首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Alpha-glucosidase III, which was different in substrate specificity from honeybee alpha-glucosidases I and II, was purified as an electrophoretically homogeneous protein from honeybees, by salting-out chromatography, DEAE-cellulose, DEAE-Sepharose CL-6B, Bio-Gel P-150, and CM-Toyopearl 650M column chromatographies. The enzyme preparation was confirmed to be a monomeric protein and a glycoprotein containing about 7.4% of carbohydrate. The molecular weight was estimated to approximately 68,000, and the optimum pH was 5.5. The substrate specificity of alpha-glucosidase III was kinetically investigated. The enzyme did not show unusual kinetics, such as the allosteric behaviors observed in alpha-glucosidases I and II, which are monomeric proteins. The enzyme was characterized by the ability to rapidly hydrolyze sucrose, phenyl alpha-glucoside, maltose, and maltotriose, and by extremely high Km for substrates, compared with those of alpha-glucosidases I and II. Especially, maltotriose was hydrolyzed over 3 times as rapidly as maltose. However, maltooligosaccharides of four or more in the degree of polymerization were slowly degraded. The relative rates of the k0 values for maltose, sucrose, p-nitrophenyl alpha-glucoside and maltotriose were estimated to be 100, 527, 281 and 364, and the Km values for these substrates, 11, 30, 13, and 10 mM, respectively. The subsite affinities (Ai's) in the active site were tentatively evaluated from the rate parameters for maltooligosaccharides. In this enzyme, it was peculiar that the Ai value at subsite 3 was larger than that of subsite 1.  相似文献   

2.
Three kinds of alpha-glucosidases, I, II, and III, were purified from European honeybees, Apis mellifera L. In addition, an alpha-glucosidase was also purified from honey. Some properties, including the substrate specificity of honey alpha-glucosidase, were almost the same as those of alpha-glucosidase III. Specific antisera against the alpha-glucosidases were prepared to examine the localization of alpha-glucosidases in the organs of honeybees. It was immunologically confirmed for the first time that alpha-glucosidase I was present in ventriculus, and alpha-glucosidase II, in ventriculus and haemolymph. alpha-Glucosidase III, which became apparent to be honey alpha-glucosidase, was present in the hypopharyngeal gland, from which the enzyme may be secreted into nectar gathered by honeybees. Honey may be finally made up through the process whereby sucrose in nectar, in which glucose and fructose also are naturally contained, is hydrolyzed by secreted alpha-glucosidase III.  相似文献   

3.
Brettanomyces lambicus was isolated and identified from a typical overattenuating Belgian lambic beer and exhibited extracellular and intracellular alpha-glucosidase activities. Production of the intracellular enzyme was higher than production of the extracellular enzyme, and localization studies showed that the intracellular alpha-glucosidase is mostly soluble and partially cell wall bound. Both intracellular and extracellular enzymes were purified by ammonium sulfate precipitation, gel filtration (Sephadex G-150, Sephadex G-200, Ultrogel AcA-44), and ion-exchange chromatography (sulfopropyl-Sephadex C-50, (carboxymethyl-Sephadex C-50). The intracellular alpha-glucosidase exhibited optimum activity at 39 degrees C and pH 6.2. The extracellular enzyme exhibited optimum catalytic activity at 40 degrees C and pH 6.0. The molecular masses of purified intracellular and extracellular alpha-glucosidases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 72,500 and 77,250, respectively. For both enzymes there was a decrease in the rate of hydrolysis with an increase in the degree of polymerization, and both enzymes hydrolyzed dextrins isolated from lambic wort (degrees of polymerization, 3 to 9 and more than 9). The K(m) values for p-nitrophenyl-alpha-d-glucopyranoside, maltose, and maltotriose for the intracellular enzyme were 0.9, 3.4, and 3.7 mM, respectively. The K(i) values for both enzymes were between 28.5 and 57 muM for acarbose and between 7.45 and 15.7 mM for Tris. These enzymes are probably involved in the overattenuation of spontaneously fermented lambic beer.  相似文献   

4.
DNA-dependent ATPases have been purified from logarithmically growing KB cells by chromatography on single-stranded DNA cellulose and phosphocellulose. Phosphocellulose resolved the DNA-dependent ATPases into three activities designated ATPase I, II and III, respectively. From gel filtration and sedimentation analysis ATPases II and III were found to be very similar, both with calculated molecular weights of 78,000. Due to the extreme lability these enzymes were not purified further. The molecular weight of ATPase I determined by gel filtration and sedimentation analysis was calculated to be 140,000. ATPase I was further purified by gradient elution on ATP-agarose, revealing two peaks of activity (IA and IB), and by sucrose gradient sedimentation. Analysis of the fractions from the sucrose gradient by sodium dodecylsulphate gel electrophoresis revealed only one broad polypeptide band co-sedimenting with both ATPase IA and ATPase IB. This band was composed of four closely spaced polypeptides with apparent molecular weights of 66,000, 68,000, 70,000 and 71,000. Comparison of the native molecule weight (140,000) with these results suggests that ATPase I is a dimer. ATPase IA and IB were indistinguishable in their structural and enzymatic properties and presumably represent the same enzyme. The purified enzyme has an apparent Km of 0.5 mM for ATP producing ADP + Pi. A maximum activity of 2,100 molecules of ATP hydrolyzed per enzyme molecular per minute was found. Hydrolysis of ATP requires the presence of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+ greater than Co2+). A broad pH optimum (pH 6--8) was observed. The enzyme uses ATP or dATP preferentially as a substrate, while other deoxyribonucleoside or ribonucleoside triphosphates were inactive. ATPase I prefers denatured DNA as cofactor. The activity with native DNA is 40% of that with denatured DNA.  相似文献   

5.
The cationic form of beta-galactosidase (EC 3.2.1.23) from the germinating seeds of Vigna sinensis has been separated from its other isoforms by DEAE-cellulose (DE-52) column chromatography and further purified by gel filtration and affinity chromatography. Polyacrylamide gel electrophoresis of the purified enzyme imparted a single protein band. The molecular mass of the enzyme as determined by Sephadex G-150 gel filtration is 58,800 Da. The optimum temperature and the optimum pH are 60 degrees C and 4.5, respectively. Most of the metal ions tested were inhibitory to the enzyme activity. The enzyme has Km for p-nitrophenyl beta-D-galactoside and o-nitrophenyl beta-D-galactoside of 0.56 and 2.0 mM, respectively. The Ki values of galactose and lactose are 2.4 and 70.0 mM, respectively. The energy of activation of PNPG for the enzyme is 10.3 kcal/mol.  相似文献   

6.
A novel alpha-glucosidase with an apparent subunit mass of 59 +/- 0. 5 kDa was purified from protein extracts of Rhizobium sp. strain USDA 4280, a nodulating strain of black locust (Robinia pseudoacacia L), and characterized. After purification to homogeneity (475-fold; yield, 18%) by ammonium sulfate precipitation, cation-exchange chromatography, hydrophobic chromatography, dye chromatography, and gel filtration, this enzyme had a pI of 4.75 +/- 0.05. The enzyme activity was optimal at pH 6.0 to 6.5 and 35 degrees C. The activity increased in the presence of NH4+ and K+ ions but was inhibited by Cu2+, Ag+, Hg+, and Fe2+ ions and by various phenyl, phenol, and flavonoid derivatives. Native enzyme activity was revealed by native gel electrophoresis and isoelectrofocusing-polyacrylamide gel electrophoresis with fluorescence detection in which 4-methylumbelliferyl alpha-glucoside was the fluorogenic substrate. The enzyme was more active with alpha-glucosides substituted with aromatic aglycones than with oligosaccharides. This alpha-glucosidase exhibited Michaelis-Menten kinetics with 4-methylumbelliferyl alpha-D-glucopyranoside (Km, 0.141 microM; Vmax, 6.79 micromol min-1 mg-1) and with p-nitrophenyl alpha-D-glucopyranoside (Km, 0.037 microM; Vmax, 2.92 micromol min-1 mg-1). Maltose, trehalose, and sucrose were also hydrolyzed by this enzyme.  相似文献   

7.
Alpha-galactosidase was purified from a fresh fruiting body of Ganoderma lucidum by precipitation with ammonium sulfate and column chromatographies with DEAE-Sephadex and Con A-Sepharose. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis. Its N-terminal amino acid sequence was similar to that of Mortierella vinacea alpha-galactosidase. The molecular mass of the enzyme was about 56 kDa by SDS-polyacrylamide gel electrophoresis, and about 249 kDa by gel filtration column chromatography. The optimum pH and temperature were 6.0 and 70 degrees C, respectively. The enzyme was fully stable to heating at 70 degrees C for 30 min. It hydrolyzed p-nitrophenyl-alpha-D-galactopyranoside (Km=0.4 mM) but hydrolyzed little o-nitrophenyl-alpha-D-galactopyranoside. It also hydrolyzed melibiose, raffinose, and stachyose. The enzyme catalyzed the transgalactosylation reaction which synthesized melibiose. The product was confirmed by various analyses.  相似文献   

8.
An extracellular beta-glucosidase (EC 3.2.1.21) was purified from culture filtrate of the anaerobic rumen fungus Orpinomyces sp. strain PC-2 grown on 0.3% (wt vol-1) Avicel by using Q Sepharose anion-exchange chromatography, ammonium sulfate precipitation, chromatofocusing ion-exchange chromatography, and Superose 12 gel filtration. The enzyme is monomeric with a M(r) of 85,400, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, has a pI of 3.95, and contains about 8.5% (wt vol-1) carbohydrate. The N terminus appears to be blocked. The enzyme catalyzes the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (PNPG). The Km and Vmax values with cellobiose as the substrate at pH 6.0 and 40 degrees C are 0.25 mM and 27.1 mumol.min-1 x mg-1, respectively; with PNPG as the substrate, the corresponding values are of 0.35 mM and 27.7 mumol.min-1 x mg-1. Glucose (Ki = 8.75 mM, with PNPG as the substrate) and gluconolactone (Ki = 1.68 x 10(-2) and 2.57 mM, with PNPG and cellobiose as the substrates, respectively) are competitive inhibitors. Optimal activity with PNPG and cellobiose as the substrates is at pH 6.2 and 50 degrees C. The enzyme has high activity against sophorose (beta-1,2-glucobiose) and laminaribiose (beta-1,3-glucobiose) but has no activity against gentiobiose (beta-1,6-glucobiose). The activity of the beta-glucosidase is stimulated by Mg2+, Mn2+, Co2+, and Ni2+ and inhibited by Ag+, Fe2+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate.  相似文献   

9.
A tissue carboxypeptidase-A-like enzyme was purified to apparent homogeneity from terminally differentiated epidermal cells of 2-day-old rats by potato inhibitor affinity chromatography followed by FPLC Mono Q column chromatography. The enzyme has an Mr of 35,000 as determined by SDS-polyacrylamide gel electrophoresis and HPLC gel filtration. It has a pH optimum of 8.5 for hydrolysis of benzyloxycarbonyl-Phe-Leu (Km = 0.22 mM, kcat = 57.9 s-1). The enzyme does not hydrolyze substrates with Arg, Lys and Pro at the C-terminal and Pro at the penultimate position. Angiotensin I was effectively hydrolyzed (Km = 0.06 mM, kcat = 6.48 s-1) and produced both des-Leu10-angiotensin I and angiotensin II. The enzyme activity, relatively stable at 4 degrees C and pH 8.0-10.5, was inactivated at pH values higher than 12.0 and lower than 5.0 or at 65 degrees C for 10 min. Inhibitor profiles of the epidermal enzyme also differed slightly from those of tissue carboxypeptidase A of pancreatic or mast cell origin.  相似文献   

10.
We have previously found that some mammalian tissue homogenates can catalyze a unique transglucosylation from maltose to L-ascorbic acid (AA), resulting in a chemically stable AA derivative, L-ascorbic acid alpha-glucoside (AAG). In the present study, the enzyme responsible for this transglucosylation was isolated from rat intestinal membrane. The formation of AAG was determined by HPLC with an ODS column. The specific activity of AAG-forming enzyme was increased in parallel with that of alpha-glucosidase (maltose hydrolase) during the purification, and two neutral alpha-glucosidases, termed alpha-glucosidases I and II, were purified to apparent homogeneity. Their enzymological properties showed that they corresponded to maltase [EC 3.2.1.20] and sucrase-isomaltase complex [EC 3.2.1.48/10], respectively. Both enzymes could form AAG by splitting only maltose among the disaccharides examined, although alpha-glucosidase I possessed a considerably higher activity than the other enzyme. Both AAG formation and maltose hydrolysis were dependent on incubation temperature with the maximal activity at 60 degrees C, but there was an apparent difference between their pH optima. AAG thus formed could also be hydrolyzed by the purified enzymes. From these results, it is concluded that membrane-bound neutral alpha-glucosidases from rat intestine have site-specific transglucosylase activity to form nonreducing AAG which is distinct from L-ascorbic acid-6-O-alpha-D-glucoside.  相似文献   

11.
An extracecular alpha-glucosidase (alpha-D-glucoside glycohydrolase, EC 3.2.1.20) of a thermophile, Bacillus thermoglucosidius KP 1006, was purified about 350-fold. The purified enzyme had a specific activity of 164 mumol of p-nitrophenyl-alpha-D-glucopyranoside hydrolyzed per min at 60 degrees C and pH 6.8 per mg of protein. The molecular weight was estimated at 55 000. The pH and temperature optima for activity were 5.0--6.0 and 75 degrees C, respectively. Below 40 degrees C, the activity was less than 4.5% of the optimym. The enzyme showed a high specificity for alpha-D-glucopyranoside. The maximal hydrolyzing velocity per substrate diminished in the order: phenyl-alpha-D-glucopyranoside, p-nitrophenyl-alpha-D-glucopyranoside, isomaltose, methyl-alpha-glycopyranoside. The respective Km values were 3.0, 0.23, 3.2 and 27 mM. The activity was trace for turanose, and not detectable for sucrose, trehalose, raffinose, melezitose, maltose, maltotriose, phenyl-alpha-D-maltoside, dextran, dextrin and starch. Tris, p-nitrophenyl-alpha-D-xylopyranoside, glucose and glucono-delta-lactone blocked competitively the enzyme with respect to p-nitrophenyl-alpha-D-glucopyranoside. The Ki values were 0.12, 0.14, 2.2 and 2.4 mM, respectively. The activity was affected by heavy metal ions, but insensitive to EDTA, p-chloromercuribenzoate and iodoacetate. The enzyme was stable up to 60 degrees C, and inactivated rapidly at temperatures beyond 72 degrees C. The pH range for stability was 4.0--11.0 at 31 degrees C, and 6.0--8.5 at 55.5 degrees C. At 25 degrees C, the enzyme failed to be inactivated in 45% ethanol, in 7.2 M urea, and in 0.06% sodium dodecyl sulfate, but the tolerance was extremely reduced at 60 degrees C.  相似文献   

12.
Prolylcarboxypeptidase was purified from human kidney 1200-fold with 18% yield. The enzyme had no cathepsin A activity and appeared to be homogeneous in gel electrophoresis. The molecular weight of prolylcarboxypeptidase was estimated to be 115,000 by gel filtration. Under denaturing conditions the enzyme dissociated into subunits of 45,000 and 66,500 molecular weight. The enzyme cleaved benzyloxycarbonyl (Cbz)-Pro-Phe, representing the COOH-terminal end of angiotensin II and des-Asp1-angiotensin II (angiotensin III), at a rate of 31 micronmol/h/mg of protein. The rate of hydrolysis increased when phenylalanine in the N-protected dipeptide was replaced with alanine, valine, or leucine or when the octapeptide angiotensin II or the heptapeptide angiotensin III were the substrates. The enzyme also cleaved the angiotensin II antagonist saralasin (Sar1-Ala8-angiotensin II). The Km values were 1 mM, 2mM, and 0.77 mM with Cbz-Pro-Phe, angiotensin II, and angiotensin III, respectively. The enzyme had an acid pH optimum (4.5 to 5.5), but hydrolyzed angiotensin III at pH 7 at 50% of the optimal rate. Prolylcarboxypeptidase was inhibited by diisopropyl phosphorofluoridate and pepstatin, but not by sequestering agents or -SH reagents.  相似文献   

13.
The amino acid composition of two forms of alpha-glucosidase from the yeast Saccharomyces cerevisiae-II was established and the values of Km, V, kcat and kcat/Km for maltose, maltotriose and p-nitrophenyl-alpha-D-glucopyranoside (PNPG) were determined. PNPG possessed a much higher affinity for the enzyme as compared to sucrose, maltose and maltotriose. The value of V decreased in the following order: PNPG greater than sucrose greater than maltose greater than greater than maltotriose. No differences between the kinetic parameters of individual forms of alpha-glucosidase were observed. Glucose, fructose and methyl-alpha-glucoside act as competitive inhibitors. The two forms of alpha-glucosidase under study have an identical pH optimum and thermal stability.  相似文献   

14.
Pyrococcus furiosus is a strictly anaerobic hyperthermophilic archaebacterium with an optimal growth temperature of about 100 degrees C. When this organism was grown in the presence of certain complex carbohydrates, the production of several amylolytic enzymes was noted. These enzymes included an alpha-glucosidase that was located in the cell cytoplasm. This alpha-glucosidase has been purified 310-fold and corresponded to a protein band of 125 kilodaltons as resolved by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited optimum activity at pH 5.0 to 6.0 and over a temperature range of 105 to 115 degrees C. Kinetic analysis conducted at 108 degrees C revealed hydrolysis of the substrates p-nitrophenyl-alpha-D-glucopyranoside (PNPG), methyl-alpha-D-glucopyranoside, maltose, and isomaltose. Trace activity was detected towards p-nitrophenyl-beta-D-glucopyranoside, and no activity could be detected towards starch or sucrose. Inhibition studies conducted at 108 degrees C with PNPG as the substrate and maltose as the inhibitor yielded a Ki for maltose of 14.3 mM. Preincubation for 30 min at 98 degrees C in 100 mM dithiothreitol and 1.0 M urea had little effect on enzyme activity, whereas preincubation in 1.0% sodium dodecyl sulfate and 1.0 M guanidine hydrochloride resulted in significant loss of enzyme activity. Purified alpha-glucosidase from P. furiosus exhibited remarkable thermostability; incubation of the enzyme at 98 degrees C resulted in a half life of nearly 48 h.  相似文献   

15.
Two isozymes (AIV I and AIV II) of soluble acid invertase (EC 3.2.1.26) were purified from Japanese pear fruit through procedures including (NH(4))(2)SO(4) precipitating, DEAE-Sephacel column chromatography, Concanavalin A (ConA)-Sepharose affinity chromatography, hydroxyapatite column chromatography and Mono Q HR 5/5 column chromatography. The specific activities of purified AIV I and AIV II were 2670 and 2340 (nkat/mg protein), respectively. AIV I was a monomeric enzyme of 80 kDa, while AIV II may be also a monomeric enzyme, which is easy to be cleaved to 52 kDa and 34 kDa polypeptide during preparation by SDS-PAGE. The Km values for sucrose of AIV I and AIV II were 3.33 and 4.58 mM, respectively, and optimum pH of both enzyme activities was pH 4.5.  相似文献   

16.
The extracellular glycosyltransferases from Streptococcus mutans FA1 were purified by using the following procedures: ammonium sulfate precipitation, poly-(acrylamide) gel filtration, DEAE-cellulose chromatography, and agarose-gel filtration. The dextransucrase and levansucrase activities were purified 350- and 500-fold, repsectively, and the ratio of the two activities remained almost constant throughout the purification. Both enzymes have a pH optimum of 6.0, a Km for sucrose of 55mM, and isoelectric points of 3.7 and 4.6. The enzymes are inactivated by repeated freezing and thawing, but retain partial activity even after heating at 100 degrees. The enzyme preparation contains a carbohydrate moiety which does not appear to be either bound levan or dextran.  相似文献   

17.
Neuraminidase (EC 3.2.1.18) has been purified from the culture medium of Clostridium perfringens ATCC 10543, through steps of gel filtration on Sephadex G-75 column, DEAE-cellulose DE 23 anion exchange chromatography, and isochromatofocusing. A homogeneous enzyme was obtained with a 7552-fold increase in specific activity to 295 units/mg protein. The yield was about 25%. The enzyme consists of a single polypeptide with a molecular weight of 69,000 as determined by SDS-polyacrylamide gel electrophoresis. Kinetic studies showed that Km is 1.5 mM for sialyllactose and Vmax is 0.41 mumole/min/ml at the enzyme concentration of 0.14 microgram/ml. The enzyme is stable at pH 5.2-8.0 with an optimal pH of 6.0. A concentrated solution of the purified enzyme was stable over one year at 4 degrees C. The purified enzyme hydrolyzed human alpha 1-acid glycoprotein completely; thus, it can be used in the clinical assay of N-acetylneuraminic acid in the serum.  相似文献   

18.
Streptomyces sp. 142, isolated from a soil sample, produced alpha-fucosidase when cultured in the presence of L-fucose. The enzyme was purified 700-fold with an overall recovery of 17% from a cell-free extract by cation exchange chromatography and gel filtration chromatography. The apparent molecular weight of the purified enzyme was 40,000 by gel filtration chromatography. The enzyme had a pH optimum of 6.0 and was stable at pH 4.5-7.0. Substrate specificity studies with oligosaccharides labeled with 2-aminopyridine as the substrate showed that the enzyme specifically hydrolyzed terminal alpha 1-3 and alpha 1-4 fucosidic linkages in the oligosaccharides but did not hydrolyze alpha 1-2 or alpha 1-6 fucosidic linkages or a synthetic substrate, p-nitro-phenyl alpha-L-fucoside. The purified enzyme released L-fucose from a fucosylated glycoprotein, alpha 1-acid glycoprotein. Thus, the substrate specificities of the Streptomyces alpha-fucosidase resembled those of alpha-fucosidases I and III isolated from almond emulsin rather than those of other microbial alpha-fucosidases.  相似文献   

19.
delta 1-Pyrroline-5-carboxylate reductase (L-proline:NAD(P)+ 5-oxidoreductase, EC 1.5.1.2) has been purified from rat lens and biochemically characterized. Purification steps included ammonium sulfate fractionation, affinity chromatography on Amicon Matrex Orange A, and gel filtration with Sephadex G-200. These steps were carried out at ambient temperature (22 degrees C) in 20 mM sodium phosphate/potassium phosphate buffer (pH 7.5) containing 10% glycerol, 7 mM mercaptoethanol and 0.5 mM EDTA. The enzyme, purified to apparent homogeneity, displayed a molecular weight of 240 000 by gel chromatography and 30 000 by SDS-polyacrylamide gel electrophoresis. This suggests that the enzyme is composed of eight subunits. The purified enzyme displays a pH optimum between 6.5 and 7.1 and is inhibited by heavy metal ions and p-chloromercuribenzoate. Kinetic studies indicated Km values of 0.62 mM and 0.051 mM for DL-pyrroline-5-carboxylate as substrate when NADH and NADPH respectively were employed as cofactors. The Km values for the cofactors NADH and NADPH with DL-pyrroline-5-carboxylate as substrate were 0.37 mM and 0.006 mM, respectively. With L-pyrroline-5-carboxylate as substrate, Km values of 0.21 mM and 0.022 mM were obtained for NADH and NADPH, respectively. Enzyme activity is potentially inhibited by NADP+ and ATP, suggesting that delta 1-pyrroline-5-carboxylate reductase may be regulated by the energy level and redox state of the lens.  相似文献   

20.
An extracellular beta-xylosidase from a newly isolated Fusarium proliferatum (NRRL 26517) capable of utilizing corn fiber xylan as growth substrate was purified to homogeneity from the culture supernatant by DEAE-Sepharose CL-6B batch adsorption chromatography, CM Bio-Gel A column chromatography, Bio-Gel A-0.5 m gel filtration and Bio-Gel HTP Hydroxyapatite column chromatography. The purified beta-xylosidase (specific activity, 53 U/mg protein) had a molecular weight of 91,200 as estimated by SDS-PAGE. The optimum temperature and pH for the action of the enzyme were 60 degrees C and 4.5, respectively. The purified enzyme hydrolyzed xylobiose and higher xylooligosaccharides but was inactive against xylan substrates. It had a Km value of 0.77 mM (p-nitrophenol-beta-D-xyloside, pH 4.5, 50 degrees C) and was competitively inhibited by xylose with a Ki value of 5 mM. The enzyme did not require any metal ion for activity and stability. Comparative properties of this enzyme with other fungal beta-xylosidases are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号