首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

2.
Peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy are autosomal recessive diseases caused by defects in peroxisome assembly, for which 13 genotypes have been identified. Expression of the human peroxin Pex3p cDNA encoding a 373-amino-acid peroxisomal membrane protein morphologically and biochemically restored peroxisome biogenesis, including peroxisomal membrane assembly, in fibroblasts from PBDG-02, a patient with complementation group G (CG-G) ZS. Patient PBDG-02 carried a homozygous, inactivating mutation-a 97-bp deletion of nucleotide residues at positions 942-1038-resulting in a 32-amino-acid truncation and in a frameshift inducing both a 3-amino-acid substitution and a termination codon. Genomic PCR analysis revealed mutation of T-->G at eight bases upstream of the splicing site at the boundary of intron 10 and exon 11 of PEX3 gene, giving rise to a deletion of all of exon 11. When assessed by expression in a pex3 mutant of Chinese hamster ovary cells and the patient's fibroblasts, PBDG-02-derived PEX3 cDNA was found to be defective in peroxisome-restoring activity. These results provide evidence that PEX3 is a novel, pathogenic gene responsible for CG-G PBDs.  相似文献   

3.
Peroxisome biogenesis disorders (PBDs) are fatal autosomal recessive diseases and are caused by impaired peroxisome biogenesis. PBDs are genetically heterogeneous and classified into 13 complementation groups (CGs). CG8 is one of the most common groups and has three clinical phenotypes, including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy, and infantile Refsum disease (IRD). We recently isolated PEX26 as the pathogenic gene for PBD of CG8. Pex26p functions in recruiting to peroxisomes the complexes of the AAA ATPase peroxins, Pex1p and Pex6p. In the present work, we identified four distinct mutations in PEX26 from five patients of CG8 PBD including 2 with ZS and 3 with IRD, in addition to 7 mutant alleles in 8 patients in the first report describing the pathogenic PEX26 gene for CG8 PBD. Phenotype-genotype analyses revealed that temperature-sensitive (ts) peroxisome assembly gave rise to a milder IRD in contrast to the non-ts phenotype of the cells from ZS patients. Furthermore, we present several lines of evidence that show that the instability, insufficient binding to Pex1p x Pex6p complexes, or mislocalization of patient-derived Pex26p mutants is most likely responsible for the CG8 PBDs.  相似文献   

4.
Human Pex16p, a peroxisomal membrane protein composed of 336 amino acids, plays a central role in peroxisomal membrane biogenesis. A nonsense mutation (R176ter) in the PEX16 gene has been reported in the case of only one patient (D-01) belonging to complementation group D of the peroxisome biogenesis disorders. We have now identified two patients belonging to group D (D-02 and D-03) whose fibroblasts were found to contain no peroxisomal membrane structure ghosts. Molecular analysis of the PEX16 gene revealed aberrant cDNA species lacking 65 bp, corresponding to exon 10 skipping caused by a splice site mutation (IVS10 + 2T -->C). Both patients, although unrelated, were homozygous for this mutation. This mutation changes the amino acid sequence starting from codon 298 and introduces a termination codon at codon 336. As a consequence, the cell's ability to membrane synthesis and protein import is disrupted, which implies that the changed C terminus of the Pex16p in these patients likely affects its function.  相似文献   

5.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.  相似文献   

6.
Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11–20, 1997), using a transient transfection assay and an ectopic, readily visible marker, green fluorescent protein. This cDNA encodes a 359-amino-acid membrane protein of peroxisomes with two transmembrane segments and a cysteine-rich zinc finger, the RING motif. A stable transformant of ZP109 with the PEX12 was morphologically and biochemically restored for peroxisome biogenesis. Pex12p was shown by expression of bona fide as well as epitope-tagged Pex12p to expose both N- and C-terminal regions to the cytosol. Fibroblasts derived from patients with the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III) were also complemented for peroxisome biogenesis with PEX12. Two unrelated patients of this group manifesting peroxisome deficiency disorders possessed homozygous, inactivating PEX12 mutations: in one, Arg180Thr by one point mutation, and in the other, deletion of two nucleotides in codons for 291Asn and 292Ser, creating an apparently unchanged codon for Asn and a codon 292 for termination. These results indicate that the gene encoding peroxisome assembly factor Pex12p is a pathogenic gene of CG-III peroxisome deficiency. Moreover, truncation and site mutation studies, including patient PEX12 analysis, demonstrated that the cytoplasmically oriented N- and C-terminal parts of Pex12p are essential for biological function.  相似文献   

7.
Taras Y. Nazarko 《Autophagy》2017,13(5):991-994
Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1G843D (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.  相似文献   

8.
Peroxisomes are ubiquitous organelles with a single membrane that contain over 50 different enzymes that catalyse various metabolic pathways, including beta-oxidation and lipid synthesis. Peroxisome biogenesis disorders (PBDs), such as Zellweger syndrome and neonatal adrenoleukodystrophy, are fatal genetic diseases that are autosomal recessive. Among the PBDs of the 12 complementation groups (CGs), 11 associated PEX genes have been isolated. Accordingly, only the PBD pathogenic gene for CG8 (also called CG-A) remains unidentified. Here we have isolated human PEX26 encoding a type II peroxisomal membrane protein of relative molecular mass 34,000 (M(r) 34K) by using ZP167 cells, a Chinese hamster ovary (CHO) mutant cell line. Expression of PEX26 restores peroxisomal protein import in the fibroblasts of an individual with PBD of CG8. This individual possesses a homozygous, inactivating pathogenic point mutation, Arg98Trp, in Pex26. Pex6 and Pex1 of the AAA ATPase family co-immunoprecipitate with Pex26. Epitope-tagged Pex6 and Pex1 are discernible as puncta in normal CHO-K1 cells, but not in PEX26-defective cells. PEX26 expression in ZP167 cells re-establishes colocalization of Pex6 and Pex1 with Pex26, in a Pex6-dependent manner. Thus, Pex26 recruits Pex6-Pex1 complexes to peroxisomes.  相似文献   

9.
Peroxisome biogenesis disorders (PBDs) contain various clinical phenotypes; Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD), decreasing in the clinical severity in this order. We found that all IRD cell lines and some NALD lines belonging to several different complementation groups are temperature-sensitive in peroxisome assembly; that is, they lacked catalase-positive peroxisomes at 37°C, but do gain the peroxisomes at 30°C. We identified heterozygous mutations E55K/R119Stop in the PEX2 gene of an IRD patient of complementation group F. The E55K mutation was the direct cause of the temperature-sensitivity because similar phenotypes could be transferred to PEX2-defective CHO cells by transfecting the mutant gene. Thus, temperature-sensitive peroxisome assembly is representative of milder forms of PBDs. The main part of this study was published by Imamura et al. (1).  相似文献   

10.
11.
Rat cDNA encoding a 372-amino-acid peroxin was isolated, primarily by functional complementation screening, using a peroxisome-deficient Chinese hamster ovary cell mutant, ZPG208, of complementation group 17. The deduced primary sequence showed approximately 25% amino acid identity with the yeast Pex3p, thereby we termed this cDNA rat PEX3 (RnPEX3). Human and Chinese hamster Pex3p showed 96 and 94% identity to rat Pex3p and had 373 amino acids. Pex3p was characterized as an integral membrane protein of peroxisomes, exposing its N- and C-terminal parts to the cytosol. A homozygous, inactivating missense mutation, G to A at position413, in a codon (GGA) for Gly(138) and resulting in a codon (GAA) for Glu was the genetic cause of peroxisome deficiency of complementation group 17 ZPG208. The peroxisome-restoring activity apparently required the full length of Pex3p, whereas its N-terminal part from residues 1 to 40 was sufficient to target a fusion protein to peroxisomes. We also demonstrated that Pex3p binds the farnesylated peroxisomal membrane protein Pex19p. Moreover, upon expression of PEX3 in ZPG208, peroxisomal membrane vesicles were assembled before the import of soluble proteins such as PTS2-tagged green fluorescent protein. Thus, Pex3p assembles membrane vesicles before the matrix proteins are translocated.  相似文献   

12.
Peroxisome-biogenesis disorders (PBD) are genetically heterogeneous and can be classified into at least ten complementation groups. We recently isolated the cDNA for rat peroxisome assembly factor-2 (PAF-2) by functional complementation using the peroxisome-deficient Chinese-hamster-ovary cell mutant, ZP92. To clarify the novel pathogenic gene of PBD, we cloned the full-length human PAF-2 cDNA that morphologically and biochemically restores peroxisomes of group C Zellweger fibroblasts (the same as group 4 in the Kennedy-Krieger Institute) and identified two pathogenic mutations in the PAF-2 gene in two patients with group C Zellweger syndrome. The 2,940-bp open reading frame of the human PAF-2 cDNA encodes a 980-amino-acid protein that shows 87.1% identity with rat PAF-2 and also restored the peroxisome assembly after gene transfer to fibroblasts of group C patients. Direct sequencing of the PAF-2 gene revealed a homozygous 1-bp insertion at nucleotide 511 (511 insT) in one patient with group C Zellweger syndrome (ZS), which introduces a premature termination codon in the PAF-2 gene, and, in the second patient, revealed a splice-site mutation in intron 3 (IVS3+1G-->A), which skipped exon 3, an event that leads to peroxisome deficiency. Chromosome mapping utilizing FISH indicates that PAF-2 is located on chromosome 6p21.1. These results confirm that human PAF-2 cDNA restores peroxisome of group C cells and that defects in the PAF-2 produce peroxisome deficiency of group C PBD.  相似文献   

13.
Patients with peroxisome biogenesis disorders (PBD) can be identified by detection of peroxisomes in their fibroblasts, by means of immunocytochemical staining using an anti-catalase antibody. We report here data on three PBD patients with newly identified mutations (del550C and del642G) in the PEX2 gene which encodes a 35-kDa peroxisomal membrane protein containing two membrane-spanning and a C-terminal cysteine-rich region. Some of the fibroblasts from the patient with the del642G mutation contained numerous catalase-containing particles, whereas no fibroblasts containing such particles were found in the patient with the del550C mutation. We confirmed that the del642G mutation caused a partial defect in peroxisome synthesis and import by expression of the mutated PEX2 into PEX2-defective CHO mutant cells. We propose that the two putative membrane-spanning segments in Pex2p are important domains for peroxisome assembly and import and that a defect in one of these domains severely affects PBD patients. Furthermore, a defect in the C-terminal portion of Pex2p exposed to the cytosol containing a RING finger motif caused the mild phenotype, residual enzyme activities, and mosaic detectable peroxisomes in fibroblasts from the patient.  相似文献   

14.
The human disorders of peroxisome biogenesis (PBDs) are subdivided into 12 complementation groups (CGs). CG8 is one of the more common of these and is associated with varying phenotypes, ranging from the most severe, Zellweger syndrome (ZS), to the milder neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD). PEX26, encoding the 305-amino-acid membrane peroxin, has been shown to be deficient in CG8. We studied the PEX26 genotype in fibroblasts of eight CG8 patients--four with the ZS phenotype, two with NALD, and two with IRD. Catalase was mostly cytosolic in all these cell lines, but import of the proteins that contained PTS1, the SKL peroxisome targeting sequence, was normal. Expression of PEX26 reestablished peroxisomes in all eight cell lines, confirming that PEX26 defects are pathogenic in CG8 patients. When cells were cultured at 30 degrees C, catalase import was restored in the cell lines from patients with the NALD and IRD phenotypes, but to a much lesser extent in those with the ZS phenotype, indicating that temperature sensitivity varied inversely with the severity of the clinical phenotype. Several types of mutations were identified, including homozygous G89R mutations in two patients with ZS. Expression of these PEX26 mutations in pex26 Chinese hamster ovary cells resulted in cell phenotypes similar to those in the human cell lines. These findings confirm that the degree of temperature sensitivity in pex26 cell lines is predictive of the clinical phenotype in patients with PEX26 deficiency.  相似文献   

15.
The biogenesis of peroxisomes requires the interaction of several peroxins, encoded by PEX genes and is well conserved between yeast and humans. We have cloned the human cDNA of PEX3 based on its homology to different yeast PEX3 genes. The deduced peroxin HsPEX3 is a peroxisomal membrane protein with a calculated molecular mass of 42.1 kDa. We created N- and C-terminal tagged PEX3 to assay its topology at the peroxisomal membrane by immunofluorescence microscopy. Our results and the one predicted transmembrane spanning region are in line with the assumption that H sPEX3 is an integral peroxisomal membrane protein with the N-terminus inside the peroxisome and the C-terminus facing the cytoplasm. The farnesylated peroxisomal membrane protein PEX19 interacts with HsPEX3 in a mammalian two-hybrid assay in human fibroblasts. The physical interaction could be confirmed by coimmunoprecipitation of the two in vitro transcribed and translated proteins. To address the targeting of PEX3 to the peroxisomal membrane, the expression of different N- and C-terminal PEX3 truncations fused to green fluorescent protein (GFP) was investigated in human fibroblasts. The N-terminal 33 amino acids of PEX3 were necessary and sufficient to direct the reporter protein GFP to peroxisomes and seemed to be integrated into the peroxisomal membrane. The expression of a 1-16 PEX3-GFP fusion protein did not result in a peroxisomal localization, but interestingly, this and several other truncated PEX3 fusion proteins were also localized to tubular and/or vesicular structures representing mitochondria.  相似文献   

16.
To investigate mechanisms related to functions of the peroxisome targeting signal (PTS) 1 receptor, Pex5p, we analyzed peroxisome matrix protein import in fibroblasts from three patients with peroxisome biogenesis disorders, all with different mutations in the PEX5 gene. The patients 2-01 (Zellweger syndrome) and 2-05 (neonatal adrenoleukodystrophy) have the reported mutations, R390X and N489K, and patient 2-03 (infantile Refsum disease) has a newly identified mutation, S563W. Fibroblasts from 2-03 (S563W) were detected in both PTS1 and PTS2 imports despite the PEX5 defect, findings in contrast with fibroblasts from 2-05 (N489K) severely defective in PTS1 import and those from 2-01 (R390X) severely defective in both PTS1 and PTS2. The PTS1 receptor in 2-03 is functional for only the C-terminal -SKL sequence (acyl-CoA oxidase) and had little or no function for C-terminal -AKL (D-bifunctional protein and sterol carrier protein 2) and -KANL (catalase) sequences, respectively. After transfection of these mutated PEX5 cDNA into the PEX5-defective CHO mutant, transformants of ZP102 revealed that each mutation was responsible for each dysfunction of the PTS1 import. It seems apparent that -AKL and -KANL are poorer variants of PTS1 and are likely to be more susceptible to effects of mutation of its receptor, Pex5p.  相似文献   

17.
18.
Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) are clinically overlapping syndromes, collectively called "peroxisome biogenesis disorders" (PBDs), with clinical features being most severe in ZS and least pronounced in IRD. Inheritance of these disorders is autosomal recessive. The peroxisome biogenesis disorders are genetically heterogeneous, having at least 12 different complementation groups (CGs). The gene affected in CG1 is PEX1. Approximately 65% of the patients with PBD harbor mutations in PEX1. In the present study, we used SSCP analysis to evaluate a series of patients belonging to CG1 for mutations in PEX1 and studied phenotype-genotype correlations. A complete lack of PEX1 protein was found to be associated with severe ZS; however, residual amounts of PEX1 protein were found in patients with the milder phenotypes, NALD and IRD. The majority of these latter patients carried at least one copy of the common G843D allele. When patient fibroblasts harboring this allele were grown at 30 degrees C, a two- to threefold increase in PEX1 protein levels was observed, associated with a recovery of peroxisomal function. This suggests that the G843D missense mutation results in a misfolded protein, which is more stable at lower temperatures. We conclude that the search for the factors and/or mechanisms that determine the stability of mutant PEX1 protein by high-throughput procedures will be a first step in the development of therapeutic strategies for patients with mild PBDs.  相似文献   

19.
The three peroxin genes, PEX12, PEX2, and PEX10, encode peroxisomal integral membrane proteins with RING finger at the C-terminal part and are responsible for human peroxisome biogenesis disorders. Mutation analysis in PEX12 of Chinese hamster ovary cell mutants revealed a homozygous nonsense mutation at residue Trp263Ter in ZP104 cells and a pair of heterozygous nonsense mutations, Trp170Ter and Trp114Ter, in ZP109. This result and domain mapping of Pex12p showed that RING finger is essential for peroxisome-restoring activity of Pex12p but not necessary for targeting to peroxisomes. The N-terminal region of Pex12p, including amino acid residues at positions 17-76, was required for localization to peroxisomes, while the sequence 17-76 was not sufficient for peroxisomal targeting. Peroxins interacting with RING finger of Pex2p, Pex10p, and Pex12p were investigated by yeast two-hybrid as well as in vitro binding assays. The RING finger of Pex12p bound to Pex10p and the PTS1-receptor Pex5p. Pex10p also interacted with Pex2p and Pex5p in vitro. Moreover, Pex12p was co-immunoprecipitated with Pex10p from CHO-K1 cells, where Pex5p was not associated with the Pex12p-Pex10p complex. This observation suggested that Pex5p does not bind to, or only transiently interacts with, Pex10p and Pex12p when Pex10p and Pex12p are in the oligomeric complex in peroxisome membranes. Hence, the RING finger peroxins are most likely to be involved in Pex5p-mediated matrix protein import into peroxisomes.  相似文献   

20.
《The Journal of cell biology》1996,135(6):1763-1774
PEX5 encodes the type-1 peroxisomal targeting signal (PTS1) receptor, one of at least 15 peroxins required for peroxisome biogenesis. Pex5p has a bimodal distribution within the cell, mostly cytosolic with a small amount bound to peroxisomes. This distribution indicates that Pex5p may function as a cycling receptor, a mode of action likely to require interaction with additional peroxins. Loss of peroxins required for protein translocation into the peroxisome (PEX2 or PEX12) resulted in accumulation of Pex5p at docking sites on the peroxisome surface. Pex5p also accumulated on peroxisomes in normal cells under conditions which inhibit protein translocation into peroxisomes (low temperature or ATP depletion), returned to the cytoplasm when translocation was restored, and reaccumulated on peroxisomes when translocation was again inhibited. Translocation inhibiting conditions did not result in Pex5p redistribution in cells that lack detectable peroxisomes. Thus, it appears that Pex5p can cycle repeatedly between the cytoplasm and peroxisome. Altered activity of the peroxin defective in CG7 cells leads to accumulation of Pex5p within the peroxisome, indicating that Pex5p may actually enter the peroxisome lumen at one point in its cycle. In addition, we found that the PTS1 receptor was extremely unstable in the peroxin-deficient CG1, CG4, and CG8 cells. Altered distribution or stability of the PTS1 receptor in all cells with a defect in PTS1 protein import implies that the genes mutated in these cell lines encode proteins with a direct role in peroxisomal protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号