首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long‐term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty‐nine soil cores to 1‐m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha?1 (2.24 ± 1.41 Mg C ha?1). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0–30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65–286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2–2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models.  相似文献   

2.
We estimated carbon pools and emissions from deforestation in northern Argentine forests between 1900 and 2005, based on forest inventories, deforestation estimates from satellite images and historical data on forests and agriculture. Carbon fluxes were calculated using a book-keeping model. We ran 1000 simulations for a 105-year period with different combinations of values of carbon stocks (Mg C ha−1), soil carbon in the top 0.2 m, and annual deforestation series. The 1000 combinations of parameters were performed as a sensitivity analysis that for each run, randomly selected the values of each variable within a predefined range of values and probability distributions. Using the simulation outputs, we calculated the accumulated C emissions due to deforestation from 1900 to 2005 and the annual emission as the average of the 1000 simulations, and uncertainties of our estimates as the standard deviation. We found that northern Argentine forests contain an estimated 4.54 Pg C (2.312 Pg C in biomass and 2.233 Pg C in soil). Between 1900 and 2005 approximately 30% of the forests were deforested, yielding carbon emissions of 0.945 (SD = 0.270) Pg C. Estimated average annual carbon emissions between 1996 and 2005, mostly from deforestation of the Chaco dry forests, were 20,875 (SD = 6,156) Gg C y−1 (1 Gg = 10−6 Pg). These values represent the largest source of carbon from land-cover change in the extra-tropical southern hemisphere, between 0.9 and 2.7% of the global carbon emissions from deforestation, and approximately 10% of carbon emissions from the Brazilian Amazon. Deforestation, which has accelerated during the last decades as a result of modern agriculture expansion, represents a major national source of greenhouse gases and the second emission source, after fossil fuel consumption by fixed sources. We conclude that Argentine forests are an important carbon pool and emission source that need more attention for accurate global estimates, and seasonally dry forest deforestation is a key component of the Argentine carbon cycle. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
On the African continent, the population is expected to expand fourfold in the next century, which will increasingly impact the global carbon cycle and biodiversity conservation. Therefore, it is of vital importance to understand how carbon stocks and community assembly recover after slash‐and‐burn events in tropical second growth forests. We inventoried a chronosequence of 15 1‐ha plots in lowland tropical forest of the central Congo Basin and evaluated changes in aboveground and soil organic carbon stocks and in tree species diversity, functional composition, and community‐weighted functional traits with succession. We aimed to track long‐term recovery trajectories of species and carbon stocks in secondary forests, comparing 5 to 200 + year old secondary forest with reference primary forest. Along the successional gradient, the functional composition followed a trajectory from resource acquisition to resource conservation, except for nitrogen‐related leaf traits. Despite a fast, initial recovery of species diversity and functional composition, there were still important structural and carbon stock differences between old growth secondary and pristine forest, which suggests that a full recovery of secondary forests might take much longer than currently shown. As such, the aboveground carbon stocks of 200 + year old forest were only 57% of those in the pristine reference forest, which suggests a slow recovery of aboveground carbon stocks, although more research is needed to confirm this observation. The results of this study highlight the need for more in‐depth studies on forest recovery in Central Africa, to gain insight into the processes that control biodiversity and carbon stock recovery.  相似文献   

4.
Aim Edaphic heterogeneity may be an important driver of population differentiation in the Amazon but remains to be investigated in trees. We compared the phylogeographic structure across the geographic distribution of two Protium (Burseraceae) species with different degrees of edaphic specialization: Protium alvarezianum, an edaphic specialist of white‐sand habitat islands; and Protium subserratum, an edaphic generalist found in white sand as well as in more widespread soil types. We predicted that in the edaphic specialist, geographic distance would structure populations more strongly than in the edaphic generalist, and that soil type would not structure populations in the edaphic generalist unless habitat acts as a barrier promoting population differentiation. Location Tropical rain forests of the Peruvian and Brazilian Amazon, Guyana and French Guiana. Methods We sequenced 1209–1211 bp of non‐coding nuclear ribosomal DNA (internal transcribed spacer and external transcribed spacer) and a neutral low‐copy nuclear gene (phytochrome C) from P. subserratum (n = 65, 10 populations) and P. alvarezianum (n = 19, three populations). We conducted a Bayesian phylogenetic analysis, constructed maximum parsimony haplotype networks and assessed population differentiation among groups (soil type or geographic locality) using analysis of molecular variance and spatial analysis of molecular variance. Results The edaphic specialist exhibited considerable genetic differentiation among geographically distant populations. The edaphic generalist showed significant genetic differentiation between the Guianan and Amazon Basin populations. Within Peru, soil type and not geographic distance explained most of the variation among populations. Non‐white‐sand populations in Peru exhibited lower haplotype/nucleotide diversity than white‐sand populations, were each other’s close relatives, and formed an unresolved clade derived from within the white‐sand populations. Main conclusions Geographic distance is a stronger driver of population differentiation in the edaphic specialist than in the generalist. However, this difference did not appear to be related to edaphic generalism per se as adjacent populations from both soil types in the edaphic generalist did not share many haplotypes. Populations of the edaphic generalist in white‐sand habitats exhibited high haplotype diversity and shared haplotypes with distant white‐sand habitat islands, indicating that they have either efficient long‐distance dispersal and/or larger ancestral effective population sizes and thus retain ancestral polymorphisms. These results highlight the importance of edaphic heterogeneity in promoting population differentiation in tropical trees.  相似文献   

5.
Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0–30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long‐term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation.  相似文献   

6.
Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the distribution of the very tallest trees remain poorly understood. The recent discovery of grove of giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. We used high‐resolution airborne laser surveys to measure canopy height across 282,750 ha of old‐growth and second‐growth forests randomly sampling the entire Brazilian Amazon. We investigated how resources and disturbances shape the maximum height distribution across the Brazilian Amazon through the relations between the occurrence of giant trees and environmental factors. Common drivers of height development are fundamentally different from those influencing the occurrence of giant trees. We found that changes in wind and light availability drive giant tree distribution as much as precipitation and temperature, together shaping the forest structure of the Brazilian Amazon. The location of giant trees should be carefully considered by policymakers when identifying important hot spots for the conservation of biodiversity in the Amazon.  相似文献   

7.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

8.
Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010–2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no‐harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710–6742 Mt C. For the no‐harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long‐term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.  相似文献   

9.
Historically, large areas of forest in Europe were managed as coppice woodland to produce wood‐based fuel for the smelting industry. We hypothesized that this practice produced a legacy effect on current forest ecosystem properties. Specifically, we hypothesized that the historical form of coppicing may have produced a legacy of elevated stocks of soil organic carbon (SOC), nutrients and black carbon (BC) in soil as fire was routinely used in coppiced woodland to clear land. We further hypothesized that these changes in soil properties would result in increased biodiversity. To test these hypotheses, we sampled the surface soil (0–5, 5–10 and 10–20 cm) from a chronosequence of forest sites found in the Siegerland (Germany) that had been coppiced and burned 1, 2, 3.5, 6, 8, 11 and 17 years before present. Mature beech and spruce forests (i.e., >60 years) were also sampled as reference sites: to provide a hint of what might occur in the absence of human intervention. We measured stocks of SOC, BC, NO3‐N, P, K, Mg, as well as cation exchange and water‐holding capacity, and we mapped plant composition to calculate species richness and evenness. The results showed that coppicing in combination with burning soil and litter improved soil nutrient availability, enhanced biodiversity and increased SOC stocks. The SOC stocks and biodiversity were increased by a factor of three relative to those in the mature beech and spruce forests. This study shows that traditional coppicing practice may facilitate net C accrual rates of 20 t ha?1 yr?1 and maintain high biodiversity, indicating that aspects of traditional practice could be applied in current forest management to foster biodiversity and to mitigate climate change.  相似文献   

10.
There are few data, but diametrically opposed opinions, about the impacts of forest logging on soil organic carbon (SOC). Reviews and research articles conclude either that there is no effect, or show contradictory effects. Given that SOC is a substantial store of potential greenhouse gasses and forest logging and harvesting is routine, resolution is important. We review forest logging SOC studies and provide an overarching conceptual explanation for their findings. The literature can be separated into short‐term empirical studies, longer‐term empirical studies and long‐term modelling. All modelling that includes major aboveground and belowground biomass pools shows a long‐term (i.e. ≥300 years) decrease in SOC when a primary forest is logged and then subjected to harvesting cycles. The empirical longer‐term studies indicate likewise. With successive harvests the net emission accumulates but is only statistically perceptible after centuries. Short‐term SOC flux varies around zero. The long‐term drop in SOC in the mineral soil is driven by the biomass drop from the primary forest level but takes time to adjust to the new temporal average biomass. We show agreement between secondary forest SOC stocks derived purely from biomass information and stocks derived from complex forest harvest modelling. Thus, conclusions that conventional harvests do not deplete SOC in the mineral soil have been a function of their short time frames. Forest managers, climate change modellers and environmental policymakers need to assume a long‐term net transfer of SOC from the mineral soil to the atmosphere when primary forests are logged and then undergo harvest cycles. However, from a greenhouse accounting perspective, forest SOC is not the entire story. Forest wood products that ultimately reach landfill, and some portion of which produces some soil‐like material there rather than in the forest, could possibly help attenuate the forest SOC emission by adding to a carbon pool in landfill.  相似文献   

11.
Mangroves of the semiarid Caatinga region of northeastern Brazil are being rapidly converted to shrimp pond aquaculture. To determine ecosystem carbon stocks and potential greenhouse gas emissions from this widespread land use, we measured carbon stocks of eight mangrove forests and three shrimp ponds in the Acaraú and Jaguaribe watersheds in Ceará state, Brazil. The shrimp ponds were paired with adjacent intact mangroves to ascertain carbon losses and potential emissions from land conversion. The mean total ecosystem carbon stock of mangroves in this semiarid tropical landscape was 413 ± 94 Mg C/ha. There were highly significant differences in the ecosystem carbon stocks between the two sampled estuaries suggesting caution when extrapolating carbon stock across different estuaries even in the same landscape. Conversion of mangroves to shrimp ponds resulted in losses of 58%–82% of the ecosystem carbon stocks. The mean potential emissions arising from mangrove conversion to shrimp ponds was 1,390 Mg CO2e/ha. Carbon losses were largely from soils which accounted for 81% of the total emission. Losses from soils >100 cm in depth accounted for 33% of the total ecosystem carbon loss. Soil carbon losses from shrimp pond conversion are equivalent to about 182 years of soil carbon accumulation. Losses from mangrove conversion are about 10‐fold greater than emissions from conversion of upland tropical dry forest in the Brazilian Caatinga underscoring the potential value for their inclusion in climate change mitigation activities.  相似文献   

12.
Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon. Papua New Guinea (PNG) lies within one of the largest areas of contiguous tropical forest and is characterized by environmental gradients driven by altitude; yet, the region has been grossly understudied. Here, we present the first field assessment of aboveground biomass (AGB) across three main forest types of PNG using 193 plots stratified across 3,100‐m elevation gradient. Unexpectedly, AGB had no direct relationship to rainfall, temperature, soil, or topography. Instead, natural disturbances explained most variation in AGB. While large trees (diameter at breast height > 50 cm) drove altitudinal patterns of AGB, resulting in a major peak in AGB (2,200–3,100 m) and some of the most carbon‐rich forests at these altitudes anywhere. Large trees were correlated to a set of climatic variables following a hump‐shaped curve. The set of “optimal” climatic conditions found in montane cloud forests is similar to that of maritime temperate areas that harbor the largest trees in the world: high ratio of precipitation to evapotranspiration (2.8), moderate mean annual temperature (13.7°C), and low intra‐annual temperature range (7.5°C). At extreme altitudes (2,800–3,100 m), where tree diversity elsewhere is usually low and large trees are generally rare or absent, specimens from 18 families had girths >70 cm diameter and maximum heights 20–41 m. These findings indicate that simple AGB‐climate‐edaphic models may not be suitable for estimating carbon storage in forests where optimal climate niches exist. Our study, conducted in a very remote area, suggests that tropical montane forests may contain greater AGB than previously thought and the importance of securing their future under a changing climate is therefore enhanced.  相似文献   

13.
Aims

In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes.

Methods

We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR.

Results

Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees.

Conclusions

As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration.

  相似文献   

14.
We assessed the effects of deforestation on soil carbon (C) and nutrient stocks in the premontane landscape near Las Cruces Biological Station in southern Costa Rica, where forests were cleared for pasture in the mid‐1960s. We excavated six soil pits to a depth of 1 m in both pasture and primary forest, and found that C stocks were ~20 kg C/m2 in both settings. Nevertheless, soil δ13C suggests ~50 percent of the forest‐derived soil C above 40 cm depth has turned over since deforestation. Soil nitrogen (N) and phosphorus (P) stocks derived from the soil pits were not significantly different between land uses (P = 0.43 and 0.61, respectively). At a larger spatial scale, however, the ubiquity of ruts produced by cattle‐induced erosion indicates that there are substantial soil effects of grazing in this steep landscape. Ruts averaged 13 cm deep and covered ~45 percent of the landscape, and thus are evidence of the removal of 0.7 Mg C/ha/yr, and 70, 9 and 40 kg/ha/yr of N, P and potassium (K), respectively. Subsoils in this region are ~10 times less C‐ and N‐rich, and ~2 times less P‐ and K‐rich than the topsoil. Thus, rapid topsoil loss may lead to a decline in pasture productivity in the coming decades. These data also suggest that the soil C footprint of deforestation in this landscape may be determined by the fate of soil C as it is transported downstream, rather than C turnover in situ.  相似文献   

15.
Nutrient-poor soils often support low-stature grasslands, savannas and shrublands where the climate is warm enough and wet enough for closed forests. Though this pattern has long been recognised, the causes are debated and poorly explored. I tested the hypothesis that forest fails to develop where the total nutrient pool is too small to construct both the foliage and the wood. I estimated potential woody biomass from the difference between soil nutrient stocks and forest foliage stocks. Nutrient stocks required for foliage were estimated from leaf tissue concentrations and foliage biomass typical of Amazon forests. Potential wood biomass was estimated from wood nutrient concentrations typical of Amazon forests. Data on soil nutrient stocks were assembled from studies from South American and African forests and savannas and from south-western Australian and south-west African heathlands. According to these calculations, estimated nutrient stocks (kg ha?1) to build a forest would need to be > = P: 20–30, K 200–350, Ca 300–600 and Mg 55–65. Many surface soil horizons from both savanna and heathland sites were below these thresholds. However when deeper soil layers were included, most soils had adequate nutrient stocks. The nutrients in shortest supply were Ca and K and not P. This study suggests that nutrient stocks are usually adequate for constructing the wood needed to build a forest, except where soils are highly leached and very shallow. The implication is that, at steady state, low nutrient stocks seldom constrain forest development. The apparent failure of low nutrient stocks to explain the missing forests on nutrient-poor soils emphasises the need for new ideas on how nutrients, alone or in combination with other factors such as fire, influence vegetation structure.  相似文献   

16.
Amazon forests are fire-sensitive ecosystems and consequently fires affect forest structure and composition. For instance, the legacy of past fire regimes may persist through some species and traits that are found due to past fires. In this study, we tested for relationships between functional traits that are classically presented as the main components of plant ecological strategies and environmental filters related to climate and historical fires among permanent mature forest plots across the range of local and regional environmental gradients that occur in Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a recalcitrant form of carbon that can persist for millennia in soils, as a novel indicator of historical fire in old-growth forests. Five out of the nine functional traits evaluated across all 378 species were correlated with some environmental variables. Although there is more PyC in Amazonian soils than previously reported, the percentage soil PyC indicated no detectable legacy effect of past fires on contemporary functional composition. More species with dry diaspores were found in drier and hotter environments. We also found higher wood density in trees from higher temperature sites. If Amazon forest past burnings were local and without distinguishable attributes of a widespread fire regime, then impacts on biodiversity would have been small and heterogeneous. Alternatively, sufficient time may have passed since the last fire to allow for species replacement. Regardless, as we failed to detect any impact of past fire on present forest functional composition, if our plots are representative then it suggests that mature Amazon forests lack a compositional legacy of past fire.  相似文献   

17.
Restoring overstocked forests by thinning and pyrolyzing residual biomass produces biochar and other value‐added products. Forest soils amended with biochar have potential to sequester carbon (C), improve soil quality, and alter greenhouse gas (GHG) emissions without depleting nutrient stocks. Yet, few studies have examined the effects of biochar on GHG emissions and tree growth in temperate forest soils. We measured GHG emissions, soil C content, and tree growth at managed forest sites in Idaho, Montana, and Oregon. We applied biochar amendments of 0, 2.5, or 25 Mg/ha to the forest soil surface. Flux of carbon dioxide and methane varied by season; however, neither were affected by biochar amendment. Flux of nitrous oxide was not detected at these nitrogen‐limited and unfertilized forest sites. Biochar amendment increased soil C content by 41% but did not affect tree growth. Overall, biochar had no detrimental effects on forest trees or soils. We conclude that biochar can be used harmlessly for climate change mitigation in forests by sequestering C in the soil.  相似文献   

18.
Since land‐use change (LUC) to lignocellulosic biomass crops often causes a loss of soil organic carbon (SOC), at least in the short term, this study investigated the potential for pyrogenic carbon (PyC) to ameliorate this effect. Although negative priming has been observed in many studies, most of these are long‐term incubation experiments which do not account for the interactions between environmentally weathered PyC and native SOC. Here, the aim was to assess the impact of environmentally weathered PyC on native SOC mineralization at different time points in LUC from arable crops to short rotation coppice (SRC) willow. At eight SRC willow plantations in England, with ages of 3–22 years, soil amended 18–22 months previously with PyC was compared with unamended control soil. Cumulative CO2 flux was measured weekly from incubated soil at 0–5 cm depth, and soil‐surface CO2 flux was also measured in the field. For the incubated soil, cumulative CO2 flux was significantly higher from soil containing weathered PyC than the control soil for seven of the eight sites. Across all sites, the mean cumulative CO2 flux was 21% higher from soil incubated with weathered PyC than the control soil. These results indicate the potential for positive priming in the surface 5 cm of soil independent of changes in soil properties following LUC to SRC willow production. However, no net effect on CO2 flux was observed in the field, suggesting this increase in CO2 is offset by a contrasting PyC‐induced effect at a different soil depth or that different effects were observed under laboratory and field conditions. Although the mechanisms for these contrasting effects remain unclear, results presented here suggest that PyC does not reduce LUC‐induced SOC losses through negative priming, at least for this PyC type and application rate.  相似文献   

19.
In the Amazon, deforestation and climate change lead to increased vulnerability to forest degradation, threatening its existing carbon stocks and its capacity as a carbon sink. We use satellite L-Band Vegetation Optical Depth (L-VOD) data that provide an integrated (top-down) estimate of biomass carbon to track changes over 2011–2019. Because the spatial resolution of L-VOD is coarse (0.25°), it allows limited attribution of the observed changes. We therefore combined high-resolution annual maps of forest cover and disturbances with biomass maps to model carbon losses (bottom-up) from deforestation and degradation, and gains from regrowing secondary forests. We show an increase of deforestation and associated degradation losses since 2012 which greatly outweigh secondary forest gains. Degradation accounted for 40% of gross losses. After an increase in 2011, old-growth forests show a net loss of above-ground carbon between 2012 and 2019. The sum of component carbon fluxes in our model is consistent with the total biomass change from L-VOD of 1.3 Pg C over 2012-2019. Across nine Amazon countries, we found that while Brazil contains the majority of biomass stocks (64%), its losses from disturbances were disproportionately high (79% of gross losses). Our multi-source analysis provides a pessimistic assessment of the Amazon carbon balance and highlights the urgent need to stop the recent rise of deforestation and degradation, particularly in the Brazilian Amazon.  相似文献   

20.
Using biomass for charcoal production in sub-Saharan Africa (SSA) may change carbon stock dynamics and lead to irreversible changes in the carbon balance, yet we have little understanding of whether these dynamics vary by biome in this region. Currently, charcoal production contributes up to 7% of yearly deforestation in tropical regions, with carbon emissions corresponding to 71.2 million tonnes of CO2 and 1.3 million tonnes of CH4. With a projected increased demand for charcoal in the coming decades, even low harvest rates may throw the carbon budget off-balance due to legacy effects. Here, we parameterized the dynamic global vegetation model LPJ-GUESS for six SSA biomes and examined the effect of charcoal production on net ecosystem exchange (NEE), carbon stock sizes and recovery time for tropical rain forest, montane forest, moist savanna, dry savanna, temperate grassland and semi-desert. Under historical charcoal regimes, tropical rain forests and montane forests transitioned from net carbon sinks to net sources, that is, mean cumulative NEE from −3.56 ± 2.59 kg C/m2 to 2.46 ± 3.43 kg C/m2 and −2.73 ± 2.80 kg C/m2 to 1.87 ± 4.94 kg C/m2 respectively. Varying charcoal production intensities resulted in tropical rain forests showing at least two times higher carbon losses than the other biomes. Biome recovery time varied by carbon stock, with tropical and montane forests taking about 10 times longer than the fast recovery observed for semi-desert and temperate grasslands. Our findings show that high biomass biomes are disproportionately affected by biomass harvesting for charcoal, and even low harvesting rates strongly affect vegetation and litter carbon and their contribution to the carbon budget. Therefore, the prolonged biome recoveries imply that current charcoal production practices in SSA are not sustainable, especially in tropical rain forests and montane forests, where we observe longer recovery for vegetation and litter carbon stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号