门脉系统的特征。远侧部细胞分为嗜酸性细胞、嗜碱性细胞和嫌色细胞3种。通过透射电镜观察,腺垂体远侧部主要有5种分泌激素细胞:即生长激素(GH)分泌细胞、催乳激素(PRL)分泌细胞、促甲状腺激素(TSH)分泌细胞、促肾上腺皮质激素(ACTH)分泌细胞、促性腺激素(GTH)分泌细胞和非分泌类型滤泡.星形细胞(Fs)。生长激素分泌细胞核大、分泌颗粒少的特征成为乌龟与其他动物最大的区别,可能与乌龟具有生长慢、寿命长的生物学特性有关。  相似文献   

8.
乌龟脑垂体显微及其腺垂体超微结构的研究   总被引:4,自引:1,他引:3  
乌龟脑垂体由柄形神经垂体和椭圆形腺垂体两部分组成,神经垂体位于腺垂体后部上方呈背腹型排列。神经垂体中神经叶不发达,腺垂体分为远侧部和中间部,特殊空泡结构成为垂体门脉系统的特征。远侧部细胞分为嗜酸性细胞、嗜碱性细胞和嫌色细胞3种。通过透射电镜观察,腺垂体远侧部主要有5种分泌激素细胞:即生长激素(GH)分泌细胞、催乳激素(PRL)分泌细胞、促甲状腺激素(TSH)分泌细胞、促肾上腺皮质激素(ACTH)分泌细胞、促性腺激素(GTH)分泌细胞和非分泌类型滤泡-星形细胞(FS)。生长激素分泌细胞核大、分泌颗粒少的特征成为乌龟与其他动物最大的区别,可能与乌龟具有生长慢、寿命长的生物学特性有关。    相似文献   

9.
The morphogenesis of the pituitary gland and the chronological appearance of adenohypophyseal cells were investigated for the first time in the Somalian cave fish Phreatichthys andruzzii by immunocytochemistry. The adult adenohypophysis contained: a rostral pars distalis, with prolactin (PRL) cells arranged in follicles and adrenocorticotropic (ACTH) cells, a proximal pars distalis with somatotropic (GH), β‐thyrotropic (TSH), β‐gonadotropic type I (FSH) and type II (LH) cells and a pars intermedia with α‐somatolactin (SL), α‐melanotropic (MSH) and β‐endorphin (END) cells. All regions were deeply penetrated by neurohypophyseal branches. At hatching (24 h post‐fertilization) the pituitary was an oval cell mass, close to the ventral margin of diencephalon. The first immunoreactive cells appeared as follows: PRL at 0·5 days after hatching (dah), GH and SL at 1·5 dah, END at 2 dah, TSH, ACTH and MSH at 2·5 dah, FSH at 28 dah and LH at 90 dah. The neurohypophysis appeared at 5 dah and branched extensively inside the adenohypophysis at 130 dah, but there was no boundary between rostral pars distalis and proximal pars distalis at this stage. The potential indices of prolactin and growth hormone production increased until 28 and 60 dah, respectively. The potential index of growth hormone production correlated positively with total length. Activity of PRL and GH cells, measured as ratio of cell area to nucleus area, was significantly higher in juveniles than in larvae.  相似文献   

10.
Summary The immunocytochemical distribution of gonadotropin (GTH) in the goldfish pituitary gland was studied applying the peroxidase-antiperoxidase (PAP) method and the protein A-gold technique at lightand electron-microscopic levels, respectively, with an antiserum raised against silver carp GTH. In the light-microscopic immunocytochemistry, PAS-positive cells in the proximal pars distalis showed strong reaction with the antiserum. Gold particles were concentrated both on globules (large) and on granules (small) of the gonadotrophs (PAS-positive cells) in the electron-microscopic immunocytochemistry. Other cells in the pituitary gland, including thyrotrophs, displayed no immunoreactivity with the antiserum at the dilutions tested. These results indicate, not only immunocytochemical distribution of GTH both in globules and in granules in the gonadotrophs, but also the high purity of the antigen (silver carp GTH) and specificity of the antiserum.  相似文献   

11.
12.
The effects of dietary thyroxine on the immunoreactivity of cells in the pars distalis of the adenohypophysis in dwarf (dw/dw) mice were determined by ultrastructural immunocytochemistry. In nontreated dwarfs only adrenocorticotropic hormone (ACTH) cells and luteinizing hormone (LH) cells showed positive reactions to their respective antibodies, whereas no cells showed immunoreactivity to antibodies to growth hormone (GH), thyroid-stimulating hormone (TSH), or prolactin (Prl). In dwarfs supplemented postnatally with dietary thyroxine for 9 wks, the treatment failed to produced immunoreactive GH, TSH or Prl cells. However, LH cells became more prominent and fully developed, with denser concentrations of immunoreactive particles overlying the secretory granules than occurred in nontreated dwarfs. In thyroxine-treated dwarfs, ACTH cells were similar in ultrastructural features and immunoreactivity to those in nontreated dwarfs.  相似文献   

13.
An analysis of secreted proteins by the signal sequence trap method using a cDNA library of the rat pituitary anlage at embryonic days (E) 13.5 revealed the abundant expression of delta-like protein 1 (Dlk1) in the pituitary gland. Dlk1, an epidermal growth factor-like repeat protein in preadipocytes, functions in maintaining the preadipose state. Expression of Dlk1 mRNA in the pituitary at E13.5 and in the adult pituitary was confirmed by in situ hybridization. The expression pattern of Dlk1 during pituitary development was also studied by immunohistochemistry. Dlk1 protein first appeared in Rathke’s pouch and the infundibulum at E11.5; as development proceeded, expression became restricted to the pars distalis and pars tuberalis (PT). Dlk1 was expressed in most ACTH cells during the embryonic stages, but its expression was limited to only a few ACTH cells in the adult pituitary. It was also expressed in a small population of TSH, GTH, and PRL cells throughout development, whereas it was present in the cytoplasm of most GH cells at all developmental stages. Similarly, Dlk1 was localized in the cytoplasm of PT cells during development. These findings provide new insights into the mechanism of Dlk1 regarding its regulation of pituitary hormone-secreting cells during development.  相似文献   

14.
Summary Immunocytochemical studies were performed to describe the characteristics of cell types and their distribution in the pars distalis of Japanese long-fingered bat, Miniopterus schreibersii fuliginosus, collected at various stages of the reproductive cycle. Six distinct cell types have been identified in the pars distalis by the unlabeled immunoperoxidase technique and by the ABC method. Growth hormone (GH) and prolactin (PRL) cells were immunostained with antisera against chicken GH and ovine PRL. The GH-immunoreactive cells were round or oval orangeophilic cells distributed throughout the pars distalis with prominent aggregation in the posterolateral region. The PRL cells were pleomorphic carminophilic cells that occurred in small groups within the central and dorsocaudal regions of the pars distalis. They were sparsely distributed in the central region of the pars distalis in the hibernating bats, but increased significantly in the pregnant and lactating bats. The adrenocorticotropic (ACTH) cells were large round or polygonal amphophilic cells in the rostroventral and ventrolateral regions of the pars distalis. The thyrotropic (TSH) cells were small rounded or polygonal and distributed mainly in the ventrolateral region of the pars distalis. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) cells were identified immunocytochemically with antisera against the specific beta subunits of ovine LH and rat FSH. There were two populations of LH and FSH cells, one aggregated in the zona tuberalis and the other scattered singly throughout the rest of the pars distalis. The aggregated cells were immunoreactive with both antisera directed to LH and FSH, while scattered cells were reactive solely with antiserum to either LH or FSH and exhibited seasonal variations. In females, the proportional volume of the pars distalis occupied by LH cells was significantly reduced during pregnancy and lactation. No evidence of involution was observed in pars distalis cells except for PRL cells in males or females during hibernation.  相似文献   

15.
Polypteriform fish constitutes the most primitive living descendent of the ancient bony fish. In polypteriform fish, only proopiomelanocortin (POMC) has been identified so far in the adenohypophysis, which is surprising in view of their evolutionary importance. In the present study, distribution of immunoreactive adenohypophysial hormones was examined in juvenile individuals of Polypterus endlicheri. Antisera to tetrapod and fish adenohypophysial hormones were used as immunostaining probes. Adrenocorticotropin (ACTH)-like cells were detected by antisera to salmon POMC N-terminal peptide, porcine ACTH and mammalian alpha-melanotropin (MSH), and were distributed in the rostral pars distalis in close proximity to the hypophysial duct. MSH-like cells were found in the pars intermedia, and were stained by anti-salmon N-Ac-beta-endorphin II as well as anti-mammalian alpha-MSH and anti-salmon POMC-N terminal peptide. Prolactin (PRL)-like cells were detected only after application of anti-sturgeon PRL, and were distributed in the rostral pars distalis, where PRL-positive material was found in columnar mucinous cells lining the diverticuli of the hypophysial duct. Growth hormone (GH)-like cells were stained with antisera to sturgeon GH, human GH, salmon GH and blue shark GH, and were distributed in the proximal pars distalis. Somatolactin (SL)-like cells were stained with anti-salmon SL, and were distributed in the pars intermedia. Two types of glycoprotein hormone-positive cells were detected in the proximal pars distalis. Although both types of cells were stained with several antisera to glycoprotein hormones, such as sturgeon LHbeta and salmon LHbeta, it was difficult to know which types of cells produce LH, FSH, or TSH. Thus, the present study revealed seven types of adenohypophysial hormone-like cells in the Polypterus pituitary gland, which may provide the morphological basis for better understanding on evolution of the pituitary gland and the adenohypophysial hormones in vertebrates.  相似文献   

16.
The expression of receptor protein tyrosine phosphatase sigma (PTPfinal sigma) is developmentally regulated in neuronal and neuroendocrine tissues. We have previously shown that mice deficient in PTPfinal sigma demonstrate nervous system abnormalities, pituitary hypoplasia, increased neonatal mortality (60%), and death from a wasting syndrome at 2-3 wk of age (38%). We have now examined the role of PTPfinal sigma on pituitary, pancreas and enteroendocrine cytodifferentiation, hormone production, and development. The adenohypophyses of PTPfinal sigma(-/-) mice were small and exhibited reduced GH and PRL immunoreactivity. Cells containing TSH, LH, FSH, ACTH, pituitary-specific POU homeodomain factor (Pit-1), ER, and steroidogenic factor 1 were found in normal proportions and distributions. The diminished expression of GH and PRL was not associated with apoptosis of somatotrophs or lactotrophs. Pit-1-positive TSH-negative cells were detected, suggesting that impaired GH and PRL synthesis was not attributable to Pit-1 deficiency. In the knockout mice, pancreatic islets were hypoplastic with reduced insulin immunoreactivity, and there was also variable expression of gut hormones. Functionally, the GH deficiency was associated with hypoglycemia and death in the PTPfinal sigma(-/-) neonate and accordingly, ip administration of GH rescued the PTPfinal sigma(-/-) neonate and normalized the blood glucose. These data indicate that PTPfinal sigma plays a major role in differentiation and development of the neuroendocrine system.  相似文献   

17.
An antiserum was prepared against the recently purified bullfrog (bf) growth hormone (GH); it was applied to sections of brain and pituitary of three urodele (Ambystoma, Pleurodeles and Cynops) and three anuran (Xenopus, Bufo vulgaris and B. japonicus) species. No immunostaining was obtained in the urodele pituitary, being consistent with the results of immunoblot analysis of the pituitary homogenate. In the three anuran species, strong immunoreactivity was observed in GH cells that were concentrated in the posterodorsal region of the pars distalis. No GH-like immunoreactivity was detectable in the brain of any of the species. A comparison using adjacent sections stained with anti-bf prolactin (PRL) confirmed the anteroventral localization of PRL cells. Colocalization of GH and PRL was not apparent. These data suggest that the molecular structure of amphibian GHs is considerably different between anurans and urodeles. The antiserum used in the present work shows a high species specificity, recognizing only anuran GHs. In contrast anti-bfPRLlabeled PRL cells in all the amphibian species studied in the present work, suggesting that PRLs possess common amino acid sequences recognized by the anti-bfPRL.  相似文献   

18.
Summary The sites of production of adrenocorticotropin (ACTH) and melanocyte stimulating hormone (MSH) are studied by the immunoglobulin-peroxidase bridge technique, using antisera prepared against synthetic porcine 1–24 and 17–39 ACTH, and bovine MSH on the rat adenohypophysis. Presence of ACTH all over the pars intermedia (PI) is indicated by staining with antisera p 1–24 and p 17-3-9 ACTH. There are darkly stained ACTH cells in the PI and pars tuberalis (PT), similar to those in the pars distalis (PD). With higher dilutions of the ACTH antiserum, staining intensity disappears or reduces markedly in majority of the PI cells, whereas, the ACTH cells in the PI, PD and PT do not vary much in their staining intensity. Therefore, it is concluded that majority of the PI glandular cells (light glandular and dark cells) contain less corticotropin than the ACTH cells. From these observations, it seems to me that the major amount of corticotropin is supplied by the ACTH cells of the PD, PI and PT, and less by the light glandular and dark cells of the PI. The antiserum is ineffective after absorption, so the staining reaction appears to be specific for p 1–24 and b 17–39 ACTH.Presence of MSH all over the PI is indicated by staining with antisera to bovine MSH. Majority of the PI cells are highly stained even with higher dilution of the antiserum. The unstained cells in the PI seem to be ACTH cells and/or marginal cuboidal cells. The antiserum was ineffective after absorption, so the staining reaction appears to be specific for b MSH.Control over the PD corticotropin through the median eminence portal circulation and the PI and PT control through nervous system is also discussed.This study was supported by MRC of Canada Grant nos. MA-3759, and MA-5160.The author gratefully wishes to thank Drs. P. Desaulles and W. Rittel (CIBA, Basle, Switzerland) for the synthetic p 1–24 ACTH and b MSH, Dr. R. F. Phifer for p 17–39 ACTH, and Dr. S. S. Spicer for providing samples of rabbit anti-porcine 17–39 ACTH and anti-human ACTH sera, Drs. George Sétáló and Paul Nakane for their valuable advice. He also acknowledges the help of Mr. Shankar Nayak to prepare the antisera and the skilful technical assistance of Miss. Elise Poiré.  相似文献   

19.
The pars distalis of the avian adenohypophysis consists of well-defined cephalic and caudal lobes which are distinct in their cellular constituents. Immunocytochemical investigations on the pituitary hormones of the pars distalis of the Japanese quail reveal five types of secretory cells, adenocorticotropin (ACTH) cells, prolactin (PRL) cells, thyroid-stimulating hormone (TSH) cells, growth hormone GH (STH) cells, and FSH/LH (gonadotropic) cells. The ACTH cells, TSH cells, and PRL cells are restricted to the cephalic lobe, and GH (STH) cells are confined to the caudal lobe, while FSH/LH cells are distributed throughout the cephalic and caudal lobes. The median eminence of birds has distinct anterior and posterior divisions, each with different neuronal components. The avian hypophysial portal vessels also consists of two groups, anterior and posterior. The peculiar arrangement and distribution of the avian hypophysial portal vessels are possibly related to the distribution of neuropeptides in the two divisions of the median eminence and to the cytological and functional differentiation of two lobes of the pars distalis. The localization of perikarya and fibers containing luteinizing hormone releasing hormone (LHRH), somatostatin, vasotocin, mesotocin, corticotropin-releasing factor (CRF), vasoactive intestinal polypeptide (VIP), glucagon, metenkephalin, and substance P in the hypothalamus and median eminence of the Japanese quail has been investigated by means of immunohistochemistry using antisera against the respective neuropeptides. LHRH-, somatostatin-, VIP-, met-enkephalin-, and substance P-immunoreactive fibers are localized in the external layer of the anterior and posterior divisions of the median eminence, while CRF- and vasotocin-reactive fibers are demonstrated only in the external layer of the anterior division of the median eminence. The metenkephalin fibers are thicker in the anterior median eminence but the substance P fibers are more abundant in the posterior division. Mesotocin fibers occur only in the internal layer of the median eminence and neural lobe.  相似文献   

20.
GnRH相关肽在大鼠垂体前叶的细胞学定位   总被引:2,自引:0,他引:2  
本研究应用特异性抗GnRH相关肽(GAP)N端11个氨基酸的抗血清和六种垂体前叶激素的抗血清,通过免疫组织化学双重染色技术观察GAP在大鼠垂体前叶细胞的定位。结果发现,GAP样免疫反应性物质存在于LH细胞和FSH细胞,而未见于GH、PRL、TSH和ACTH细胞。本文首次证明GAP存在于正常大鼠垂体促性腺激素细胞,为GAP调节LH和FSH的分泌提供了形态学证据;也支持GAP的功能序列在其分子的N端,或GAP进一步裂解出N端片段而发挥作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号