首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Using directional freezing, our objective was to cryopreserve rabbit semen and achieve fertility that was equal or higher than that achieved with conventional freezing. The working hypothesis was that controlling the ice-front propagation would allow reduction of DMSO concentration to <1M, in addition to the capability to freeze large volumes (2-10 mL). Moreover, single and double freezing of semen were used to demonstrate the abbreviated mechanical stress imparted by directional freezing. Single-cryopreserved semen from 15 males extended with 0% egg yolk/1.75 M DMSO, 15.3% egg yolk/0.88 M DMSO and 20% egg yolk/0M DMSO resulted in lower (P<0.05) mean+/-S.E.M. post-thaw motility (3.6+/-1.1, 28.5+/-2.8 and 36.3+/-1.8%, respectively) compared to fresh semen (73.3+/-1.2%). Semen from seven of these males, subject to double freezing using only egg yolk based extenders, resulted in post-thaw motilities of 18.1+/-2.2 and 16.4+/-3.3%. Despite the reduced functional parameters of cryopreserved semen, fertility and kindling rates of 73.9 and 56.5% for single frozen-thawed, and 28.6 and 35.7% for double frozen-thawed semen were achieved (with insemination of 98 females). There was no significant difference in fertility rate between fresh semen (87.5%) and semen that was single frozen-thawed with the 15.3% egg yolk/0.88 M DMSO extender (73.9%). In conclusion, cryopreservation of rabbit semen in large volumes using directional freezing achieved fertility rates similar to those achieved with fresh semen. Furthermore, acceptable fertility rates with double frozen-thawed semen could facilitate the future use of sex-sorted semen in rabbits.  相似文献   

2.
Rath D  Niemann H 《Theriogenology》1997,47(4):785-793
The objective of this study was to compare the in vitro fertilizing capacity of porcine spermatozoa from fresh and frozen-thawed semen and frozen-thawed epididymal spermatozoa obtained from identical boars. Prior to IVF, fresh spermatozoa were capacitated in TCM 199. Frozen semen samples were stored in 0.25-ml plastic straws using a lactose/glycerol/orvus-es-paste extender. Cumulus-oocyte-complexes (COC) obtained from superovulated prepuberal gilts were fertilized in vitro within 2 h after aspiration with one of the semen samples. After final dilution for IVF, frozen-thawed epididymal semen samples showed motility rates (72.2 +/- 5.6%) similar to those of spermatozoa in fresh semen (76.4 +/- 4.5%), while sperm motility decreased in frozen-thawed ejaculated semen (40.2 +/- 9.4%). Considerable individual differences in sperm motility between boars were observed for ejaculated semen but not for epididymal semen. Enhanced fertilizing capacity of frozen-thawed epididymal spermatozoa was confirmed by pronucleus formation and cleavage rates, with significantly more embryos developing to the 2- and 4-cell stages compared with the groups fertilized with fresh or with frozen-thawed ejaculated semen (59.7 vs 14.6 and 16%). In conclusion, consistent in vitro fertilization rates with minimal semen variability are obtained using frozen-thawed epididymal semen. Following a modified freezing protocol, epididymal spermatozoa can easily be frozen in small containers for IVF, with higher resultant motility and fertilization rates than with ejaculated semen.  相似文献   

3.
Ding S  Ge J  Hao C  Zhang M  Yan W  Xu Z  Pan J  Chen S  Tian Y  Huang Y 《Animal reproduction science》2009,113(1-4):229-235
In order to develop cryopreservation techniques for long-term preserving the sperm of Mandarin fish Siniperca chuatsi, we examined the effects of various extender and cryopreservation on post-thaw motility. We found the optimal freezing procedures for the Mandarin fish sperm is diluting the semen in D-15 extender, chilling it to 4 degrees C, adding ME2SO to a final concentration of 10% (v/v), then transferring the semen in cryotubes, holding the cryotubes for 10 min at 6 cm (about -180 degrees C) above the surface of liquid nitrogen, for 5 min on the surface of liquid nitrogen, and finally plunged into liquid nitrogen. After thawed at 37 degrees C for 60s, the sperm had the highest post-thaw motility (96.00+/-1.73%). The optimal fertilization procedures for the frozen sperm is mixing the eggs with sperm, then adding 1 ml of swimming medium (SM=45 mM NaCl+5 mM KCl+20mM Tris-HCl, pH 8.0) immediately. At the sperm/egg ratio of 100,000:1, the fertilization rate and the hatching rate of the frozen sperm cryopreserved for 1 week or 1 year in liquid nitrogen (66.01+/-5.14% and 54.76+/-4.40% & 62.97+/-14.28% and 52.58+/-11.17%) were similar to that of fresh sperm (69.42+/-8.11% and 59.82+/-5.27%) (p>0.05). This is the first report that the Mandarin fish (S. chuatsi) sperm can successfully fertilized eggs after long-term cryopreservation.  相似文献   

4.
A new integrated approach including computer-assisted sperm analysis (CASA), viability staining and fertilization was used to study the quality of cryodiluents used in fish sperm cryopreservation. As an example the sperm quality of an African catfish, Clarias gariepinus (Burchell, 1822), was assessed by its fertilizing ability, motility and viability at day 0 (fresh), after 2 days' storage at 4 degreesC and after 2 days, 5 months and 10 months frozen at -196 degreesC using solutions containing dimethyl sulphoxide (DMSO) or glycerol as permeating cryoprotectants. Four of the best freezing solutions were used, namely, Steyn's extender (S1, S4) and Mounib's extender (M3, M4) associating 10% hen's egg yolk. Progressive sperm movement measured by CASA and expressed by the straight line velocity (VSL), the average path velocity (VAP) and the curvilinear velocity (VCL) was highly correlated with hatching rates obtained from fertilization using minimal sperm:egg ratios. After 2 days, the motility of spermatozoa frozen with DMSO and 10% egg yolk had deteriorated less than that of spermatozoa stored at 4 degreesC. Post-thaw hatching rates reflected the post-thaw sperm viability, which was cryodiluent dependent: 14.9+/-2.0% (S4), 17.0+/-4.2% (S1), 25.9+/-3.7% (M4) and 52.1+/-3.4% (M3) after 5 months of cryopreservation. The percent motility of 10-months-frozen spermatozoa was high in M3 (70.7+/-11.4%) and M4 (64.0+/-2.0%) cryoprotected sperm when measured between 5 and 20 sec after activation, but decreased rapidly to 24.3+/-8.3% (M3) and 23.0+/-9.0% (M4) between 21 and 35 sec after activation. Mounib's extender (M3, M4) provided the best cryoprotection to the spermatozoa for all post-thaw sperm quality measurements and at all freezing durations. Sperm motility was positively related to fertility. Our method will make it possible to develop even better extenders and cryoprotectants.  相似文献   

5.
Although the development of semen cryopreservation in the African elephants (Loxodonta africana) has been accomplished, effective procedures for cryopreservation of Asian elephant (Elephas maximus) spermatozoa have not been established. In the present study, we investigate the freezing methods for conservation of Asian elephant spermatozoa under field conditions and identify the most suitable freezing protocols which provide acceptable post-thaw semen quality. Semen was collected from two Asian elephant bulls (EM1 and EM2, 10 ejaculates from each bull) by manual manipulation and were assessed for volume, pH, sperm cell concentration, and progressive motility. Eight out of 20 ejaculates were of acceptable quality (progressive motility >/= 60%), and were used for cryopreservation studies. Semen were frozen in TEST + glycerol, TEST + DMSO, HEPT + glycerol, or HEPT + DMSO. The post-thaw progressive sperm motilities were assessed, and sperm cells were stained with PI and FITC-PNA for membrane and acrosomal integrity assessment using flow cytometry. Post-thaw progressive motility of spermatozoa (EM1: 42.0 +/- 4.3%; EM2: 26.0 +/- 17.3%) and the percentage of membrane and acrosome intact spermatozoa (EM1: 55.5 +/- 8.1%; EM2: 46.3 +/- 6.4%) cryopreserved in TEST + glycerol were significantly higher than (P < 0.05) those frozen in the other medium investigated choices for cryopreservation of Asian elephant spermatozoa. The data support the use of TEST + glycerol as an acceptable cryopreservation media of Asian elephant semen for the establishment of sperm banks.  相似文献   

6.
A simple and convenient protocol for the cryopreservation of the flounder (Paralichthys olivaceus) sperm was established for "on the spot" cryopreservation of large quantities of semen. The use of three cryoprotectants, dimethyl sulphoxide (DMSO), glycerol (Gly) and methanol was tested in the method. The percentage of motile sperm present in semen after it had been frozen and thawed in the presence of DMSO, Gly or methanol was 60.5+/-3.6, 79.17+/-4.5 and 13.25+/-4.7%, respectively. The fertilization rates of this sperm were 67.06+/-15.1, 76.20+/-10.0 and 44.93+/-22.6%, while the hatching rates of eggs fertilized with this sperm were 37.40+/-8.3, 48.18+/-25.7 and 23.35+/-10.8%, respectively. It was found that Gly and DMSO were better cryoprotectants than methanol, with Gly giving the best overall results. Under scanning electron microscopy, it could be seen that while the majority of the frozen-thawed sperm remained morphologically normal, some exhibited lost or dilated mitochondria, swollen mid-pieces, broken tails, or damaged cell membrane, which probably caused the decrease in motility and fertility of the frozen-thawed sperm.  相似文献   

7.
Liu QH  Li J  Zhang SC  Xiao ZZ  Ding FH  Yu DD  Xu XZ 《Theriogenology》2007,67(6):1168-1174
The objectives were to assess motility, fertilizing capacity, structural integrity, and mitochondrial function in fresh versus frozen-thawed (15% DMSO was used as a cryoprotectant) sperm from red seabream (Pagrus major). Mean (+/-S.D.) rates of motility, fertilization and hatching of frozen-thawed sperm were 81.0+/-5.4, 92.8+/-1.9, and 91.8+/-5.2%, respectively; for fresh sperm, they were 87.5+/-7.7, 95.8+/-2.4, and 93.8+/-4.2%. Although motility was lower in frozen-thawed versus fresh sperm (P<0.05), there was no effect (P>0.05) of cryopreservation on fertilization or hatching. Based on scanning and transmission electron microscopy, 77.8+/-5.6% of fresh sperm had normal morphology, whereas for frozen-thawed sperm, 63.0+/-7.2% had normal morphology, 20.6+/-3.1% were slightly damaged (e.g. swelling or rupture of head, mid-piece and tail region as well as mitochondria), and 16.4+/-4.2% were severely damaged. Sperm were stained with propidium iodide and Rhodamine 123 to assess plasma membrane integrity and mitochondrial function, respectively, and examined with flow cytometry. For fresh sperm, 83.9% had an intact membrane and functional mitochondria, whereas for frozen-thawed sperm, 74.8% had an intact membrane and functional mitochondria, 12.7% had a damaged membrane, 9.9% had nonfunctional mitochondria, and 2.6% had both a damaged membrane and nonfunctional mitochondria. In conclusion, ultrastructure and flow cytometry were valuable for assessment of frozen-thawed sperm quality; cryopreservation damaged the sperm but fertilizing ability was not significantly decreased.  相似文献   

8.
The objective was to develop a sperm freezing procedure suitable for use in the propagation of valuable founder animals by assisted reproductive technologies. Here, we report a comparison of processing methods by measuring the motility of fresh and frozen-thawed rhesus monkey spermatozoa and fertility via intracytoplasmic spermatozoa injection (ICSI) of sibling oocytes. Washed spermatozoa were frozen in straws or in pellets using different cryoprotective media and processed post-thaw with or without a density gradient centrifugation step. Among the four study series, motility post-thaw was improved with density gradient centrifugation (17-24% versus 75%, P<0.01) achieving levels similar to fresh spermatozoa. Spermatozoa injected oocytes (total n=377) were co-cultured on BRL cells and observed for fertilization and development. With spermatozoa frozen in straws in liquid nitrogen vapors, the fertilization rate after ICSI was lower than with fresh spermatozoa (40-44% versus 77-86%, P<0.05), even with the Percoll-enriched fraction that exhibited robust motility. In contrast, somewhat slower freezing of spermatozoa in pellets on dry ice supported fertilization rates (73%) that were similar to the fresh counterpart. Developmental rates of fertilized eggs were similar in all experiments. A total of 106 embryo transfers has resulted in the first primate born after ICSI with F/T ejaculated spermatozoa plus 22 other infants to date. Additionally, a 3-4 h incubation after thawing improved the fertilization rate with spermatozoa from a male with poor post-thaw recovery of sperm motility. In conclusion, an acceptable fertilization rate after ICSI with motile, frozen-thawed primate spermatozoa was observed comparable to that obtained with fresh spermatozoa allowing small quantities of competent spermatozoa to be used with ICSI to facilitate propagation of desirable primate genotypes.  相似文献   

9.
Viveiros AT  So N  Komen J 《Theriogenology》2000,54(9):1395-1408
Methods for cryopreserving spermatozoa and optimizing sperm:egg dilution ratio in African catfish Clarias gariepinus were developed. Five percent to 25% DMSO and methanol were tested as cryoprotectants, by diluting semen in Ginzburg fish ringer and freezing in 1-milliliter cryovials in a programmable freezer. To avoid an excess of spermatozoa per egg, post-thaw semen was diluted 1:20, 1:200 or 1:2,000 before fertilization. Highest hatching rates were obtained by spermatozoa frozen in 10% methanol and post-thaw diluted to 1:200. Then, slow freezing rates (-2, -5 or -10 degrees C/min) to various endpoint temperatures (range -25 to -70 degrees C) before fast freezing in liquid nitrogen (LN2) were evaluated. Hatching rates equal to control (P > 0.05) were obtained by spermatozoa frozen at -5 degrees C/min to -45 to -50 degrees C and at -10 degrees C/min to -55 degrees C. In 3-step freezing programs, at -5 degrees C/min, the effect of holding spermatozoa for 0, 2 or 5 min at -30, -35 or -40 degrees C before fast freezing in LN2 was analyzed. Hatching rates equal to control (P > 0.05) were produced by spermatozoa frozen to, and held at, -35 degrees C for 5 min and at -40 degrees C for 2 or 5 min. Finally, frozen spermatozoa (10% methanol, -5 degrees C/min, 5-min hold at -40 degrees C, LN2, post-thaw diluted to 1:200) were tested in on-farm fertilization conditions. Again, no difference (P > 0.05) in hatching rate was observed between frozen and fresh spermatozoa. Cryopreservation offers utility as a routine method of sperm storage and management for catfish.  相似文献   

10.
To determine the effects of seminal plasma during and after cyopreservation on post-thaw sperm functions in semen from poor freezability boars, seminal plasma was removed immediately after collection, and sperm was subjected to cooling and freezing. Removal of seminal plasma did not significantly affect post-thaw sperm motility in good freezability boars; however, in boars with poor freezability, it increased post-thaw motility relative to control sperm cooled with seminal plasma (64.5+/-3.4% vs. 30.9+/-3.1%, P<0.01). Freezing sperm without seminal plasma increased both loss of the acrosome cap (37.5+/-1.6% vs. 18.4+/-2.8%, P<0.01) and expression of a 15 kDa tyrosine-phosphorylated protein (capacitation marker) in thawed sperm relative to controls; the addition of 10% (v/v) seminal plasma to the thawing solution significantly suppressed both changes and increased conception rate to AI (70% vs. 9% in the control group, P<0.05). In conclusion, our novel cryopreservation and thawing method increased the success of AI with frozen-thawed porcine semen, particularly from boars with poor post-thaw semen quality.  相似文献   

11.
Experiments were conducted to develop a suitable protocol for cryopreservation of spotted skunk semen. Semen was collected by electroejaculation of captive male skunks (n = 16) from late January through late November. In the first experiment, fresh semen was diluted in either TEST (n = 10), TRIS (n = 9), or BF5F (n = 7) extenders and maintained at 4°C for 16 hr. Sperm motility in these extenders was not significantly different before cooling (P = 0.71), but samples diluted with BF5F exhibited significantly lower sperm motility than the other extenders at all time points after cooling (P < 0.05). In the second experiment, fresh semen was diluted in TEST containing either 3, 5, or 10% DMSO or 3, 5, or 10% glycerol as a cryopreservative. These samples were cooled to 4°C and frozen in 0.25 ml French straws on dry ice. Some samples containing 5% DMSO or 5% glycerol (n = 4), were also frozen on dry ice as pellets. Frozen samples were maintained in liquid nitrogen. Fresh samples had significantly greater sperm motility in dimethyl sulfoxide (DMSO) than in glycerol (P < 0.05), while frozen and thawed samples had the highest motility in 5 or 10% DMSO or 10% glycerol. Samples frozen in French straws had significantly greater sperm motility after freezing and thawing than those frozen by the pellet method (P < 0.05). Optimum cryoprotection was achieved with the TEST extender containing 5 or 10% DMSO, when used in conjunction with French straws. © 1992 Wiley-Liss, Inc.  相似文献   

12.
Glycerol and dimethyl sulfoxide (DMSO) are widely used as penetrating cryoprotectants in the freezing of sperm, and various concentrations are applied in different species and laboratories. The present study aimed to examine the effect of these two cryoprotectants at different concentrations (2%, 5%, 10%, and 15% glycerol or DMSO) on rhesus monkey sperm cryopreservation. The results showed that the highest recovery of post-thaw sperm motility, and plasma membrane and acrosome integrity was achieved when the sperm was frozen with 5% glycerol. Spermatozoa cryopreserved with 15% DMSO showed the lowest post-thaw sperm motility, and spermatozoa cryopreserved with 15% glycerol and 15% DMSO showed the lowest plasma membrane integrity among the eight groups. The results achieved with 5% glycerol were significantly better for all parameters than those obtained with 5% DMSO. The functional cryosurvival of sperm frozen with 5% glycerol was further assessed by in vitro fertilization (IVF). Overall, 85.7% of the oocytes were successfully fertilized, and 51.4% and 5.7% of the resulting zygotes developed into morulae and blastocysts, respectively. The results indicate that the type and concentration of the penetrating cryoprotectant used can greatly affect the survival of rhesus monkey sperm after it is frozen and thawed. The suitable glycerol level for rhesus monkey sperm freezing is 5%, and DMSO is not suitable for rhesus monkey sperm cryopreservation.  相似文献   

13.
Cryopreservation of boar sperm compromises fertility after thawing by reducing sperm longevity and inducing acrosome reaction-like changes. In an attempt to improve the post-thaw motility and acrosome integrity of boar sperm, semen was frozen using a modified Westendorf method in which the medium was supplemented with either platelet-activating factor (PAF) or a recombinant platelet-activating factor:acetylhydrolase (PAF:AH; Pafase) before or after freezing. Platelet-activating factor is a phospholipid that is present in boar semen and PAF:AH is the naturally occurring enzyme that converts PAF to biologically inactive Lyso-PAF. Addition of PAF to the cryopreservation medium improved post-thaw motility immediately after thawing and after 3h incubation at 37 degrees C (60.0+/-0.0% and 25.0+/-2.9%; mean+/-S.E.M.) compared to the control sperm (41.7+/-1.7% and 10.0+/-2.9%; P<0.05). Acrosome integrity was higher immediately after thawing and after 3 and 6h incubation at 37 degrees C when sperm were frozen in the presence of Pafase (55.7+/-3.2%, 45.7+/-3.7% and 23.0+/-3.1%), compared to the control sperm (42.7+/-1.5%, 25.7+/-5.7% and 12.3+/-2.7%) and sperm frozen in the presence of PAF (33.0+/-3.7%, 26.3+/-2.2% and 11.7+/-0.3%; P<0.05). Addition of PAF to sperm after thawing improved motility immediately post-thaw (41.6+/-2.6%), compared with addition of Pafase (23.3+/-2.2%) or the control sperm with no supplementation of the medium (26.7+/-2.2%; P<0.05). However, this beneficial effect was lost by 3h post-thaw. Supplementation of boar semen cryopreservation medium with PAF and Pafase appeared to have beneficial effects on the in vitro quality of the sperm post-thaw.  相似文献   

14.
Semen cryopreservation is an important technique for the banking of animal germplasm from endangered species and exploitation of genetically superior sires through artificial insemination. Being a member of bovidae family, bison semen has poor freezing ability as compared to dairy and beef bulls' semen. This study was designed to quantify the damage to bison sperm at different stages of cryopreservation, and to determine the effects of extender (commercial Triladyl(?) vs. custom made tris-citric acid [TCA]) and freeze rate (-10, -25 and -40°C/min) on post-thaw quality of bison semen. Semen was collected from five bison bulls (three woods and two plains) via electroejaculation. In Experiment 1, semen was diluted in Triladyl? extender and frozen with freeze rate -10°C/min. Sperm motility characteristics were recorded in fresh, diluted, cooled (4°C) and freeze-thawed semen using computer-assisted sperm analyzer (CASA). In Experiment 2, semen was diluted in Triladyl? or TCA extender, and frozen with three different freeze rates, i.e. -10, -25 or -40°C/min. Thawing was performed at 37°C for 60s. Post-thaw sperm motility characteristics were assessed using CASA, and sperm structural characteristics (plasma membrane, mitochondrial membrane potential and acrosomes) were evaluated using flow cytometer, at 0 and 3h while incubating semen at 37°C. In Experiment 1, total and progressive motilities did not differ among pre-freeze stages of cryopreservation (P>0.05). However, sperm total and progressive motilities declined (P<0.001) in freeze-thawed semen by 35% and 42%, respectively, compared to after cooling (pre-freeze) semen. In Experiment 2, Triladyl?, as compared to TCA, yielded greater (P<0.05) post-thaw sperm total motility (41% compared to 36%) and progressive motility (34% compared to 29%) at 0h, respectively. The percent change in post-thaw sperm total and progressive motilities, VAP, VCL, VSL, IPM-high ΔΨm and IPM-IACR during 3h incubation at 37°C, was less (P<0.05) in TCA than in Triladyl?. There was an effect of freeze rate on post-thaw sperm average path velocity at 0h, and total motility, progressive motility, VCL, IPM and IPM-IACR at 3h were the greatest (P<0.05) when bison semen was frozen at -40°C/min. Likewise, the percent change in post-thaw sperm total and progressive motilities, during 3h incubation at 37°C, was less (P<0.05) in bison semen frozen at -40°C/min. All post-thaw bison sperm characteristics decreased (P<0.05) from 0h to 3h, during incubation at 37°C. In conclusion, the maximum damage to bison sperm occurred during freeze-thaw processes. Post-thaw total and progressive motilities of bison sperm were greater in Triladyl? at 0h whereas sperm survival was greater in TCA extender during 3h post-thaw incubation. Bison sperm had greater survival (P<0.05) when frozen at -40°C/min freeze rate.  相似文献   

15.
Cryopreservation of stallion semen is often associated with poor post-thaw sperm quality. Sugars are among the important components of a freezing extender and act as non-permeating cryoprotectants. This study aimed to compare the quality of stallion sperm frozen with glucose, fructose or sorbitol-containing freezing extenders. Semen was collected from six stallions of proven fertility and cryopreserved using a freezing extender containing different types of monosaccharide sugars (glucose, fructose or sorbitol). After thawing, the semen was examined for sperm motility, viability, acrosome integrity, plasma membrane functionality and sperm longevity. The fertility of semen frozen in the presence of sorbitol was also tested by artificial insemination. Sperm quality was significantly decreased following freezing and thawing (P < 0.05). Fructose was inferior for protecting sperm during cryopreservation when compared to sorbitol and glucose (P < 0.05). Although the viability, motility and acrosome integrity of sperm cryopreserved with a glucose-containing extender did not significantly differ from sperm frozen in the sorbitol-based extender when examined at 2 and 4 h post-thaw, all of these parameters plus plasma membrane functionality were improved for sperm frozen in the sorbitol extender than in the glucose extender when examined 10 min post-thaw. Two of four mares (50%) inseminated with semen frozen with a sorbitol-containing freezing extender became pregnant. It is concluded that different sugars have different abilities to protect against cryoinjury during freezing and thawing of stallion sperm. This study demonstrated that an extender containing sorbitol as primary sugar can be used to successfully cryopreserve equine sperm; moreover, the quality of frozen-thawed sperm appeared to be better than when glucose or fructose was the principle sugar in the freezing extender.  相似文献   

16.
Rasul Z  Ahmed N  Anzar M 《Theriogenology》2007,68(5):813-819
The objective of the present study was to investigate the synergistic effect of DMSO and glycerol added at various temperatures on the post-thaw quality of buffalo sperm. Pooled ejaculates from four Nili-Ravi buffalo bulls were divided into 18 aliquots and extended (1:10) in Tris-citric acid extender differing in glycerol:DMSO ratios (0:0, 0:1.5, 0:3; 3:0, 3:1.5, 3:3; and 6:0, 6:1.5, 6:3, respectively; %, v:v) either at 37 or 4 degrees C. Semen was packaged in 0.5 mL French straws and frozen in a programmable cell freezer. Thawing was performed at 37 degrees C for 50s. Post-thaw motion characteristics, plasma membrane integrity and acrosome morphology of buffalo sperm were determined using computer-assisted semen analyzer (CASA), hypoosmotic swelling (HOS) assay and phase-contrast microscopy, respectively. Glycerol (6%) in extender yielded better post-thaw sperm motility, velocities (straight-line and average path), plasma membrane integrity, and normal acrosomes (P<0.05). Post-thaw sperm motility and plasma membrane integrity declined in the presence of DMSO (P<0.01). The addition of glycerol (6%) at 37 degrees C yielded better post-thaw sperm motility, plasma membrane integrity and velocities than addition at 4 degrees C (P<0.05). In conclusion, glycerol is still an essential cryoprotectant for buffalo sperm. The addition of DMSO antagonized the cryoprotection ability of glycerol and reduced the post-thaw quality of buffalo sperm. Furthermore, 6% glycerol added at 37 degrees C, provided better cryoprotection to the motility apparatus and plasma membrane integrity of buffalo sperm.  相似文献   

17.
Gwo JC 《Theriogenology》1994,41(5):989-1004
The effects of both osmolality and cation in the initiation of sperm motility were examined in yellowfin seabream, Acanthopagrus latus. Various factors involved in the cryopreservation of yellowfin seabream spermatozoa on motility are discussed. Extender containing only glucose proved to be a suitable medium for freezing yellowfin seabream spermatozoa to -196 degrees C. Glycerol seems to have a direct osmotic effect on yellowfin seabream sperm cells, and it induced sperm motility before freezing and during thawing. However, this exhausted the energy needed for sperm motility for fertilization. Dimethyl sulfoxide (DMSO) proved superior to ethylene glycerol, propylene glycerol, glycerol and methanol as a cryoprotectant. Prolonged equilibration time had a detrimental effect on both prefreezing and post-thawing sperm motility. The estimated optimum freezing rate was in the range of -20 to -154 degrees C/min. More frozen-thawed than fresh spermatozoa are required to achieve comparable fertilization rates.  相似文献   

18.
We evaluated the influence of two cooling rates (from 25 to 5 degrees C) on post-thaw function of frozen sperm in ocelots (Leopardus pardalis; n=3 males) and tigrinas (Leopardus tigrinus; n=4 males). Seven normospermic (>70% normal sperm) electroejaculates from each species were diluted with a 4% glycerol freezing medium, divided into two aliquots, and assigned to one of two cooling rates: fast or slow (0.7 or 0.16 degrees C/min, respectively). Sperm motility index (SMI) and percentage of sperm with an intact acrosome were assessed before freezing and after thawing, and the ability of sperm to bind to the zona pellucida of IVM domestic cat oocytes were assessed in a competitive in vitro sperm-binding assay. Regardless of the cooling rate, frozen-thawed sperm from both species exhibited a SMI of 50; approximately 20 and approximately 32% of post-thaw sperm had an intact acrosome in ocelots and tigrinas, respectively (P<0.05). The mean (+/-S.E.M.) number of sperm bound per oocyte was higher for fast-cooled (8.5+/-1.3) than slow-cooled (2.5+/-0.3; P<0.01) ocelot sperm. In contrast, more tigrina sperm bound to domestic cat oocytes when cooled slowly versus quickly (5.8+/-0.9 versus 2.7+/-0.4, P<0.05). In conclusion, cryopreservation decreased sperm function in both species, and the oocyte-binding assay was the most efficient method to detect functional differences in post-thaw sperm.  相似文献   

19.
Semen cryopreservation of small abalone (Haliotis diversicolor supertexa)   总被引:7,自引:0,他引:7  
Gwo JC  Chen CW  Cheng HY 《Theriogenology》2002,58(8):1563-1578
Methods for cryopreserving spermatozoa and maximizing fertilization rate in Taiwan small abalone, Haliotis diversicolor supertexa, were developed. The gametes (spermatozoa and eggs) of small abalone were viable 3 h post-spawning, with fertilization, and development rate decreasing with time. A minimum of 10(2) cell/ml sperm concentration and a contact time of 2 min between gametes is recommended for artificial insemination of small abalone eggs. Eight cryoprotectants, dimethyl sulfoxide (DMSO), dimethyl acetamide (DMA), ethylene glycol (EG), propylene glycol (PG), butylene glycol (BG), polyethylene glycol, glycerol and methanol, were tested at concentrations between 5 and 25% to evaluate their effect on motility of spermatozoa exposed to cryoprotectant for up to 60 min at 25 degrees C before freezing. The least toxic cryoprotectant, 10% DMSO, was added to artificial seawater (ASW) to formulate the extender for freezing. Semen was diluted 1:1 with the extender, inserted into 1.5 ml microtubes and frozen using a cooling rate between -3.5 and -20 degrees C/min to various transition temperatures (0, -30, -60, -90 and -120 degrees C), followed by transfer and storage in liquid nitrogen (-196 degrees C). The microtubes were thawed from +45 to +145 degrees C/min. Spermatozoa, cooled to -90 degrees C at a cooling rate of -12 or -15 degrees C/min and then immersed in liquid nitrogen, had the best post-thaw motility. Post-thaw sperm motility was markedly reduced compared to fresh sperm. More frozen-thawed spermatozoa are required to achieve fertilization rates comparable to those achieved using fresh spermatozoa.  相似文献   

20.
Cryopreservation of turbot (Scophthalmus maximus) spermatozoa   总被引:4,自引:0,他引:4  
The aim of this study was to develop a method for cryopreserving turbot semen and to compare sperm motility characteristics, metabolic status and fertilization capacity of frozenthawed and fresh semen. The best results were obtained when spermatozoa were diluted at a 1:2 ratio with a modified Mounib extender, supplemented with 10% BSA and 10% DMSO. For freezing sperm samples, straws were placed at 6.5 cm above the surface of liquid nitrogen (LN) and plunged in LN. The straws were thawed in water bath at 30 degrees C for 5 sec. Use of this simple method resulted in a 60 to 80% reactivation rate of the thawed spermatozoa. Although the percentage of motile spermatozoa in the frozen-thawed semen samples was significantly lower than in fresh semen, spermatozoa velocity and respiratory rate remained unchanged. The process of cryopreservation significantly decreased intracellular ATP content. The fertilization rate of frozen-thawed spermatozoa was significantly lower than that of fresh spermatozoa, but it increased with sperm concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号