首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

2.
Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These “drought legacy effects” have been widely documented in tree‐ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree‐ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree‐ring records, leaf‐level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree‐ring width increments in the year following the severe drought. Despite this stand‐scale reduction in radial growth, we found that leaf‐level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf‐level photosynthesis co‐occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree‐ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree‐ring signals from GPP.  相似文献   

3.
Most North American forests are at some stage of post‐disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short‐term studies in a longer term context, and particularly important for the carbon‐dense, fire‐prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine‐learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999–2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr?1, with most mortality occurring in medium‐sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current‐ and previous‐year data exerted significant effects. Models based on these variables explained 23–44% of the ring‐width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old‐growth stands in a disturbance‐prone landscape, and the sustainable management of regional forests in a changing climate.  相似文献   

4.
Question: How does competition between quaking aspen (Populus tremuloides) and white fir (Abies concolor) affect growth and spatial pattern of each species? Location: The northern Sierra Nevada, California, USA. Methods: In paired plots in mixed aspen‐ (n=3) or white fir‐dominated (n=2) stands, we mapped trees and saplings and recorded DBH, height, species, and condition and took increment cores. We tallied seedlings by species. Tree ring widths were used as a measure of basal area change over the last decade, and canopy openness was identified using hemispherical photographs. Linear mixed models were used to relate neighborhood indices of competition, stand, and tree‐level variables to diameter increment. Spatial patterns of stems were identified using the Neighborhood Density Function. Results: White fir radial growth was higher in aspen‐ than white fir‐dominated plots. Individual‐level variables were more important for white fir than for aspen growth, while variables representing competitive neighborhood were important only for aspen. The forest canopy was more open in aspen‐ than white fir‐dominated stands, but ample aspen seedlings were observed in all stands. Canopy stems of aspen and white fir were randomly distributed, but saplings and small trees were clumped. Aspen saplings were repelled by canopy aspen stems. Conclusions: Variation in canopy openness explained more stand–stand variation in white fir than aspen growth, but high light levels were correlated with recruitment of aspen seedlings to the sapling class. Radial growth of aspen was predicted by indices of neighborhood competition but not radial growth of white fir, indicating that spacing and stem arrangement was more important for aspen than white fir growth. Fire suppression has removed a major disturbance mechanism that promoted aspen persistence and reduced competition from encroaching conifers, and current forests favor species that regenerate best by advance regeneration (white fir).  相似文献   

5.
Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA‐TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA‐TV drew on extensive datasets on tropical tree traits and long‐term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade‐tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand‐level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand‐level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA‐TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.  相似文献   

6.
Abstract. We investigated the variability in spatial pattern of some structural, dendrochronological and dendroclimatological features of a mixed Larix decidua‐Pinus cembra forest at the timberline in the eastern Italian Alps at fine geographical and temporal scales. Forest structure variables such as stem diameter, tree height, age and tree‐ring related parameters (yearly growth index, mean sensitivity, first order autocorrelation and some dendroclimatic variables) have been compared at various scale levels. We observed that most of the variables show positive autocorrelated structures due to both forest dynamics and fine‐scale driving forces, probably related to microrelief. Spatial structure of yearly indexed radial growth appears sensitive to extreme climatic events. Secondary succession after past disturbances drives the forest towards a structure governed by a gap regeneration dynamics that seems to ensure the different requirements of the two main tree species present. Small spatial scale studies of forest structures, especially if integrated to dendro‐ecological data, seem an efficient tool to assess the disturbance regime and species sensitivity to environmental change.  相似文献   

7.
The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate–vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2‐fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest‐stand level, but insights into species‐specific growth changes – that ultimately determine community‐level responses – are lacking. Here, we analyse species‐specific growth changes on a centennial scale, using growth data from tree‐ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size‐class isolation) growth‐trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8–10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large‐scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous predictions of carbon dynamics of tropical forest under climate change.  相似文献   

8.
The influence of environmental gradients on the foliar nutrient economy of forests has been well documented; however, we have little understanding of what drives variability among individuals within a single forest stand, especially tropical forests. We evaluated inter‐ and intra‐specific variation in nutrient resorption, foliar nutrient concentrations and physical leaf traits of nine canopy tree species within a 1‐ha secondary tropical rain forest in northeastern Costa Rica. Both nitrogen (N) and phosphorus (P) resorption efficiency (RE) and proficiency of the nine tree species varied significantly among species, but not within. Both N and P RE were significantly negatively related to leaf specific strength. Green leaf N and P concentrations were strongly negatively related to leaf mass per area, and senesced leaf nutrient concentrations were significantly positively related to green leaf nutrient concentrations. This study reveals a strong influence of physical leaf traits on foliar nutrient and resorption traits of co‐occurring species in a secondary wet tropical forest stand.  相似文献   

9.
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree‐ring study over a 30‐year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2) in different combinations to estimate the contribution of each climate factor in explaining the inter‐annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter‐annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and – to a lesser extent – by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter‐annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter‐annual variation in stem growth. Our innovative approach – combining a simulation model with historical data on tree‐ring growth and climate – allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.  相似文献   

10.
The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree‐specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree‐ring network in Southern Germany and Alpine Austria along a climatic cline from warm‐dry to cool‐wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low‐growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change.  相似文献   

11.
Climate change is altering the conditions for tree recruitment, growth, and survival, and impacting forest community composition. Across southeast Alaska, USA, and British Columbia, Canada, Callitropsis nootkatensis (Alaska yellow‐cedar) is experiencing extensive climate change‐induced canopy mortality due to fine‐root death during soil freezing events following warmer winters and the loss of insulating snowpack. Here, we examine the effects of ongoing, climate‐driven canopy mortality on forest community composition and identify potential shifts in stand trajectories due to the loss of a single canopy species. We sampled canopy and regenerating forest communities across the extent of C. nootkatensis decline in southeast Alaska to quantify the effects of climate, community, and stand‐level drivers on C. nootkatensis canopy mortality and regeneration as well as postdecline regenerating community composition. Across the plot network, C. nootkatensis exhibited significantly higher mortality than co‐occurring conifers across all size classes and locations. Regenerating community composition was highly variable but closely related to the severity of C. nootkatensis mortality. Callitropsis nootkatensis canopy mortality was correlated with winter temperatures and precipitation as well as local soil drainage, with regenerating community composition and C. nootkatensis regeneration abundances best explained by available seed source. In areas of high C. nootkatensis mortality, C. nootkatensis regeneration was low and replaced by Tsuga. Our study suggests that climate‐induced forest mortality is driving alternate successional pathways in forests where C. nootkatensis was once a major component. These pathways are likely to lead to long‐term shifts in forest community composition and stand dynamics. Our analysis fills a critical knowledge gap on forest ecosystem response and rearrangement following the climate‐driven decline of a single species, providing new insight into stand dynamics in a changing climate. As tree species across the globe are increasingly stressed by climate change‐induced alteration of suitable habitat, identifying the autecological factors contributing to successful regeneration, or lack thereof, will provide key insight into forest resilience and persistence on the landscape.  相似文献   

12.
There is a growing emphasis on developing methods for quantifying the structure and composition of tropical forests that can be applied over large landscapes, especially for tropical dry forests that are severely fragmented and have a high conservation priority. This study investigates the relationships between various measures of forest structure (annual woody increment, canopy closure, stand density, stand basal area) and composition (tree species diversity, tree community composition) measured in semi‐deciduous tropical dry forests on islands in Lago Guri, Venezuela and three spectral indices derived from Landsat ETM+: Normalized Difference Vegetation Index (NDVI), Infrared Index (IRI), and Mid‐Infrared Index (MIRI). Even though there were significant autocorrelations among spectral indices, there were significant differences in the relationships between spectral indices and forest attributes. IRI was not significantly correlated with any of the structural variables while MIRI was correlated with canopy closure and NDVI values were correlated with canopy closure as well as annual woody increment. NDVI and MIRI were both related to relative tree diversity and all three indices were associated with aspects of tree species composition. Based on the results of this study, it appears that spectral indices, and in particular NDVI, may be useful indicators of forest attributes in tropical dry forest habitats. Further research needs to be undertaken to identify if the results of this study can be applied to other tropical dry forests at a global spatial scale.  相似文献   

13.
To clarify the role of dense understory vegetation in the stand structure, and in carbon (C) and nitrogen (N) dynamics of forest ecosystems with various conditions of overstory trees, we: (i) quantified the above‐ and below‐ground biomasses of understory dwarf bamboo (Sasa senanensis) at the old canopy‐gap area and the closed‐canopy area and compared the stand‐level biomasses of S. senanensis with that of overstory trees; (ii) determined the N leaching, soil respiration rates, fine‐root dynamics, plant area index (PAI) of S. senanensis, and soil temperature and moisture at the tree‐cut patches (cut) and the intact closed‐canopy patches (control). The biomass of S. senanensis in the canopy‐gap area was twice that at the closed‐canopy area. It equated to 12% of total biomass above ground but 41% below ground in the stand. The concentrations of NO3? and NH4+ in the soil solution and soil respiration rates did not significantly change between cut and control plots, indicating that gap creation did not affect the C or N dynamics in the soil. Root‐length density and PAI of S. senanensis were significantly greater at the cut plots, suggesting the promotion of S. senanensis growth following tree cutting. The levels of soil temperature and soil moisture were not changed following tree cutting. These results show that S. senanensis is a key component species in this cool‐temperate forest ecosystem and plays significant roles in mitigating the loss of N and C from the soil following tree cutting by increasing its leaf and root biomass and stabilizing the soil environment.  相似文献   

14.
Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland‐dominated forest‐steppe area and small forest patches in a grassland‐dominated area. We found increasing climate sensitivity and decreasing first‐order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland‐dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland‐dominated area, the increase was much greater than in the forest‐dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure.  相似文献   

15.
Many European temperate tree species reach their southern distribution limits in the Mediterranean region, and ongoing climate change will further restrict their climatic niche in this area. In this study, we investigated the effects of forest management and climate change on tree growth and the spatial extension of a silver fir forest (Abies alba Mill.) located at the species’ southern distribution limit on the Iberian Peninsula (Montseny Mountains Natural Park, Spain). Different growth variables such as tree-ring width (RW), basal area increment (BAI), earlywood width (EwW) and latewood width (LwW) were assessed, and climate-growth relationships were established for the period 1914–2010.Our results revealed that the main growth reductions and releases in the raw tree-ring width series were related to both volcanic activity and intensive logging. Since the establishment of the Natural Park in 1977, RW series have levelled off, and this has translated into an increase in BAI. This positive performance may have also facilitated the spatial expansion of the stand. Low precipitation during spring and summer was found to be the most limiting factor for tree growth during the period 1914–2010. Temperature had only a minor influence on tree growth. LwW was the growth variable most sensitive to climatic conditions. Such sensitivity explained the decreasing LwW trend since 1975. In contrast, EwW mostly depended on the previous year’s climatic conditions, and was not climatically limited during the growing season, resulting in an increasing trend over the study period. However, the temporal instability of most of these climate-growth relations indicated that climate change might have been beneficial for tree performance. Past logging events have fostered tree growth in the stand due to the increase in the availability of water, light, and nutrients, potentially alleviating the negative impacts of climate change. Furthermore, it is possible that the increase in the EwW improved water transport in the silver firs, which may also have helped them to endure ongoing climate change. Therefore, it is crucial to assess the role of forest management, as well as the potential acclimation of the tree species when considering the effects of climate change.  相似文献   

16.
17.
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances.  相似文献   

18.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

19.
Basic knowledge of the relationships between tree growth and environmental variables is crucial for understanding forest dynamics and predicting vegetation responses to climate variations. Trees growing in tropical areas with a clear seasonality in rainfall often form annual growth rings. In the understory, however, tree growth is supposed to be mainly affected by interference for access to light and other resources. In the semi-deciduous Mayombe forest of the Democratic Republic of Congo, the evergreen species Aidia ochroleuca, Corynanthe paniculata and Xylopia wilwerthii dominate the understory. We studied their wood to determine whether they form annual growth rings in response to changing climate conditions. Distinct growth rings were proved to be annual and triggered by a common external factor for the three species. Species-specific site chronologies were thus constructed from the cross-dated individual growth-ring series. Correlation analysis with climatic variables revealed that annual radial stem growth is positively related to precipitation during the rainy season but at different months. The growth was found to associate with precipitation during the early rainy season for Aidia but at the end of the rainy season for Corynanthe and Xylopia. Our results suggest that a dendrochronological approach allows the understanding of climate–growth relationships in tropical forests, not only for canopy trees but also for evergreen understory species and thus arguably for the whole tree community. Global climate change influences climatic seasonality in tropical forest areas, which is likely to result in differential responses across species with a possible effect on forest composition over time.  相似文献   

20.
Questions: Are there interspecific differences in mortality and recruitment rates across life stages between two shade‐tolerant dominant trees in a sub‐alpine old‐growth forest? Do such differences in demography contribute to the coexistence and co‐dominance of the two species? Location: Sub‐alpine, old‐growth forest on Mt. Ontake, central Honshu, Japan. Methods: From 1980 to 2005, we recorded DBH and status (alive or dead) of all Abies mariesii and A. veitchii individuals (DBH ≥ 5 cm) in a 0.44‐ha plot. Based on this 25 year census, we quantified mortality and recruitment rates of the two species in three life stages (small tree, 5 cm ≤ DBH < 10 cm; subcanopy tree, 10 cm ≤ DBH < 20 cm; canopy tree, DBH ≥ 20 cm). Results: Significant interspecific differences in mortality and recruitment rates were observed in both the small tree and sub‐canopy tree stages. In this forest, saplings (< 5 cm DBH) are mostly buried by snow‐pack during winter. As a consequence, saplings of A. mariesii, which is snow and shade tolerant, show higher rates of recruitment into the small tree stage than do those of A. veitchii. Above the snow‐pack, trees must tolerate dry, cold temperatures. A. veitchii, which can more readily endure such climate conditions, showed lower mortality rate at the subcanopy stage and a higher recruitment rate into the canopy tree stage. This differential mortality and recruitment among life‐stages determines relative dominance of the two species in the canopy. Conclusion: Differential growth conditions along a vertical gradient in this old forest determine survival of the two species prior to reaching the canopy, and consequently allow co‐dominance at the canopy stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号