首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Body pigmentation in insects and other organisms is typically variable within and between species and is often associated with fitness. Regulatory variants with large effects at bab1, t and e affect variation in abdominal pigmentation in several populations of Drosophila melanogaster. Recently, we performed a genome wide association (GWA) analysis of variation in abdominal pigmentation using the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP). We confirmed the large effects of regulatory variants in bab1, t and e; identified 81 additional candidate genes; and validated 17 candidate genes (out of 28 tested) using RNAi knockdown of gene expression and mutant alleles. However, these analyses are imperfect proxies for the effects of segregating variants. Here, we describe the results of an extreme quantitative trait locus (xQTL) GWA analysis of female body pigmentation in an outbred population derived from light and dark DGRP lines. We replicated the effects on pigmentation of 28 genes implicated by the DGRP GWA study, including bab1, t and e and 7 genes previously validated by RNAi and/or mutant analyses. We also identified many additional loci. The genetic architecture of Drosophila pigmentation is complex, with a few major genes and many other loci with smaller effects.  相似文献   

2.
3.
4.
5.
M J Bray  T Werner  K A Dyer 《Heredity》2014,112(4):454-462
Pigmentation is a rapidly evolving trait that is under both natural and sexual selection in many organisms. In the quinaria group of Drosophila, nearly all of the 30 species have an abdomen that is light in color with distinct markings; D. tenebrosa is the exception in that it has a completely melanic abdomen with no visible markings. In this study, we use a combination of quantitative genetic and candidate gene approaches to investigate the genetic basis of abdominal pigmentation in D. tenebrosa. We find that abdominal pigmentation is invariant across wild-caught lines of D. tenebrosa and is not sexually dimorphic. Quantitative genetic mapping utilizing crosses between D. tenebrosa and the light-colored D. suboccidentalis indicates that two genomic regions together underlie abdominal pigmentation, including the X-chromosome and an autosome (Muller Element C/E). Further support for their central importance in pigmentation is that experimental introgression of one phenotype into the other species, in either direction, results in introgression of these two genomic regions. Finally, the expression of the X-linked gene yellow in the pupae exactly foreshadows the adult melanization pattern in the abdomen of both species, suggesting that changes in the regulation of yellow are important for the phenotypic divergence of D. tenebrosa from the rest of the quinaria group. These results contribute to a body of work that demonstrates how changes in expression of highly conserved genes can cause substantial phenotypic differences even between closely related species.  相似文献   

6.
7.
《Fly》2013,7(2):75-81
Body pigmentation in insects and other organisms is typically variable within and between species and is often associated with fitness. Regulatory variants with large effects at bab1, t and e affect variation in abdominal pigmentation in several populations of Drosophila melanogaster. Recently, we performed a genome wide association (GWA) analysis of variation in abdominal pigmentation using the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP). We confirmed the large effects of regulatory variants in bab1, t and e; identified 81 additional candidate genes; and validated 17 candidate genes (out of 28 tested) using RNAi knockdown of gene expression and mutant alleles. However, these analyses are imperfect proxies for the effects of segregating variants. Here, we describe the results of an extreme quantitative trait locus (xQTL) GWA analysis of female body pigmentation in an outbred population derived from light and dark DGRP lines. We replicated the effects on pigmentation of 28 genes implicated by the DGRP GWA study, including bab1, t and e and 7 genes previously validated by RNAi and/or mutant analyses. We also identified many additional loci. The genetic architecture of Drosophila pigmentation is complex, with a few major genes and many other loci with smaller effects.  相似文献   

8.
9.
Cell aggregation in unicellular organisms, induced by either cell non-sexual adhesion to yield flocs and biofilm, or pheromone-driving sexual conjugation is of great significance in cellular stress response, medicine, and brewing industries. Most current literatures have focused on one form of cell aggregation termed flocculation and its major molecular determinants, the flocculation (FLO) family genes. Here, we implemented a map-based approach for dissecting the molecular basis of non-sexual cell aggregation in Saccharomyces cerevisiae. Genome-wide mapping has identified four major quantitative trait loci (QTL) underlying nature variation in the cell aggregation phenotype. High-resolution mapping following up with knockout and allele replacement experiments resolved the QTL into the underlying genes (AMN1, RGA1, FLO1, and FLO8) or even into the causative nucleotide. Genetic variation in the QTL genes can explain up to 46% of phenotypic variation of this trait. Of these genes, AMN1 plays the leading role, differing from the FLO family members, in regulating expression of cell clumping phenotype through inducing cell segregation defect. These findings provide novel insights into the molecular mechanism of how cell aggregation is regulated in budding yeast, and the data will be directly implicated to understand the molecular basis and evolutionary implications of cell aggregation in other fungus species.  相似文献   

10.
Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.  相似文献   

11.
12.
13.
14.
15.
During the maturation of insect cuticle, protein-protein and protein-chitin crosslinkages are formed by the action of diphenoloxidases. Two types of diphenoloxidases, laccases and tyrosinases, are present in the insect cuticle. In coleopteran and hymenopteran insects, laccase2 gene has been identified as encoding an enzyme principally responsible for cuticular pigmentation and hardening, whereas biological roles of laccase genes in hemimetabolous insects remain to be established. Here we identified laccase2 genes from three hemipteran stinkbugs, Riptortus pedestris (Alydidae), Nysius plebeius (Lygaeidae) and Megacopta punctatissima (Plataspidae). In R. pedestris, laccase2 gene was highly expressed in epidermal tissues prior to molting. When the gene expression was suppressed by an RNA interference technique, cuticular pigmentation after molting were blocked depending on the dose of injected double-stranded RNA targeting the laccase2 gene. Similar results were obtained for N. plebeius and M. punctatissima. In all the stinkbug species, injecting 20 ng of double-stranded RNA was sufficient to prevent the cuticular maturation. These results indicate that laccase2 gene is generally required for cuticular pigmentation in different stinkbug families, highlighting its conserved biological function across diverse insect taxa.  相似文献   

16.
Genes with overlapping expression and function may gradually diverge despite retaining some common functions. To test whether such genes show distinct patterns of molecular evolution within species, we examined sequence variation at the bric à brac (bab) locus of Drosophila melanogaster. This locus is composed of two anciently duplicated paralogs, bab1 and bab2, which are involved in patterning the adult abdomen, legs, and ovaries. We have sequenced the 148 kb genomic region spanning the bab1 and bab2 genes from 94 inbred lines of D. melanogaster sampled from a single location. Two non-coding regions, one in each paralog, appear to be under selection. The strongest evidence of directional selection is found in a region of bab2 that has no known functional role. The other region is located in the bab1 paralog and is known to contain a cis-regulatory element that controls sex-specific abdominal pigmentation. The coding region of bab1 appears to be under stronger functional constraint than the bab2 coding sequences. Thus, the two paralogs are evolving under different selective regimes in the same natural population, illuminating the different evolutionary trajectories of partially redundant duplicate genes.  相似文献   

17.
The segmentation gene hierarchy of Drosophila melanogaster represents one of the best understood of the gene networks that generate pattern during embryogenesis. Some components of this network are ancient, while other parts of the network have evolved within the higher Diptera. To further understand the evolution of this gene network, we are studying the role of gap genes in a representative of a basally diverging dipteran lineage, the moth midge Clogmia albipunctata. We have isolated orthologues of all of the Drosophila trunk gap genes from Clogmia, and determined their domains of expression during the blastoderm stage of development, in relation to one another, and in relation to the expression of even-skipped (Calb-eve), a component of the pair-rule system that is directly regulated by the gap genes in Drosophila. We find that hunchback (Calb-hb), Krüppel (Calb-Kr), knirps (Calb-knl), giant (Calb-gt) and tailless (Calb-tll) are all expressed in patterns consistent with a gap segmentation role during blastoderm formation, but huckebein (Calb-hkb) is not. In the anterior half of the embryo, the relative positions of the gap gene expression domains in relation to one another, and in relation to the eve stripes, are rather well conserved. In the posterior half of the embryo, there are significant differences. Posteriorly, Calb-gt is expressed only transiently and very weakly, in a domain that overlaps entirely with that of Calb-knl. At late blastoderm stages, none of the candidate genes we have tested is expressed in the region between the posterior Calb-knl domain and Calb-tll. It is likely that the regulation of Calb-eve expression in this posterior region depends on combinations of gap gene factors that differ from those utilised for the same stripes in Drosophila. Both the gap and the pair-rule patterns of gene expression are dynamic in Clogmia, as they are in Drosophila, shifting anteriorly as blastoderm development proceeds.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号