首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The nature of the molecular defect resulting in the beta-galactosidase deficiency in different forms of GM1-gangliosidosis and mucopolysaccharidosis IV B (Morquio B syndrome) was investigated. Normal and mutant cultured skin fibroblasts were labeled in vivo with [3H]leucine and immunoprecipitation studies with human anti-beta-galactosidase antiserum were performed, followed by polyacrylamide gel electrophoresis and fluorography. In Morquio B syndrome, the mutation does not interfere with the normal processing and intralysosomal aggregation of beta-galactosidase. In cells from infantile and adult GM1-gangliosidosis, 85-kDa precursor beta-galactosidase was found to be synthesized normally but more than 90% of the enzyme was subsequently degraded at one of the early steps in posttranslational processing. The residual 5-10% beta-galactosidase activity in adult GM1-gangliosidosis is 64-kDa mature lysosomal enzyme with normal catalytic properties but with a reduced ability of the monomeric form to aggregate into high molecular weight multimers. Knowledge of the exact nature of the molecular defect underlying beta-galactosidase deficiency in man may lead to a better understanding of the clinical and pathological heterogeneity among patients with different types of GM1-gangliosidosis and Morquio B syndrome.  相似文献   

2.
Human lysosomal beta-galactosidase and neuraminidase exist in a complex together with a 32-kilodalton (kd) glycoprotein. The latter protein was found to have a dual function: it is required for the aggregation of monomeric 64-kd beta-galactosidase into high molecular weight (600-700 kd) multimers and it is an essential subunit of neuraminidase together with a 76-kd polypeptide. The severe neurological disorder galactosialidosis, characterized by a coexistent deficiency of beta-galactosidase and neuraminidase, was found to be due to a genetic defect of the 32-kd protective protein. The molecular background of the clinical heterogeneity within this syndrome is described and will undoubtedly be further elucidated since we have recently isolated the gene coding for the protective protein. The sequence of normal and mutant (enzyme) proteins will also provide better insight into the characteristics of the beta-galactosidase-neuraminidase-protective protein complex. Another interesting model for the study of posttranslational processing is the defective phosphorylation of beta-galactosidase in cells from patients with GM1-gangliosidosis.  相似文献   

3.
We have previously shown that intracellular trafficking and extracellular assembly of tropoelastin into elastic fibers is facilitated by the 67-kD elastin-binding protein identical to an enzymatically inactive, alternatively spliced variant of beta-galactosidase (S-Gal). In the present study, we investigated elastic-fiber assembly in cultures of dermal fibroblasts from patients with either Morquio B disease or GM1-gangliosidosis who bore different mutations of the beta-galactosidase gene. We found that fibroblasts taken from patients with an adult form of GM1-gangliosidosis and from patients with an infantile form, carrying a missense mutations in the beta-galactosidase gene-mutations that caused deficiency in lysosomal beta-galactosidase but not in S-Gal-assembled normal elastic fibers. In contrast, fibroblasts from two cases of infantile GM1-gangliosidosis that bear nonsense mutations of the beta-galactosidase gene, as well as fibroblasts from four patients with Morquio B who had mutations causing deficiency in both forms of beta-galactosidase, did not assemble elastic fibers. We also demonstrated that S-Gal-deficient fibroblasts from patients with either GM1-gangliosidosis or Morquio B can acquire the S-Gal protein, produced by coculturing of Chinese hamster ovary cells permanently transected with S-Gal cDNA, resulting in improved deposition of elastic fibers. The present study provides a novel and natural model validating functional roles of S-Gal in elastogenesis and elucidates an association between impaired elastogenesis and the development of connective-tissue disorders in patients with Morquio B disease and in patients with an infantile form of GM1-gangliosidosis.  相似文献   

4.
A highly sensitive microassay method and a microscale purification system were developed to isolate the residual acid beta-galactosidase in GM1-gangliosidosis fibroblasts. The sensitivity of the microassay system, composed of a 96-well microplate and a microplate fluorometer, was 100-fold higher than that of the conventional system and the response was linear in the pmole range. Acid beta-galactosidase was characterized as a thiol enzyme which was inactivated by a mercuric compound. This enzyme was completely adsorbed on an Hg-agarose column and was easily eluted from the column by 10 mM 2-mercaptoethanol. The microscale purification system using Con A-Sepharose, PAT-Sepharose, and Hg-agarose column chromatography achieved 565- and 7,970-fold purifications of acid beta-galactosidase with an overall yields of 44% and 45% from normal and GM1-gangliosidosis fibroblasts, respectively. The purified enzyme fractions did not contain any other lysosomal enzyme activities except for a small amount of beta-N-acetylhexosaminidase activity.  相似文献   

5.
Cultured fibroblasts from different variants of GM1-gangliosidosis synthesize normal amounts of 88-kDa beta-galactosidase precursor. Yet the amount of the mature 64-kDa form is reduced to 5-15% of normal values. In this communication it is shown that the mutation in the infantile and adult form of GM1-gangliosidosis interferes with the phosphorylation of precursor beta-galactosidase. As a result the precursor is secreted instead of being compartmentalized into the lysosomes and further processed. The impaired phosphorylation might be due to conformational changes of the precursor molecule.  相似文献   

6.
7.
Immunoelectron microscopy was performed to study the biosynthesis of lysosomal beta-galactosidase (beta-gal) in normal and mutant human fibroblasts. Using polyclonal and monoclonal antibodies we show in normal cells precursor forms of beta-gal in the rough endoplasmic reticulum (RER) and in the Golgi apparatus throughout the stack of cisternae. In the lysosomes virtually all beta-gal exists as a high molecular weight multimer of mature enzyme. In the autosomal recessive disease GM1-gangliosidosis caused by a beta-gal deficiency and in galactosialidosis, associated with a combined deficiency of lysosomal neuraminidase and beta-gal, precursor forms of the latter enzyme are found in RER, Golgi and some labeling is present at the cell surface. The lysosomes remain unlabeled, indicative for the absence of enzyme molecules in this organelle. In galactosialidosis fibroblasts also no mature beta-gal is found in the lysosomes but in these cells the presence of the monomeric form can be increased by leupeptin (inhibition of proteolysis) whereas addition of a partly purified 32 kDa "protective protein" results in the restoration of high molecular weight beta-gal multimers in the lysosomes.  相似文献   

8.
Senescence-associated beta-galactosidase is lysosomal beta-galactosidase   总被引:1,自引:0,他引:1  
Replicative senescence limits the proliferation of somatic cells passaged in culture and may reflect cellular aging in vivo. The most widely used biomarker for senescent and aging cells is senescence-associated beta-galactosidase (SA-beta-gal), which is defined as beta-galactosidase activity detectable at pH 6.0 in senescent cells, but the origin of SA-beta-gal and its cellular roles in senescence are not known. We demonstrate here that SA-beta-gal activity is expressed from GLB1, the gene encoding lysosomal beta-D-galactosidase, the activity of which is typically measured at acidic pH 4.5. Fibroblasts from patients with autosomal recessive G(M1)-gangliosidosis, which have defective lysosomal beta-galactosidase, did not express SA-beta-gal at late passages even though they underwent replicative senescence. In addition, late passage normal fibroblasts expressing small-hairpin interfering RNA that depleted GLB1 mRNA underwent senescence but failed to express SA-beta-gal. GLB1 mRNA depletion also prevented expression of SA-beta-gal activity in HeLa cervical carcinoma cells induced to enter a senescent state by repression of their endogenous human papillomavirus E7 oncogene. SA-beta-gal induction during senescence was due at least in part to increased expression of the lysosomal beta-galactosidase protein. These results also indicate that SA-beta-gal is not required for senescence.  相似文献   

9.
Somatic cell hybridization of β-galactosidase fibroblasts derived from patients with the infantile type 1 and the adult type 4 GM1-gangliosidosis results in restoration of the β-galactosidase activity. The kinetic properties of the enzyme activity in heterokaryons were found to be similar as in controls. Genetic complementation did not occur after inhibition of protein synthesis by cycloheximide indicating the necessity of de novo protein synthesis. When fibroblasts of the adult type 4 patient were enucleated and fused with cells from an infantile type 1 variant no restoration of β-galactosidase in the hybrids was observed. Fusion of enucleated type 1 cells with nucleated type 4 cells, however, did result in genetic complementation. The results obtained in this study and observations by others fit with the hypothesis of intergenic complementation. In heterokaryons the adult type 4 genome codes for normal β-galactosidase monomers and the infantile type 1 cells or cytoplasts provide a protein factor necessary for the hydrolytic activity and aggregation of the molecule.  相似文献   

10.
GM1-gangliosidosis and Morquio B disease are lysosomal storage disorders caused by beta-galactosidase deficiency attributable to mutations in the GLB1 gene. On reaching the endosomal-lysosomal compartment, the beta-galactosidase protein associates with the protective protein/cathepsin A (PPCA) and neuraminidase proteins to form the lysosomal multienzyme complex (LMC). The correct interaction of these proteins in the complex is essential for their activity. More than 100 mutations have been described in GM1-gangliosidosis and Morquio B patients, but few have been further characterized. We expressed 12 mutations suspected to be pathogenic, one known polymorphic change (p.S532G), and a variant described as either a pathogenic or a polymorphic change (p.R521C). Ten of them had not been expressed before. The expression analysis confirmed the pathogenicity of the 12 mutations, whereas the relatively high activity of p.S532G is consistent with its definition as a polymorphism. The results for p.R521C suggest that this change is a low-penetrant disease-causing allele. Furthermore, the effect of these beta-galactosidase changes on the LMC was also studied by coimmunoprecipitations and Western blotting. The alteration of neuraminidase and PPCA patterns in several of the Western blotting analyses performed on patient protein extracts indicated that the LMC is affected in at least some GM1-gangliosidosis and Morquio B patients.  相似文献   

11.
We investigated the patterns of growth and beta-galactosidase formation in the strains Bifidobacterium adolescentis GO-13, MS-42, 91-BIM, and 94-BIM, and B. bifidum No. 1, LVA-3, 791 on media with various carbon sources. The synthesis of beta-galactosidase was shown to be associated with exponential growth of the cultures involved. The maximum specific rate of beta-galactosidase synthesis of 0.20 U mg(-1) h(-1) was observed in B. bifidum LVA-3 after 3-6 h of cultivation. This value for B. adolescentis 91-BIM and 94-BIM was lower and amounted to 0.03-0.08 U mg(-1) h(-1). On the medium with lactose, the highest specific growth rates for B. bifidum LVA-3 and B. bifidum No.1 were 0.38 and 0.60 h(-1), respectively, after 3-6 h of cultivation. For B. adolescentis 91-BIM and 94-BIM, this parameter peaked at 12-15 h of cultivation at 0.13 and 0.22 h(-1), respectively. The hydrolytic activity of beta-galactosidase in the growth medium decreased during the stationary growth phase of the tested cultures.  相似文献   

12.
The ebg beta-galactosidase of Escherichia coli K-12 strain LC110 has been purified and characterized. Strain LC110 is a Lac+ revertant of a mutant with a deletion of the lacZ beta-galactosidase gene. Its new ebg beta-galactosidase activity was shown to be due to a discrete protein, immunologically unrelated to lacZ beta-galactosidase. Its kinetics of action conformed to those of a simple conventional enzyme. With o-nitrophenyl-beta-D-galactoside as substrate, the Vmax was 11,200 nmol/min per mg of enzyme, the Km was 5 mM, and the activation energy was 12,400 cal/mol. Corresponding values for lacZ beta-galactosidase of wild-type E. coli K-12 were 350,000 nmol/min per mg of enzyme, 1.3 mM, and 8,000 cal/mol. A series of sugars has been examined as competitive inhibitors of ebg beta-galactosidase. Kinetic analyses suggest that ebg beta-galactosidase has a particularly high affinity for galactosamine and gamma-galactonolactone, binds galatose more tightly than lactose, and shows a general preference for monosaccharides rather than beta-galactosides. We conclude that the ebg beta-galactosidase may have arisen by modification of a gene involved with the metabolism of a monosaccharide, possibly a 2-amino sugar.  相似文献   

13.
The "protective protein" is a glycoprotein that associates with lysosomal beta-galactosidase and neuraminidase and is deficient in the autosomal recessive disorder galactosialidosis. We have isolated the cDNA encoding human "protective protein". The clone recognizes a 2 kb mRNA in normal cells that is not evident in fibroblasts of an early infantile galactosialidosis patient. The cDNA directs the synthesis of a 452 amino acid precursor molecule that is processed in vivo to yield mature "protective protein," a heterodimer of 32 kd and 20 kd polypeptides held together by disulfide bridges. This mature form is also biologically functional since it restores beta-galactosidase and neuraminidase activities in galactosialidosis cells. The predicted amino acid sequence of the "protective protein" bears homology to yeast carboxypeptidase Y and the KEX1 gene product. This suggests a protease activity for the "protective protein."  相似文献   

14.
Cultured skin fibroblasts from patients with the lysosomal storage disease galactosialidosis lack a 54-kDa protein which is a precursor of 32-kDa and 20-kDa proteins, which immunoprecipitate with human anti-beta-galactosidase antiserum. The lack of a 32-kDa "protective protein" results in a combined deficiency of beta-galactosidase and sialidase. The mechanism of protection of lysosomal beta-galactosidase against proteolytic degradation is elucidated by sucrose density gradient centrifugation and immunoprecipitation studies. In normal fibroblasts at the low intralysosomal pH, more than 85% of beta-galactosidase exists as a high molecular weight (600-700 kDa) multimer and about 10% as a monomer of 64-kDa. In mutant cells from galactosialidosis patients, the residual enzyme activity, about 10%, is present as a monomer and no multimer exists. After addition of the 54-kDa precursor form of the protective protein, the density pattern of beta-galactosidase in galactosialidosis cells is normalized. Immunoprecipitation studies after sucrose density gradient centrifugation on homogenate and on purified beta-galactosidase from normal fibroblasts show that the protective protein is associated only with the multimeric form of beta-galactosidase. We propose that intralysosomal protection against proteolysis of beta-galactosidase and sialidase is accomplished by aggregation into a high molecular weight complex consisting of multimeric beta-galactosidase, sialidase, and protective protein. The genetic deficiency of the latter, as in galactosialidosis, results in a rapid degradation of monomeric beta-galactosidase and a loss of sialidase activity.  相似文献   

15.
We describe four new mutations in the beta-galactosidase gene. These are the first mutations causing infantile and juvenile GM1-gangliosidosis to be described in American patients. Cell lines from two patients with juvenile and from six patients with infantile GM1-gangliosidosis were analyzed. Northern blot analysis showed the acid beta-galactosidase message to be of normal size and quantity in two juvenile and four infantile cases and of normal size but reduced quantity in two infantile cases. The mutations are distinct from the Japanese mutations. All are point mutations leading to amino acid substitutions: Lys577-->Arg, Arg590-->His, and Glu632-->Gly. The fourth mutation, Arg208-->Cys, accounts for 10 of 16 possible alleles. Two infantile cases from Puerto Rico of Spanish ancestry are homozygous for this mutation, suggesting that this allele may have come to South America and North America via Puerto Rico. That these mutations cause clinical disease was confirmed by marked reduction in catalytic activity of the mutant proteins in the Cos-1 cell expression system.  相似文献   

16.
Using five different steps, beta-Galactosidase has been purified from kidney beans to apparent electrophoretic homogeneity with approximately 90-fold purification with a specific activity of 281 units mg-1 protein. A single band was observed in native PAGE. Activity staining of the native gel with 5-bromo 4-chloro 3-indoxyl beta-D-galactopyranoside (X-Gal) at pH 4.0 also produced a single band. Analytical gel filtration in Superdex G-75 revealed the molecular mass of the native protein to be approximately 75 kD. 10% SDS-PAGE under reducing conditions showed two subunits of molecular masses, 45 and 30 kD, respectively. Hence, beta-galactosidase from kidney beans is a heterodimer. A typical protein profile with lambda max at 280 nm was observed and A280/A260 ratio was 1.52. The N-terminal sequence of the 45 kD band showed 86% sequence homology with an Arabidopsis thaliana and 85% with Lycopersicon esculentum putative beta-galactosidase sequences. The Electrospray Mass Spectrometric analysis of this band also revealed a peptide fragment that had 90% sequence homology with an Arabidopsis thaliana putative beta-galactosidase sequence. The N-terminal sequencing of the 30 kD band as well as mass spectrometric analysis both by MALDI-TOF and ES MS revealed certain sequences that matched with phytohemagglutinin of kidney beans. The optimum pH of the enzyme was 4.0 and it hydrolysed o- and p-nitrophenyl beta-D galactopyranoside with a Km value of 0.63 mmol/L and 0.74 mmol/L, respectively. The energy of activation calculated from the Arrhenius equation was 14.8 kcal/mol enzyme site. The enzyme was found to be comparatively thermostable showing maximum activity at 67 degrees C. Thermal denaturation of the enzyme at 65 degrees C obeys single exponential decay with first order-rate constant 0.105 min-1. Galactose, a hydrolytic product of this enzyme was a competitive inhibitor with a Ki of 2.7 mmol/L.  相似文献   

17.
GM1 gangliosidosis and Morquio B disease are distinct disorders both clinically and biochemically yet they arise from the same beta-galactosidase enzyme deficiency. On the other hand, galactosialidosis and sialidosis share common clinical and biochemical features, yet they arise from two separate enzyme deficiencies, namely, protective protein/cathepsin A and neuraminidase, respectively. However distinct, in practice these disorders overlap both clinically and biochemically so that easy discrimination between them is sometimes difficult. The principle reason for this may be found in the fact that these three enzymes form a unique complex in lysosomes that is required for their stability and posttranslational processing. In this review, I focus mainly on the primary and secondary beta-galactosidase deficiency states and offer some hypotheses to account for differences between GM1 gangliosidosis and Morquio B disease.  相似文献   

18.
19.
Peptidyl-glycine alpha-amidation enzyme activity has been measured in 36 nuclei or areas in the rat CNS and pituitary using D-Tyr-Phe-Gly as the substrate. The distribution of this enzyme is highly uneven, with highest activity levels (greater than 30 pmol/mg of protein/h) in hypothalamic nuclei, substantia grisea centralis, and nucleus ruber; moderate activity levels (10-30 pmol/mg of protein/h) in globus pallidus, septum, midbrain, pons, medulla oblongata, and cervical spinal cord; and low activity levels (1-10 pmol/mg of protein/h) in other telencephalic and thalamic structures. Almost no alpha-amidation activity (less than 0.5 pmol/mg of protein/h) was detected in cerebellar cortex. The Km values in several brain regions are of the same order.  相似文献   

20.
[3H]prostaglandin E2 (PGE2) binding receptors exist in rabbit alveolar bone cell membranes. The presence of high (Kd = 3.9 X 10(-9) M) and low (Kd = 8.8 X 10(-8) M) affinity binding sites of [3H]PGE2 was demonstrated. The saturation values of [3H]PGE2 for high and low affinity binding sites were 0.13 pmol/mg protein and 1.22 pmol/mg protein, respectively. The digestion of the membranes with pronase, phospholipase C, D and neuraminidase led to a decrease of [3H]PGE2 binding but phospholipase A2 did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号